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Myeloid-derived suppressor cells (MDSCs) comprise monocytic and granulocytic innate

immune cells with the capability of suppressing T- and NK-cell responses. While the role

of MDSCs has been studied in depth in malignant diseases, the understanding of their

regulation and function in infectious disease conditions has just begun to evolve. Here we

summarize and discuss the current view how MDSCs participate in bacterial infections

and how this knowledge could be exploited for potential future therapeutics.
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INTRODUCTION

Bacterial infections represent one of the major threats for the human immune system. Particularly,
in vulnerable populations, such as elderly people or patients after surgery, they can lead to sepsis or
death (Martin et al., 2003). A functional immune response is a key factor to control the outcome of
bacterial infections. Therefore, the human immune system has evolved several effector mechanisms
to combat bacteria, involving the innate and the adaptive arm of the immune system. While
phagocytic cells, mainly neutrophils and macrophages, are traditionally regarded as key players in
host-bacteria interactions (Kruger et al., 2015), research focus has shifted toward a heterogeneous
group ofmyeloid cells, which suppress immune responses, termedmyeloid-derived suppressor cells
(MDSCs) (Gabrilovich et al., 2007). First described in cancer (Young et al., 1987; Gabrilovich and
Nagaraj, 2009; Waldron et al., 2013), subsequent studies highlighted the potential role of MDSCs
in auto-immune and infectious diseases (Haile et al., 2008; Tacke et al., 2012). Notably, MDSC
induction and immunosuppressive activity has been shown in infections with hepatitis C virus
(Tacke et al., 2012; Goh et al., 2016). Elevated MDSCs were also found in HIV patients (Qin et al.,
2013; Tumino et al., 2015), in other viral infections as well as in fungal and parasitic infections
(Van Ginderachter et al., 2010; Goh et al., 2013; Rieber et al., 2015). Distinct MDSC subphenotypes
have been described depending on the infectious agent and the stage of disease (Norris et al., 2013;
Janols et al., 2014). Therapeutically, several approaches on how to interfere with or target MDSCs
have been discovered and are subject to preclinical and clinical studies in cancer (Gabrilovich et al.,
2001; Ko et al., 2009; Nagaraj et al., 2010b). In this review, we describe the state of research on
MDSCs in bacterial infections. Furthermore, we focus on the molecular mechanisms that mediate
pathogen recognition and MDSC activation in bacterial infections.

MDSCs

MDSC Characterization
MDSCs comprise a heterogeneous group of immature myeloid cells that suppress effector
immune cells, mainly T-cells and natural killer (NK) cells. Two major MDSC subsets have been
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described that differ substantially by morphology as well as
immunosuppressive mechanisms: (i) granulocytic/neutrophilic
MDSCs (PMN-MDSCs) and (ii) monocytic MDSCs (M-
MDSCs) (Youn et al., 2008). In mice, PMN-MDSCs
are CD11b+Ly6G+Ly6Clow, whereas M-MDSCs are
CD11b+Ly6G−Ly6Chigh (Movahedi et al., 2008; Youn
et al., 2008). In humans, MDSCs have been described as
CD11b+CD33+HLA-DRlow/neg cells (Almand et al., 2001;
Ochoa et al., 2007). The subset of PMN-MDSCs is CD14−

and expresses CD66b+ and CD15+, while M-MDSCs are
CD14+ (Zea et al., 2005; Filipazzi et al., 2007; Condamine
et al., 2015). Divergent gene expression profiles have been
proposed to allow discrimination between MDSCs and other
granulocytes/monocytes (Gabrilovich et al., 2012; Condamine
et al., 2015). However, the phenotypic characterization is not
sufficient to identify MDSCs and an additional proof of the
immunosuppressive function is necessary. While PMN-MDSCs
have been described as the predominant subset in many cancers,
M-MDSCs are involved in melanoma (Filipazzi et al., 2007;
Mandruzzato et al., 2009) and chronic infections (Cai et al., 2013;
Nagaraj et al., 2013). M-MDSCs are also capable of differentiating
into PMN-MDSCs (Youn et al., 2013).

