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Hypothesis
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Abstract. Alzheimer’s disease (AD), the most common neurodegenerative dementia, leads to memory dysfunction due to
widespread neuronal loss associated with aggregation of amyloidogenic proteins (APs), while schizophrenia (SCZ) represents
a major psychiatric disorder characterized by delusions, hallucinations, and other cognitive abnormalities, the underlying
mechanisms of which remain obscure. Although AD and SCZ partially overlap in terms of psychiatric symptoms and some
aspects of cognitive impairment, the causal relationship between AD and SCZ is unclear. Based on the similarity of APs
with yeast prion in terms of stress-induced protein aggregation, we recently proposed that evolvability of APs might be an
epigenetic phenomenon to transmit stress information of parental brain to cope with the stressors in offspring. Although
amyloid evolvability may be beneficial in evolution, AD might be manifested during parental aging as the mechanism of
antagonistic pleiotropy phenomenon. Provided that accumulating evidence implicates stress as an important factor in SCZ,
the main objective of this paper is to better understand the possible connection of AD and SCZ through amyloid evolvability.
Hypothetically, the delivery of information of stress by APs may be less efficient under the decreased evolvability conditions
such as disease-modifying treatment, leading to SCZ in offspring. Conversely, the increased evolvability conditions including
gene mutations of APs are supposed to be beneficial for offspring, but might lead to AD in parents. Collectively, AD and
SCZ might transgenerationally interfere with each other through amyloid evolvability, and this could explain why both AD
and SCZ have not been selected out through evolution.
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INTRODUCTION

At present, Alzheimer’s disease (AD) remains the
most common form of neurodegenerative dementia,
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demonstrating progressive memory loss and cogni-
tive and functional decline [1]. It most often occurs
in those over the age of 65 years, although ∼5% of
all cases are due to early-onset familial mutations
[2]. Although an understanding of neurodegenerative
disease mechanisms has progressed remarkably, the
physiological functions of amyloidogenic proteins
(APs), including amyloid-� (A�) and �-synuclein
(�S), are still elusive [3]. In this regard, based on
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the structural diversity of AP aggregates, we recently
proposed that evolvability of APs could be defined as
an epigenetic phenomenon transgenerationally trans-
mitted to offspring to cope with the forthcoming
diverse stressors in the offspring’s brain (Fig. 1A)
[4]. Although evolvability may be beneficial for
offspring during reproductive life, it manifests dur-
ing aging as neurodegeneration, possibly through
an antagonistic pleiotropy mechanism (Fig. 1A) [5].
It remains obscure, however, why disorders such
as AD have escaped natural selection during post-
menopausal aging.

On the other hand, the neuropathological mech-
anisms underlying schizophrenia (SCZ), a mental
disorder characterized by delusions, hallucinations,
and other cognitive difficulties, remains obscure [6].
Given that SCZ typically occurs between late adoles-
cence and the early twenties, which overlaps with
the period of human reproduction and rearing of
children, and because it can often be a lifelong
disabling condition, SCZ may be considered evo-
lutionarily disadvantageous [7]. Nonetheless, SCZ
has not been selected out by evolution, and more-
over, epidemiologically, the global prevalence of SCZ
is approximately 0.2∼0.5% of the population [8].
Therefore, the biological reasons as to why SCZ has
not been selected out by evolution, have, to the best
of our knowledge, never been adequately explained.

Since AD and SCZ often overlap in terms of var-
ious psychiatric symptoms and, to a lesser extent, in
cognitive dysfunction, a similar pathogenic mecha-
nism might be a common basis for these conditions.
Given that recent study suggests that stress may play
an important role in the pathogenesis of SCZ [9,
10], the main objective of this paper is to discuss
the possible link of AD and SCZ through evolv-
ability. Specifically, we hypothesize that the effects
of evolvability may be differential between AD and
SCZ. According to the prevailing view, A� burden
may be not associated with cognitive impairment in
SCZ [11, 12]. However, it was indeed shown that
mice with a deletion of Disrupted-in-Schizophrenia-1
(DISC1), a familial risk factor of SCZ [13], exhib-
ited decreased expression of A� [14]. Furthermore,
we suggest that AD and SCZ may interfere with
each other through evolvability during evolution.
Finally, we predict that our hypothesis might pro-
vide a unique insight into therapeutic strategies for
these conditions. Collectively, this framework could
explain why both AD and SCZ, over evolutionary
time, have persisted despite the pressures of natural
selection.

