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Gene signature of  m6A RNA 
regulators in diagnosis, prognosis, 
treatment, and immune 
microenvironment for cervical 
cancer
Shizhi Wang1,3*, Bo Ding2, Shiyuan Wang1, Wenjing Yan1, Qianqian Xia1, Dan Meng1, 
Shuqian Xie1, Siyuan Shen1, Bingjia Yu1, Haohan Liu1, Jing Hu1 & Xing Zhang1,3*

Continuing studies imply that  m6A RNA modification is involved in the development of cervical 
cancer (CC), but lack strong support on recurrence and diagnosis prediction. In this research, a 
comprehensive analysis of 33  m6A regulators was performed to fulfill them. Here, we performed 
diagnostic and prognosis models and identified key regulators, respectively. Then the CC patients 
were separated into two clusters in accordance with 33 regulators, and participants in the cluster 1 
had a worse prognosis. Subsequently, the  m6AScore was calculated to quantify the  m6A modification 
pattern based on regulators and we found that patients in cluster 1 had higher  m6AScore. Afterwards, 
immune microenvironment, cell infiltration, escape analyses and tumor burden mutation analyses 
were executed, and results showed that  m6AScore was correlated with them, but to a limited extent. 
Interestingly, HLAs and immune checkpoint expression, and immunophenoscore in patients with 
high-m6AScores were significantly lower than those in the low-m6AScore group. These suggested the 
 m6AScores might be used to predict the feasibility of immunotherapy in patients. Results provided a 
distinctive perspective on  m6A modification and theoretical basis for CC diagnosis, prognosis, clinical 
treatment strategies, and potential mechanism exploration.

Cervical cancer (CC), which is currently the fourth most common malignancy in women worldwide, led the 
cause of malignant tumor deaths and a heavy social burden in developing  countries1. Although early screening 
and effective interventions can prevent the occurrence of CC and improve the prognosis of CC, the situation 
is still severe, such as the high recurrence rate of CC. Apart from the recognized factor of HPV infection, its 
pathogenesis is not fully  understood2,3. Given the deleterious influence of CC, efforts are needed to explore the 
potential biomarkers for the diagnosis and prognosis, as well as feasible treatment strategies.

N6-methyladenosine  (m6A) RNA methylation is the most common conserved internal transcriptional and 
modification epigenetic modification.  m6A is a dynamic process, and three kinds of essential regulators (known 
as “writer”, “eraser”, and “reader”) are involved in the regulation of this modification process in the human 
body, leading to several facets changes in RNA processing, including RNA stability, alternative splicing and 
 translation4–11. As a hot spot in epigenetic research in recent years, the fundamental role of  m6A in cancer devel-
opment and prognosis may help us clarify the mechanism of CC with a novel perspective.

A growing body of literature studies has shown that the imbalance of  m6A modification regulators affects 
a series of biomolecular events by influencing target RNAs, and ultimately affecting the occurrence, develop-
ment, and prognosis of many diseases including cancers. Evidence indicates that upregulation induced by  m6A 
methylation could contribute to the increased cancer stemness cell in colon  cancer12. In addition, the abnormal 
expression of methyltransferase complex components in  m6A modification affects both gastric cancer and liver 
cancer, including adjusted by FTO and WTAP instead of METTL3 and METTL14, which were considered as 
principal roles in  m6A  modification13,14. Collectively, although the mechanism of  m6A modification in cancer 
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including CC has been well studied in recent  years15,16, the evidence for the importance of  m6A modification 
importance in CC recurrence and diagnostic analysis is still lacking.

In this study, we used CC patient data from GEO and TCGA to comprehensively analyze 33  m6A regulators 
and their indicative roles for both CC diagnosis and prognosis. Essential targets were identified by constructing 
diagnostic and prognostic models of CC, and drug sensitivity analysis was carried out based on these factors. 
We also subsequently assessed the potential functions of  m6A RNA regulators through immune prediction and 
enrichment analyses, and explored the clinical treatment strategies of CC.

Materials and methods
Ethical conduct of research. The authors pointed out that the Ethics Committee of Southeast University 
approved this study, and the informed consent was acquired from each participant recruited and all samples 
were used in compliance with the institution’s ethical regulations. The research design was in accordance with 
the Declaration of Helsinki.

Data resource. The transcriptome sequencing data (read counts and FPKM normalized) of 306 CC and 
three normal patients were downloaded from The Cancer Genome Atlas (TCGA) portal (https:// tcga- data. nci. 
nih. gov/ tcga/) and transformed obtained gene expression values into per kilobase million (TPM) values. The 
expressions of  m6A modification regulators in patients from the data matrix were extracted for the subsequent 
analysis. The CC clinical information was downloaded from the TCGA portal. The GSE63514 and GSE6791 data 
were downloaded from the Gene Expression Omnibus (GEO) database (https:// www. ncbi. nlm. nih. gov/ gds).