MDSC Expansion and Activation
Immature myeloid cells can be found in healthy individuals
at low amounts in peripheral blood (Almand et al., 2001),
which increase upon cancer, inflammation and infection. MDSC
expansion and activation mechanisms depend on the MDSC
phenotype and the species studied (Serafini, 2013; Condamine
et al., 2015; Figure 1). MDSC expansion is mainly driven
by STAT3, a transcription factor activated by GM-CSF, G-
CSF, VEGF as well as IL-6 (Gabrilovich et al., 1998; Serafini
et al., 2004; Song et al., 2005; Sawanobori et al., 2008), that
influences cell proliferation and differentiation (Yu et al., 2009).
Activated STAT3 also induces expression of S100A8 and A9
(Foell et al., 2007), which block differentiation of immature
myeloid cells and lead to expansion of MDSCs (Cheng et al.,
2008). In vivo inhibition of STAT3 via receptor tyrosine kinase
inhibitor Sunitinib resulted in a lower amount of MDSCs (Xin
et al., 2009). Other related transcription factors of the STAT
family, particularly STAT1 and STAT6, also play a role in
MDSC activation and function (Movahedi et al., 2008; Munera
et al., 2010). STAT1 can be triggered by IFN-γ, whereas STAT6
response is initiated by IL-4 and IL-13 (Rutschman et al., 2001).
Downstream, MDSC activation is primarily mediated by NFκB,
which is triggered by pro-inflammatory mediators such as IL-1β
and TNF-α (Tu et al., 2008; Hu et al., 2014) or toll-like receptor
signaling via MyD88 (Delano et al., 2007). Furthermore, NFκB
is involved in the ER stress response that is active in MDSCs
(Condamine et al., 2014).

Immunosuppressive Mechanisms of
MDSCs
MDSCs are employed with several mechanisms to suppress
immune cells. MDSCs express arginase-1, an enzyme that
converts L-arginine into urea and L-ornithine (Wu and Morris,
1998), which is required for functional T-cell responses (Zea

et al., 2004). MDSCs are equipped with another enzyme targeting
L-arginine, the inducible NO-synthase (iNOS) that catalyzes
the production of citrulline and NO from L-arginine (Wu
and Morris, 1998), thereby amplifying L-arginine deprivation.
Additionally, NO disrupts signaling pathways downstream of the
IL-2 receptor (Mazzoni et al., 2002), promoting T-cell apoptosis
(Garban and Bonavida, 2001) and formation of peroxynitrite.
This represents one of the most powerful oxidants that is capable
of altering the TCR and CD8-molecules via nitration. Thereby
these receptors no longer react to antigen-specific stimulation
(Nagaraj et al., 2007). Chemokines, such as CCL2, can be nitrated
and amino acids as cysteine can be oxidated by peroxynitrite,
which impairs T-cell response (Molon et al., 2011). MDSCs also
interfere directly with cysteinemetabolism by importing cysteine,
but lack of an export mechanism contrary to other myeloid cells.
As consequence, T-cells run short of cysteine and are left with
impaired activation and function (Srivastava et al., 2010). Beyond
NO,MDSCs produce another source of oxidants, reactive oxygen
species (ROS) (Youn et al., 2008), which disrupt the T-cell
function by modifying its TCR-ζ -chain (Nagaraj et al., 2010a).
Importantly, MDSC subsets differ in their immunosuppressive
mechanisms (Movahedi et al., 2008; Youn et al., 2008). While
M-MDSCs and PMN-MDSCs express comparable amounts of
arginase-1, substantial differences are found for NO and ROS.
M-MDSCs mainly generate NO (Movahedi et al., 2008), whereas
PMN-MDSCs produce higher levels of ROS (Youn et al., 2008).
Beyond suppressing T-cells, MDSCs also interact in a more
dynamic way with T-cells by acting as antigen presenting cells
for CD8+ T-cells (Watanabe et al., 2008). Additionally, MDSC
activity is enhanced by activated T-cells (Nagaraj et al., 2012),
while T-cells can also induce MDSC apoptosis by engaging the
Fas/FasL axis (Sinha et al., 2011). Besides dampening T-cells,
MDSCs are also known to influence the activity and function of
other myeloid cells (Ostrand-Rosenberg et al., 2012). By releasing
IL-10, MDSCs suppress IL-12 production by macrophages and
DCs, rendering them less capable of activating T-cells (Sinha
et al., 2007). Another subset of cells dampening T-cell responses
are regulatory T-cells (Treg), which exhibit cross-talk with
MDSCs (Hoechst et al., 2008). MDSCs have been shown to
promote the expansion of Tregs (Hoechst et al., 2008; Serafini
et al., 2008), while some other studies demonstrate more complex
scenarios of interaction (Dugast et al., 2008; Movahedi et al.,
2008).