CURRENT VIEW OF THE
RELATIONSHIP BETWEEN AD AND SCZ

Although AD and SCZ often overlap in terms of
altered behaviors, including psychiatric symptoms
and cognitive impairment, the causal relationship
between AD and SCZ has been yet to be clarified
[15, 16].

Psychiatric symptom

Indeed, the psychiatric symptoms, such as delu-
sions and hallucinations, represent mere symptoms
that are not specific to AD and SCZ, but can be
found in most neurodegenerative diseases, including
Parkinson’s and Huntington’s diseases [17, 18]. Fur-
thermore, these symptoms are relatively rare in AD,
whereas are pathognomotic in SCZ.

Cognitive decline

AD is the main cause of dementia among the
elderly, and severe cognitive impairment is also
observed in elderly patients with SCZ [19]. Whereas
cognitive decline represents the first and the pathog-
nomotic symptomatology required for diagnosis of
AD, cognitive decline does not represent the first
nor the pathognomotic symptomatology required for
diagnosis of SCZ [20]. Thus, it is important to rec-
ognize that the pattern of cognitive decline differs
significantly.

In this context, aggregation and accumulation of
A� are early events that precede the onset of cogni-
tive impairment in AD [21], whereas the prevailing
view is that A� burden may be not associated with
cognitive impairment in SCZ [11, 12]. In support of
the latter view, there was no evidence suggesting that
A� levels differ in patients with SCZ from elderly
control subjects or patients with other psychiatric ill-
nesses [11], while the levels of cortical A� in patients
with SCZ were lower than those in patients with AD
(Fig. 2A). Furthermore, it was recently shown that
there were no associations between A� and cogni-
tive impairment in SCZ [12]. Given that the previous
studies were performed using small sample sizes, and
A� was assessed in cerebrospinal fluid (CSF) rather
than cortical region in brain, additional analyses of
different brain regions may be required [12].

Notably, a limited number of studies showed that
levels of CSF A�1-42 in elderly SCZ patients were
significantly lower compared to those in healthy
elders but higher than those in AD patients [22,



Y. Takamatsu et al. / Amyloid Evolvability and Schizophrenia 475

Fig. 1. Schematic of disease manifestation caused by alterations in evolvability. A) Evolvability of APs might be an epigenetic phenomenon
transmitted transgenerationally to confer resistance against the stressors such as A� protofibrils in offspring during reproduction, which may
be beneficial in evolution. However, evolvability might lead to AD during parental aging through the antagonistic pleiotropy mechanism. B)
Increased evolvability of A� caused by missense mutations (APP, PSEN1/2, BACE1) and polymorphism (APOE4) may result in an efficient
delivery of information of stresses for offspring, leading to less frequency of SCZ in offspring (thin dot line) and increased frequency of AD
might in parents (thick bold line). C) In contrast, inefficient delivery of the information of stresses due to decrease of A� evolvability caused
by disease-modifying therapy may result in the increased frequency of SCZ in offspring (thick bold line) and the decreased frequency of AD
in parents (thin dot line).

23]. Consistent with these results, it was shown that
A�1-42 and, to a lesser extent, A�1-40, were reduced
in the AD model mice deleted with DISC1 (Fig. 2B),
suggesting that the processing of the amyloid-� pro-
tein precursor might be altered in SCZ [13, 14].
Further investigations are warranted to explore this
intriguing possibility.

EMERGENCE OF CLINICAL DISEASE
DUE TO ALTERED EVOLVABILITY

Accumulating evidence suggests that APs, such
as A� and �S, exhibit a diversity of strains due
to structural variation [24–26]. Given that APs are
intrinsically disordered protein [27], it is predicted
that the structural diversity of APs might corre-
spond to diverse stresses. Furthermore, we speculate
that unstable monomer of APs becomes more sta-
ble through oligomerization which are feasible for
the transgenerational transmission to offspring [4].
Because the evolvability of APs may be attributed

to their protofibrillar forms [4], it is assumed that
an increased level of the A� protofibrils may result,
during reproduction, in increased transmission of
information regarding brain stressors from parent to
offspring, and in turn, promote resistance against neu-
ronal stressors and reduce the occurrence of SCZ
in offspring (Fig. 1B). However, it is also probable
that the accumulation of A� protofibrils in parental
brain may also lead to AD and neurodegeneration
through the mechanism of antagonistic pleiotropy
during aging (Fig. 1B) [5]. This scenario would be
predicted based on familial early-onset AD with mis-
sense mutations, including amyloid precursor protein
(APP), presenilin (PSEN) 1/2, and �-site APP cleav-
ing enzyme (BACE) 1 [28–30], and for polymorphism
of APOE4 [31].