Selection of  m6A RNA methylation regulators. We first aimed to  m6A modification regulators from 
published  literature17–19. Subsequently, we extracted the expression levels of regulators from the TCGA and cer-
vical tissue transcription data, deleting the regulators in which expression levels were unavailable. Finally, 33 
 m6A modification regulators were selected as candidate molecules for this  study16,20 (Table S1).

Significant differential expression gene (DEGs) analysis. To screen the regulators which play an 
essential role in the development of CC, differential expression analysis was performed using the R program 
with the “DESeq2” package. Among all the gene analyzed, FDR (false discovery rate) < 0.05 were considered as a 
criterion and the DEGs were obtained for subsequent analysis. Gene copy number variation (CNV) analysis was 
shown by cBioportal tools (http:// www. cbiop ortal. org/). Venn plot was displayed by the venny 2.1 tool (https:// 
bioin fogp. cnb. csic. es/ tools/ venny/).

Consensus clustering for subgroups identification. To investigate the function of regulators in CC, 
we clustered cancer tissues into two subgroups by R program with the “ConsensusClusterPlus” package. Then 
the principal component analysis (PCA) analysis and t-distributed stochastic neighbor embedding (t-SNE) were 
utilized to study the gene expression patterns in different CC subgroups. Furthermore, Kaplan–Meier analysis 
was drawn to assess prognosis between subgroups and compared using the log-rank test.

Pathway analysis and acquisition of gene sets. Gene Set Cancer Analysis (GSCA, bioinfo.life.hust.
edu.cn/web/GSCALite/) database was used to find clues about  m6A regulators in biological processes. GSEA 
analysis of patients in two clusters was performed using c2.cp.kegg.v7.4.symbols.gmt and c5.go.v7.4.symbols.
gmt downloaded from the Gene Set Enrichment Analysis (GSEA, https:// www. gsea- msigdb. org/ gsea/ index. 
jsp) database. Then, the gene sets of interest were downloaded from the GSEA database, including BIO-
CARTA_CELLCYCLE_PATHWAY (M17770), BIOCARTA_CASPASE_PATHWAY (M17902), REACTOME_
PYROPTOSIS (M41805) and WP_FERROPTOSIS (M39768). Moreover, the ferroptosis-related gene list was 
also obtained from the FerrDb database (http:// www. zhoun an. org/ ferrdb/). The genes related to programmed 
 necroptosis21 and  cuproptosis22 were identified from literature reports.

Identify important molecular markers through machine learning. To further accurately identified 
the critical  m6A regulators affecting the diagnosis of CC, we used machine learning methods to construct a diag-
nostic model of CC, ranked the variables according to their importance, and visualized results by the R program.

The random forest (RF) model is a typical classifier that containing many decision trees. Patients with replace-
ments were randomly selected from the initial dataset to assemble a sub-dataset. In this study, most of the 54 
patients (28 cases and 24 normal control) from GSE63514 were used as a training set, while left participants 
were analyzed as a validation set. Based on the seed number 51, ROC was used to fit the optimal model using the 
most considerable value, and the final value selected for the RF model was mtry = 2. The fivefold cross-validation 
method was also applied during the analysis. RF was executed by the “randomForest” package.

The Support Vector Machines (SVM) model is an algorithm that is widely used in binary and multiple classifi-
cations. SVM core function can convert samples that were inseparable in low-dimensional into high-dimensional 
separable space to achieve better grouping. In this study, the tuning parameter ‘sigma’ was held constant at a 
value of 0.01744768, and the SVM model was performed by the “e1071” package of R.

Artificial Neural Network (ANN) is a complex network structure formed by interconnecting a series of 
treating units, which has been proved to be scientific and accurate in disease prediction in recent  years23–25. In 
this study, we utilized the common regulators selected by RF and SVM as the input layer to construct an ANN 
model. Feedforward neurons generated a backpropagation during the training process, and the error rate of this 
backpropagation reflected the discrepancy between the model judgment and the actual patient status. During 
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data transfer and processing, one output was produced, the result of the classification. After adjusting the weight 
of the input data, with the appropriate back-propagation error range as evidence, the best classification method 
was finally achieved. A total of 28 patients and 24 normal control from GSE63514 were used as a training set, 
while 19 cases and nine normal participants from GSE6791were analyzed as a validation set. The R packages 
“neuralnet” and “NeuralNetTools” were applied in this process.