MDSCs AND BACTERIAL INFECTIONS

TLR Ligands
Bacterial pathogens are recognized by immune cells through
defined pattern recognition receptors (PRRs). These PRRs
are capable of identifying so called pathogen-associated
molecular patterns (PAMPs) (Janeway and Medzhitov, 2002),
typically microbial cell envelope components, nucleic acids, or
polysaccharides (Akira et al., 2006). Toll-like receptors (TLRs)
represent the prototypic PRRs sensing bacterial infections. TLRs
on the cell surface mainly recognize bacterial molecular patterns,
while viral pathogens are detected by intracellular TLRs (Kawai
and Akira, 2010). TLR2 is a key TLR in bacterial sensing that
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FIGURE 1 | Signaling pathways involved in the expansion and activation of MDSCs. Induction/expansion and activation of MDSCs can be triggered through

distinct pathways. Here, we provide an overview on different signaling molecules and pathways involved in these events. Bacterial infections either directly promote

MDSC activation through microbial patterns (PAMPs), TLR ligation and NFκB-dependent pathways or indirectly through pro-inflammatory mediators, such as several

interleukins and IFN-γ, that are secreted upon infection. Furthermore, S100 proteins are also involved in both of these processes.

forms heterodimers with TLR1 and TLR6 (Akira et al., 2006).
The TLR1-TLR2 heterodimer binds with lipopeptides of Gram-
negative bacteria (Wyllie et al., 2000), whereas lipoproteins
of Gram-positive bacteria are recognized by the TLR2-TLR6
heterodimer (Ozinsky et al., 2000). TLR4 responds to bacterial
lipopolysaccharides (LPS) (Poltorak et al., 1998), which is
localized in the cell membrane of Gram-negative bacteria.
Flagellin, a prominent component of bacterial flagella known to
stimulate host defense, is detected by TLR5 (Hayashi et al., 2001)
and bacterial DNA motifs are sensed by TLR9 (Hemmi et al.,
2000). Notably, TLRs can also be activated by molecular patterns
that are released from stressed or damaged cells, so called
damage- or danger-associated molecular patterns (DAMPs)
(Asea et al., 2002). The synthetic lipopeptide and TLR2/6 agonist
Pam2CSK4 has been shown to induce MDSC expansion and
prolonged MDSC survival (Maruyama et al., 2015). Likewise
for TLR4, LPS triggered MDSC expansion and activation using
the MyD88-dependent signaling pathway in several in vitro as
well as in vivo studies (Delano et al., 2007; Bunt et al., 2009).
While MDSC generation was partly independent of MyD88,
MyD88 activity was essential for their immunosuppressive
functionality (Hong et al., 2013). We reported previously that
the TLR5 ligand flagellin induced MDSC expansion (Rieber
et al., 2013). Thus, several TLRs that detect bacterial PAMPs are
reported to enhance MDSC frequency and activity. However,
some TLR agonists are also used in anti-tumor therapy and show
adverse effects on MDSC expansion and activity (Aranda et al.,
2014). Hence, studies reported that Poly (I:C), a TLR3 agonist,
reduced MDSC frequency and inhibited immunosuppressive
effects (Zoglmeier et al., 2011). Stimulation of TLR9 with CpG
oligonucleotides induced differentiation of M-MDSCs and led
to a loss of their immunosuppressive function (Zoglmeier et al.,
2011; Shirota et al., 2012). A combination of TLR7-9 ligands
enhanced anti-tumor responses by NK cells and cytotoxic T-cells
and reduced MDSC frequency (Zhao et al., 2014).