What then might be the consequence of reduced
evolvability of A� during reproduction? Because
reduced information on forthcoming stressors from
parental brain is available to be delivered to offspring,
an increased vulnerability to stressors may lead to
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Fig. 2. Alteration of A� expression in SCZ. A) Mean postmortem levels of total A�, A�x–40, and A�x–42 in the dorsolateral prefrontal
cortex of normal elderly comparison subjects, patients with AD, patients with SCZ only, and patients with SCZ plus mild AD pathology.
aSignificantly different from all other groups (Newman-Keuls tests, p < 0.01). bSignificantly different from all other groups (Newman-Keuls
tests, p < 0.001). Reprinted from Religa et al. [11] with permissions. B) A�PP processing is dysregulated in DISC1 locus mutants of 3XTg
mice. Loss of DISC1 in homozygous DISC1 locus impairment (–/–) mice leads to alteration of A�PP processing, compared to wild-type
(+/+) controls. a–c) Analysis of cortical lysates by ELISA shows increased sA�PP� and decreased A�42 and A�40 levels in –/– mice. Bars
represent the mean ± SEM, n = 5–6 mice per group. ∗∗p < 0.01, ∗∗∗p < 0.001. d) Neurons from –/– mice display higher levels of surface A�PP
than those from+/+mice. Scale bar, 10 �m. Reprinted from Shahani et al. [14] with permission.

neuronal toxicity, dysfunction and perhaps a patho-
logic phenotype in offspring. On the other hand, such
reduced action of evolvability might inversely reduce
the risk of AD and neurodegeneration (Fig. 1C).
Such inverse relationships could also apply to a
number of developmental brain disorders, including
autism spectrum disorder, epilepsy, and psychiatric
diseases, such as SCZ, whose precise etiologies are
yet to be determined [32]. Notably, it was previously
shown that mice with knockdown/deletion of DISC1,
a genetic risk factor for a wide range of mental dis-
orders, including SCZ, major depression, and bipolar
disorders [13], exhibited altered processing of A�PP
and reduced A� production in mouse brain (Fig. 2)
[14], consistent with our concept that evolvability
through A� protofibrils might be decreased in the
setting of SCZ.

Interaction of parental AD and SCZ in offspring
through evolvability

Our hypothesis suggests that the presence of AD in
aging parents might transgenerationally interact with

the occurrence of SCZ in their offspring (Fig. 3).
Given that APs are intrinsically disordered protein
[27], it is predicted that the structural diversity of
APs might correspond to diverse stresses. Further-
more, it is speculated that unstable monomer of APs
becomes more stable through oligomerization which
are feasible for the transgenerational transmission to
offspring [4].

Because the transmission of APs may confer
information regarding stressors from parental brain,
evolvability of AP protofibrils should be beneficial
for offspring. Therefore, AD should be inevitable at
the point at which minimum evolvability is required
to reduce the risk of SCZ in offspring (Emin). Since
evolvability may be beneficial for offspring, it grad-
ually increases until incident AD occurs increasingly
early, prior to the postmenopausal period in humans,
which then would interfere with reproduction and
contravene the law of natural selection. Accordingly,
evolvability should also demonstrate a maximal point
(Emax) in which SCZ incidence is markedly reduced
to a low level, but does not reach zero. Based on
the epidemiological data in which the risk of SCZ
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Fig. 3. Schematic representation of the reciprocal transgenera-
tional relationship between AD and SCZ through evolvability.
Given that transmission of APs may confer the information on
stressors from parental brain, resulting in suppression of SCZ,
evolvability of the APs protofibrils would be beneficial for off-
spring. Therefore, AD would be inevitable in which the minimum
of evolvability is required to reduce the risk of SCZ in offspring
(Emin). The activity of evolvability may gradually increase, but AD
is not manifested earlier before the postmenopausal period because
of the law of natural selection. Accordingly, it is predicted that
evolvability has a maximal point (Emax) in which the incidence of
SCZ is compromised. Currently, the epidemiological data suggest
the risk of SCZ is estimated to be 0.2∼0.5% [33], while the risk
of AD is approximately ∼20% (Ecurr) [34]. It is suggested that
the activity of the evolvability derived from familial AD should be
higher than that derived from sporadic AD, being closer to Emax
(Efad), and foretells that the incidence of SCZ among familial AD
should be below the average. In contrast, the activity of evolvability
might be decreased in AD patients treated with disease-modifying
therapy (Edmt), in which the risk of SCZ in offspring might be
increased. Thus, it is theoretically predicted that parental AD and
SCZ in offspring might exist in a reciprocal relationship through
evolvability. •: Current average of sporadic AD, ◦: familial AD,
�: AD patients treated with disease-modifying therapy.