Construction and validation of the LASSO Cox regression algorithm. To study the prognostic 
value of  m6A RNA methylation regulators, a univariate Cox regression analysis was implemented on the regula-
tors for subsequent model construction. Firstly, Two-thirds of the samples were randomly selected as a training 
set for the establishment of the model, and the remaining samples were used for model reliability verification. 
Secondly, the LASSO Cox regression algorithm was implemented to develop a potential risk signature. Finally, 
we calculated the LASSO-risk score for a signature using the following formula:

Among them, coef represents the coefficients and  xi represents the relative expression value after the z-score 
transformation of the original expression value of each gene. In this study, this formula was used to calculate the 
risk score for each CC patient concerning OS and RFS, respectively. Furthermore, receiver operator characteris-
tics (ROC) curves and area under the curve (AUC) were generated for signature validation using the R program 
with the “survivalROC” package, and the AUC was calculated for prediction evaluation.

The nomogram was constructed to evaluate the prediction probability of 2-, 3- and 5-year OS or RFS. The 
calibration curves show the 2-, 3- and 5-year OS or RFS were drawn to visualize the observed probabilities against 
the nomogram prediction. The R package “RMS” presented the nomogram and calibration curves. Decision 
curve analysis (DCA) with 2-, 3- and 5-year was performed to evaluate the suitability of the constructed model 
for clinical application by the “ggDCA” package.

RNA expression detection and quantitative polymerase chain reaction (qPCR). To determine 
the key  m6A regulators (RBM15, HNRNPA2B1, NSUN2, RBMX, CBLL1, METTL3, YTHDF3, and ZC3H13) 
expression pattern in CC, a total of 20 fresh CC tissue and 20 paired adjacent non-tumor tissues were acquired 
from patients between August 2020 and September 2021 at Zhongda Hosptial and Nanjing Maternity (Table S2). 
All the samples were stored well at − 80  °C with treatment by RNAlaterTM Stabilization Solution (AM7021, 
Thermo Fisher, US). RNA extraction protocol was described in the previous literature  published26, and the 
primer sequences involved were listed in Table S3.

Generation of geneset scores based on PCA analysis. PCA was performed using the expression 
values of the 17  m6A regulators in all CC patients. Among them, both the first and second principal components 
were selected to participate in the calculation of  m6AScore. In this study, in addition to  m6AScore, a similar 
method was used to construct scores based on different genesets in the subsequent exploration process for com-
prehensive correlation analysis.

Immune correlation analysis among groups. Estimation of STromal and Immune cells in MAlignant 
Tumor tissues using Expression data (ESTIMATE) algorithm was executed to calculate the immune score, stro-
mal score, estimated score, and tumor purity of each CC patient based on  m6A regulators. Cell-type Identi-
fication By Estimating Relative Subsets of RNA Transcripts (CIBERSORT, http:// ciber sort. stanf ord. edu/) was 
utilized to calculate the abundance of immune cells. The Tumor Immune Dysfunction and Exclusion (TIDE) 
algorithm (http:// tide. dfci. harva rd. edu/) was used to infer clinical response to immunotherapy in CC with  m6A 
regulators expression profiles. The Cancer Immunome Atlas (TCIA, https:// www. tcia. at/) database was utilized 
for downloading the immune checkpoint inhibitor (ICI) information and immunophenoscore (IPS), an index 
widely used to represent the immunogenicity.

Drug sensitivity analysis. The Connectivity Map (CMap) database (https:// porta ls. broad insti tute. org/ 
cmap/) was utilized to list potential chemotherapeutic drugs and the half-maximal inhibitory concentration 
(IC50) was assessed to estimate the drug sensitivity using the “pRRophetic” package.

Bioinformatic analysis. The following PPI (Protein–protein interaction) network was analyzed using 
the STRING tool (http:// www. string- db. org/). Correlation analysis was performed to explore the association 
between  m6A regulators and other interested genes obtained from the TCGA-CESC database. |Cor|> 0.3 was 
defined as a significant criterion. PPI network and correlation network were visualized by Cytoscape v3.9.1.

Statistical analysis. All the statistical analyses were developed by R software (v4.0.5) and GraphPad Prism 
(v8.0.2). Spearman correlation analysis was calculated between  m6A regulators and target elements. Kaplan–
Meier survival analysis with log-rank test was performed to compare patients in different subgroups. The visu-
alization of results was accomplished by R software and GraphPad Prism. P < 0.05 was considered statistically 
significant unless otherwise marked.