Bacteria
Several Gram-positive and -negative bacteria have been shown
to induce or modulate MDSCs in vitro and in vivo. These
studies are summarized and discussed in the section below
(Table 1).

Staphylococcus aureus is a Gram-positive bacterium and a
major bacterial pathogen in humans that mainly colonizes the
nasal cavity of 20–30% of the population and poses a risk of
invasive infections for these carriers (Foster, 2004; Weidenmaier
et al., 2012). Antibiotic-resistant strains, particularly methicillin-
resistant S. aureus (MRSA) represent a major problem all over
the world (Smith et al., 1999; Saeed et al., 2014). Lipoproteins
anchored to the cytoplasmic membrane are known to act as
TLR2-ligands (Nguyen et al., 2015) and it is already known
that S. aureus is able to evade immune responses by impairing
T-cell function (Fedtke et al., 2004; Schreiner et al., 2013).
The expansion of both MDSC subsets and immunosuppressive
activity was shown in S. aureus skin infection models (Skabytska
et al., 2014). MDSC-mediated immune suppression was mainly
dependent on iNOS and, to a lesser extent, on arginase-1.
S. aureus causes infections and forms biofilms in orthopedic
implants where an impaired immune response has been reported
(Thurlow et al., 2011). In these biofilms, elevated MDSC
frequencies have been found with enhanced expression of
arginase-1, iNOS and IL-10 (Heim et al., 2014). Consistent with
these findings, depletion of MDSCs led to improved bacterial
clearance (Heim et al., 2014), while MDSC activity increased
disease severity in this biofilm model (Heim et al., 2015b). In
line with this concept, it was shown that adoptive transfer of
MDSCs in S. aureus infected mice led to an aggravation of disease
(Tebartz et al., 2015). Taken together, the studies on MDSCs in S.
aureus infections suggest that MDSCs play a rather harmful role
in S. aureus infected hosts.

Tuberculosis due to infection with Mycobacterium
tuberculosis is one of the most prominent infectious diseases
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TABLE 1 | Bacterial MDSC induction and impact on disease outcome.

Pathogen Expanding MDSC

subsets

Study type Outcome References

Staphylococcus aureus PMN- and M-MDSCs In vitro, in vivo (mouse

and human)

Aggravation of infection Thurlow et al., 2011; Heim et al., 2014, 2015a,b;

Skabytska et al., 2014; Tebartz et al., 2015

Mycobacterium tuberculosis PMN- and M-MDSCs In vivo (mouse and

human)

Aggravation of infection Obregon-Henao et al., 2013; du Plessis et al.,

2013; Knaul et al., 2014; Tsiganov et al., 2014;

Yang et al., 2014; El Daker et al., 2015

Pseudomonas aeruginosa PMN-MDSCs In vitro, in vivo (human) Host protection (associated

with better lung function)

Rieber et al., 2013

Klebsiella pneumoniae PMN-MDSCs In vivo (mouse) Host protection Cai et al., 2009; Poe et al., 2013

Porphyromonas gingivalis Not mentioned In vivo (mouse) Not mentioned Ezernitchi et al., 2006