currently is estimated to be ∼0.5% [33], while that
of AD is approximately ∼20% [34], the activity of
evolvability corresponding to sporadic AD may be
situated between Emin and Emax (Espor). Extrap-
olation of this concept would predict that the level
of evolvability activity derived from familial AD
(Efad) due to missense gene mutations such as APP,
PSEN1/2, and BACE1, should be higher than Espor
and closer to Emax. At the point of Efad, the inci-
dence of SCZ in the familial AD cohort is predicted
to be below the observed average. In contrast, as
described later, the activity of evolvability might be
reduced if AD were treated with an effective disease-
modifying therapy at the prodromal stage (Ethe),
where the risk of SCZ in offspring might be increased.
In other words, theoretically, parental AD and SCZ
in their offspring might exist in a relative inverse
relationship through evolvability. Thus, regulated or

constrained activity of evolvability might account
for the observed incidences of AD and SCZ, as
well as their resistance against the constant pressures
of evolution. It follows that factors influencing the
activity of evolvability, which have been discussed
previously but remain unclear, may be important in
common disease pathogenesis of AD and SCZ [4].

Although SCZ is clinically heterogeneous [35],
the precise mechanism remains poorly understood.
In this regard, different SCZ subtypes might be in
part associated with other APs and their evolvability
states. Certainly, it is well known that other forms of
aging-associated neurodegenerative diseases, aside
from AD, are accompanied by psychiatric behav-
iors. Naturally, it is predicted that SCZ may be
similarly affected by the evolvability of these APs.
For instance, �-synucleinopthies, such as Parkin-
son’s disease, dementia with Lewy bodies, and
multiple system atrophy, are characterized by motor-
and non-motor symptoms which may be derived
from evolvability of �S. Because neurodegenera-
tive disorders such as AD and �-synucleinopthies
are manifested during postmenopausal senescence,
which is a human-specific phenomenon by virtue
of the absence of natural predators and abun-
dant nutritional security [5], it is plausible that
transgenerational relationships between parental neu-
rodegenerative disease and SCZ in offspring has
emerged relatively recently in evolutionary history.

However, a unique situation with regards to AP
evolvability may exist for Huntington’s disease and
other polyglutamine (polyQ) diseases. Since disease
onset appears prior to menopause, it is possible that
evolvability of polyQ might be less potent than those
of other APs, such as A� and �S. Indeed, the psy-
chiatric symptoms associated with polyQ diseases,
often paranoia, have less resemblance to SCZ and
are perhaps less prominent compared to those in other
neurodegenerative conditions, including AD and �-
synucleinopthies [36]. Based on the expression of
polyQ in microorganisms and plants [37, 38], it is
predicted that polyQ may be more primitive rela-
tive to other APs across evolution, and might play
an important role for the evolution of amyloidgenic
evolvability [39]. Thus, it is tempting to speculate
that the old prototype of SCZ could be observed in
the polyQ evolvability.

Indeed, biological evidence exists which might
support this view. For instance, various senescent fea-
tures are rapidly induced in the spawning salmon,
including brain amyloid deposition, which has been
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known as the “salmon model of AD” [40]. In this
situation, the demise of parents due to AD may in
turn be beneficial for offspring by ensuring avail-
ability of nutrition. Furthermore, in “the grandmother
effect,” the rearing of grandchildren by a grandmother
experiencing post-menopausal aging may benefit
their daughter(s) who can birth further children [41],
suggesting that aging can evolve as beneficial for off-
spring. Although aberrant behaviors in AD are clearly
not beneficial for offspring, it is probable that the
pathology of AD might be beneficial for offspring
indirectly through evolvability. Indeed, such a novel
concept may be worthy of further investigation.