Polymicrobial sepsis PMN- and M-MDSCs In vivo (mouse and

human)

Host protection Delano et al., 2007; Sander et al., 2010;

Brudecki et al., 2012; Darcy et al., 2014; Janols

et al., 2014; McClure et al., 2014

worldwide with an estimated 9 million reported cases annually
and reports suggest that mortality rates are much higher than
those of other bacterial infections (Jassal and Bishai, 2010).
In mice, heat-killed M. tuberculosis is able to induce MDSCs,
which produce NO and superoxide anion (Dietlin et al., 2007).
Likewise, patients with active tuberculosis as well as patients
that had been recently exposed with M. tuberculosis exhibited
expanded MDSC frequencies in their peripheral blood and
bronchoalveolar lavage samples (du Plessis et al., 2013; Yang
et al., 2014; El Daker et al., 2015). In vivo studies further
demonstrated that MDSCs accumulated in lungs of infected
mice where they phagocytized but did not kill the mycobacteria,
thereby providing a shelter for intracellular bacteria survival
(Knaul et al., 2014). Depletion of MDSCs led to an increase of T-
cell frequencies, reduced bacterial burden and improved disease
pathology (Knaul et al., 2014), while accumulation of MDSCs
was linked with progress and severity of tuberculosis (Tsiganov
et al., 2014). However, in a different study phenotypical MDSC-
like cells were induced by M. tuberculosis but failed to inhibit
T-cell proliferation. These cells rather promoted Th17 responses
(Obregon-Henao et al., 2013), which is in line with previous
reports on MDSC-Th17 interactions (Yi et al., 2012; Zhang et al.,
2015). Attenuated Mycobacterium bovis, which is also partly
used for vaccination against TB, leads to MDSC expansion in a
MyD88-dependent manner (Martino et al., 2010). In a similar
setting, two subsets of MDSC-like cells were generated recently.
M-MDSCs acted as expected, however phenotypical copies of
PMN-MDSCs lacked immunosuppressive activity, and rather
enhanced the proliferation of CD4+ and CD8+ T-cells (Zhan
et al., 2015).

Pseudomonas aeruginosa, a flagellated, partly opportunistic
and gram-negative bacterium is mainly recognized by the
immune system through flagellin/TLR5 signaling (Zhang et al.,
2005) and other sensors such as NLRC4 (Franchi et al.,
2007). Infections with P. aeruginosa are known to affect
especially vulnerable patients in a hospital-acquired manner,
most frequently ventilated patients in intensive care units,
patients with severe burns, cystic fibrosis (CF) patients
and chronic obstructive pulmonary disease (COPD) patients.

Bacterial clearance by the immune system of these vulnerable
patients is often not successful (Cohen and Prince, 2012).
We demonstrated previously that CF patients with chronic P.
aeruginosa infections featured a higher MDSC frequency in
their peripheral blood compared to CF patients without P.
aeruginosa infections or healthy control subjects (Rieber et al.,
2013). In P. aeruginosa-infected patients, the percentages of
MDSCs correlated with pulmonary function (Rieber et al., 2013).
This suggests that MDSC activity induced by P. aeruginosa
prevents excessive inflammation and leads to improved lung
function. As the MDSC expansion was dependent on flagellin
as TLR5 ligand, further flagellated bacteria such as Helicobacter
pylori or flagellated Escherichia coli strains may also induce
MDSC accumulation in the same manner. An increase in
MDSC frequency in H. pylori infected mice and humans
has already been reported (Zhuang et al., 2015). Since there
were no studies done using flagellin-deficient H. pylori, the
potential role of flagellin in this MDSC expansion setting remains
elusive.

Klebsiella pneumoniae is another cause of severe pneumonia,
mostly acquired in hospitals (Jones, 2010). It is known to
activate TLR2 and TLR4 signaling during the infection (Wieland
et al., 2011). In mice, infection with K. pneumoniae promoted
MDSC expansion and thus increased levels of IL-10 (Poe et al.,
2013). IL-10 deficient mice were able to clear the infection,
but had persistent lung inflammation and enhanced morbidity
after infection (Poe et al., 2013). Consequently, IL-10 dependent
MDSC activities seem to play a key role in K. pneumoniae
infection recovery. K. pneumoniae infected mice further showed
decreased bacterial clearance as well as reduced survival when
MyD88 was knocked out (Cai et al., 2009). Contrary to the latter
studies, another study found no evidence for MDSC expansion
in peripheral blood of pneumonia patients compared to healthy
controls (Zhang et al., 2013). However, pneumonia patients
included patients with RSV and Rhinovirus infections, so no clear
conclusions for bacterial lung infections can be drawn from this
study.

Sepsis is defined as a bloodstream infection with a systemic
inflammatory response-syndrome (Levy et al., 2003). The most
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common bacteria in bloodstream infections are S. aureus, E. coli,
coagulase-negative Staphylococci and K. pneumonia (Weinstein
et al., 1997). MDSC expansion and activity during sepsis has been
reported in several studies. In a model of polymicrobial sepsis,
a MyD88-dependent MDSC expansion was immunosuppressive
mainly against CD8+ T-cells (Delano et al., 2007). In a similar
model the transfer of MDSCs 10 days after induction also
inhibited T-cell proliferation and improved the survival rate
of septic mice (Derive et al., 2012). Though 3-day-old MDSCs
were still able to suppress T-cell proliferation, they expressed
less immunosuppressive enzymes after LPS-stimulation and did
not improve survival (Derive et al., 2012). The beneficial role of
MDSCs in sepsis was supported by another study, which showed
that hepatic acute phase proteins were essential for MDSC
induction in polymicrobial sepsis and MDSCs prevented sepsis-
associated mortality (Sander et al., 2010). In line with murine
studies, MDSC expansion and immunosuppressive activity with
enhanced expression of arginase was also found in patients
with sepsis (Darcy et al., 2014). The induction of MDSCs in
sepsis has been linked to specific microRNA signatures (McClure
et al., 2014). While PMN-MDSCs were primarily found in sepsis
patients with Gram-positive pathogens, M-MDSCs expanded
regardless of the Gram staining in all sepsis patients (Janols
et al., 2014). Thus, in contrast to the findings in the S. aureus
orthopedic implant infectionmodel whereMDSCs were harmful,
in sepsis MDSCs seem to act in favor of the host. The underlying
mechanism for this discrepancy remains to be dissected in
future studies, but could be due to (i) the infected compartment
(systemic/sepsis vs. localized/compartmentalized) and/or (ii) the
respective bacterial pathogen(s).

The Gram-negative Porphyromonas gingivalis is an anaerobic
bacterium that is mainly found in the oral cavity where it causes
periodontal disease. Mice infected with this bacterium showed
an accumulation of MDSCs in their spleen and elevated MDSC
frequency in the peripheral blood (Ezernitchi et al., 2006). In
mice with chronic Porphyromonas infection, T-cell function was
impaired by modulation of the TCR-ζ -chain (Ezernitchi et al.,
2006).

Infection-Associated Mediators
Bacterial infections induce the production of a plethora of pro-
inflammatory cytokines and chemokines. Many of them have
also been linked to MDSC expansion and activation in addition
to their boost of immune responses against bacteria. Hereby,
Interleukins are of great importance, mainly e.g., IL-1β, IL-
4 and IL-6. IL-1β is known to promote MDSC accumulation
and suppress T-cell responses (Song et al., 2005). Consistently,
blocking IL-1 receptor signaling inhibits MDSC function (Tu
et al., 2008). An explanation could be that IL-1β is known to
enhance NO production by triggering iNOS expression (Kanno
et al., 1994; Kwon et al., 1995), which has been reported to
mediate immunosuppression by MDSCs. Similarly, IL-4 and IL-
13 trigger arginase-1 expression (Rutschman et al., 2001). IL-4
is mainly produced by activated Th2 cells during inflammation
(Bronte et al., 2003) and the IL-4 receptor IL-4Rαwas found to be
upregulated on MDSCs (Mandruzzato et al., 2009). Blockade of
IL4Rα has been reported to induce MDSC apoptosis (Roth et al.,