THERAPEUTIC IMPLICATIONS

If this theoretical framework proves correct, then
a critical issue will be the reduced evolvability of
APs connected to the treatment of neurodegenerative
disorders with disease-modifying therapies during
prodromal disease stages. Regarding the progress
of disease-modifying therapies for AD, contrary
to the positive preclinical findings, the results of
active amyloid immunotherapy for this condition in
early-stage clinical trials have been disappointing
and accompanied by serious complications, such as
meningoencephalitis [42]. Subsequent focus on pas-
sive AD immunotherapy using anti-A� monoclonal
antibodies has also not fully demonstrated to be
therapeutically effective [3]. The phase III clinical
trial (NCT02008357; patients of 55–90 years old),
for instance, failed to demonstrate reproducible effi-
cacy [43], and, on a cautious note, it was recently
reported that an ongoing early phase II trial using the
anti-protofibrillar A� antibody, BAN2401 by Eisai,
Inc./Biogen, Inc. in mild cognitive impairment and
early AD patients, demonstrated non-futility, but lit-
tle cognitive improvement at 18 months [44]. Still,
the need exists for even earlier intervention in the dis-
ease course [3]. As such, secondary prevention trials
such as Dominantly inherited Alzheimer Network-
Trial Unit (DIAN-TU) (NCT01760005; patients of
18 years and older) have already started to assess
the potential of new protocols [45, 46] to prevent
the disease progression in autosomal-dominant AD
individuals without cognitive dysfunction and in
cognitively healthy subjects at risk of developing spo-
radic AD [45].

Again, a key point is that if intervention using
disease-modifying therapies during prodromal AD
becomes a reality, such treatment may alter the

pace of evolvability during the reproductive time of
life. It follows that passive immunotherapy using
anti-A� monoclonal antibodies could suppress evolv-
ability, leading to the compromised resistance against
stressors in the brains of offspring. Thus, it is
imperative that such potential risks of therapeutic
intervention must be considered to establish working
disease-modifying therapy in AD.

The current hypothesis also provides an impor-
tant insight into potential therapeutic strategies for
SCZ. Despite significant advances in SCZ pharma-
cotherapy [47], treatment remains suboptimal, with
many patients having persisting deficits, especially
in cognitive and social functioning [48, 49]. Given
the differential effects of evolvability on AD and
SCZ, one might propose that stimulating the evolv-
ability of relevant APs might significantly reverse
such evolvability deficits, improving clinical efficacy
for patients. To achieve this, we propose the up-
regulation of APs, either directly or indirectly, as a
therapeutic intervention. As for direct upregulation,
A� or its derivative could be administered, although
side effects such as meningoencephalitis may be a
limiting factor based on the previous complications
of active A� immunotherapy in AD [42]. Alterna-
tively, augmenting the synthesis and/or secretion of
A� might be more effective, where a DISC1 knock-
out mouse model may be an ideal tool to achieve
this. A major drawback, however, to using the DISC1
knockout mouse model to demonstrate the above,
would be the markedly truncated postmenopausal
senescent period in rodents relative to humans [5].
Furthermore, caution must be paid to the possibility
that AD risk might be increased in offspring in the
future in either case. Taking consideration, however,
that protein degradation systems, such as autophagy
and ubiquitin proteasome system, are more robust in
younger individuals compared to the elderly [50], fur-
ther exploration of these interesting possibilities is
warranted.

CONCLUSION

Currently, no definite conclusions have yet been
reached as to the causal relationship between AD
and SCZ. As described above, our concept of evolv-
ability may provide one plausible explanation for
this. To summarize it parental AD and SCZ in off-
spring may transgenerationally interact with each
other, which may explain why AD and SCZ have
not been selected out through evolutionary natural
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selection. Our current hypothesis, although fascinat-
ing, requires a demonstration of the protofibrils of
APs being involved in evolvability.

Recently, a number of gene-based studies in
SCZ, such as genome-wide association studies, and
the mapping of several regions have extensively
been performed and have led to the identifica-
tion of a number of putative susceptibility genes,
including DISC1, neuregulin-1, dysbindin, and
catechol-o-methyltransferase [51–54]. In particular,
neuregulin-1 has been identified as a �-secretase sub-
strate, suggesting a link between SCZ and AD [55].
At present, however, no single gene has been demon-
strated to be sufficient to cause the SCZ phenotype
by itself emphasizing the multifactorial nature of
this condition. Although still controversial, the cur-
rent dominant view of SCZ falls under the ‘common
disease-common variant’ hypothesis, suggesting that
the genetic component to most common disorders is
due to a relatively large number of disease-causing
alleles that occur relatively often in the population
[56–58]. It is particularly interesting to note that
AD with psychosis is associated with polygenic risk
for a set of novel loci related to endosomal traf-
ficking, autophagy, and calcium channel signaling,
which is inversely associated with polygenic risk
for SCZ [59]. Together with the current hypothesis,
we suggest that both genetic and epigenetic mech-
anisms may cooperate in the pathogenesis of SCZ.
Thus, a better understanding of the interaction of
AD in parents and SCZ in offspring may poten-
tially shed light on novel therapies for both AD
and SCZ.
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