2012). Furthermore, IL-6 not only induces MDSC expansion
(Garg and Spector, 2014), but also stimulates the production
of ROS as well as arginase-1 (Chen et al., 2014). Blocking IL-6
led to reduced STAT3 signaling (Wu et al., 2012). In addition
to the aforementioned cytokines, TNF-α has also been reported
to promote both MDSC expansion and survival (Zhao et al.,
2012). Signaling via TNFR-2 leads to NFκB activity, and thereby
amplifies immunosuppressive mechanisms of MDSCs (Hu et al.,
2014). MDSC expansion is enhanced by inhibiting myeloid cell
differentiation, an effect mediated e.g., by S100A8 and S100A9
in a STAT3-dependent manner (Cheng et al., 2008). These
S100 proteins were also found to be secreted by MDSCs (Sade-
Feldman et al., 2013) generating an autocrine feedback loop
(Sinha et al., 2008). Notably, S100A8 and S100A9 not only lead
to inhibition of myeloid differentiation, but also attract MDSCs
to sites of inflammation via NFκB (Sinha et al., 2008). Generated
peptide-FC fusion bodies, so called peptibodies, target S100A8
and S100A9 and were able to deplete MDSCs in vitro as well as
in vivo (Qin et al., 2014).

CONCLUSIONS

While cancer-associated MDSCs are traditionally in the focus
of research, attention has recently shifted toward the potential
role of MDSCs in bacterial infections. MDSC expansion can
be triggered through PAMPs from Gram-positive and Gram-
negative bacteria (Delano et al., 2007; Maruyama et al., 2015).
It has been further proposed that PMN-MDSCs mainly expand
in infections caused by Gram-positive bacteria, while M-MDSCs
were induced regardless of the Gram staining (Janols et al.,
2014). Yet, some principles of TLR-induced MDSC generation
remain unclear. While downstream signaling of TLR4 and TLR9
both merge on the MyD88-dependent pathway, TLR4 was found
to mediate MDSC expansion and activation, while TLR9 led
to reduced MDSC frequencies (Delano et al., 2007; Zoglmeier
et al., 2011). Particularly, S. aureus and M. tuberculosis have
been shown to potently induce MDSC expansion and MDSCs
aggravated disease severity in vivo (Tsiganov et al., 2014; Tebartz
et al., 2015). However, in other infectious disease conditions,
MDSCs were associated with an improved outcome, such as
P. aeruginosa infections in CF patients (Rieber et al., 2013)
or in polymicrobial sepsis (Sander et al., 2010). The future
challenge remains how to translate these findings into therapeutic
approaches. A potential therapeutic strategy is to target/deplete
MDSCs in settings where they seem to do more harm than
good (S. aureus orthopedic implant infections andM. tuberculosis
infections). Pharmacologically, the tyrosine-kinase inhibitors
Sunitinib and Sorafenib were shown to interfere with STAT3
signaling and to effectively reduce MDSC populations (Ko et al.,
2009; Cao et al., 2011). A similar effect can be achieved by using
all-trans-retinoic acid (ATRA), an active metabolite of vitamin
A (Almand et al., 2001; Mirza et al., 2006). Furthermore, the
chemotherapeutic agents 5-Fluoruracil and gemcitabine have
been shown to selectively eliminate MDSCs (Suzuki et al.,
2005; Vincent et al., 2010). Conversely, in vivo expansion or
adoptive transfer of MDSCs represents a promising strategy in
P. aeruginosa infections or sepsis.
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