LASSO-risk score =

n∑

i=1

Coefi × xi.
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Result
A machine-learning diagnostic model derived  m6A regulators in CC. All the bioinformatics analy-
ses utilized in this study were executed as a flowchart in Fig. 1. The 33 selected  m6A regulators were shown in 
Table S1. Before commencing the analyses, we constructed protein–protein Interaction (PPI) network and cor-
relation network to investigate the associations between 33  m6A regulators, and the results showed that there 
were high functional interactions (minimum required interaction score > 0.4; Fig. S1a) among them. The CNVs 
analysis showed that IGF2BP2, FXR1, and NSUN2 had higher amplification frequencies, while ZC3H13 had a 
higher CNV deletions probability (Fig. S1b). Therefore, the expression correlations among 33 regulators dem-
onstrated their close relationship (|R|> 0.2, P < 0.05; Fig. S1c). In addition, to explore the aberrant expression of 
 m6A regulators in CC, we compared cancer patients and normal controls in TCGA, GSE63514 and GSE6791 
datasets. As Fig. S1d showed, HNRNPA2B1, YTHDF2, RBM15, and NSUN2 were consistently up-regulated in 
tumor tissues in TCGA-CESC, GSE63514, and GSE6791 datasets.

To discriminate the potential functions of  m6A regulators in CC, a diagnostic model was first constructed to 
provide a new viewpoint of CC diagnosis and prevention. Before commencing, 70% of patients in GSE63514 were 
used as the training set randomly, and the rest samples were defined as the validation set. The random forest (RF) 
model demonstrated that RBM15, NSUN2, HNRNPA2B1, METTL3, CBLL1, ELAVL1, RBMX, ABCF1, FXR1, 
and YTHDF3 were the top ten elements among all regulators (Fig. 2a, Fig. S2a,b). Moreover, RBM15, HNRN-
PA2B1, FXR1, NSUN2, RBMX, ELAVL1, METTL3, ABCF1, CBLL1 and YTHDF3 were identified by the support 
vector machine (SVM) model (Fig. 2b, Fig. S2c). Based on this, ten common regulators were recognized as key 
factors in CC diagnostic model (Fig. 2c, Fig. S2d). ROC curves of RF and SVM models showed high accuracy 
(AUC = 0.946 for RF model and AUC = 0.982 for SVM model; Fig. 2d). Moreover, a nomogram containing regula-
tors and a calibration curve was performed with good accuracy for CC risk prediction (Fig. 2e,f). Decision curve 
analysis (DCA) was developed showing the benefit, as well as the AUC, were significantly improved (Fig. 2g).

Subsequently, to further probe the function of  m6A regulators in CC diagnosis, an artificial neural network 
(ANN) was constructed via ten key elements mentioned above (Fig. 2h). For the training set, the ROC curve 
showed the ANN model had an extraordinary accuracy in CC diagnosis (AUC = 0.999; Fig. 2i), and the AUC of 
the test set (patients obtained from GSE6791) was 0.936 (Fig. 2j). These findings clarified that  m6A regulators 
played an essential role in CC, which might provide a new perspective for the clinical diagnosis of CC.

Prognostic value of  m6A RNA methylation regulators and a risk signature constructed with 
significant ones. Furthermore, we attempted to explore the prognostic effects of regulators in CC. We 
developed the least absolute shrinkage and selection operator (LASSO) Cox regression algorithm using 33  m6A 
regulators for overall survival (OS) (Fig. S3a) and recurrence-free survival (RFS) (Fig. S3b) prediction in CC, 
respectively. For the OS prediction model, eight regulators (FMR1, G3BP1, HNRNPA2B1, LRPPRC, METTL16, 
WTAP, YTHDF3, and ZC3H13) were identified, and seven factors (YTHDF1, FXR2, YTHDC2, G3BP1, IGF2BP1, 
RBMX, and ZC3H13) were filtered, independently. The risk score of OS model for each patient was calculated 
with the following formula: Riskscore = 0.014 × ZC3H13 + 0.008 × YTHDF3 + 0.007 × WTAP + 0.001 × LRP-
PRC + 0.008 × HNRNPA2B1 + 0.004 × G3BP1 − 0.016 × FMR1 − 0.003 × METTL16. And similarly, risk score of 
RFS model was calculated with the following formula: Riskscore = 0.031 × ZC3H13 + 0.011 × RBMX + 0.004 × I
GF2BP1 − 0.003 × G3BP1 − 0.007 × YTHDC2 − 0.010 × FXR2 − 0.018 × YTHDF1. Afterwards, the Kaplan–Meier 
survival curve results confirmed that the risk signature had significant predictive power in OS prediction 
(P < 0.001; Fig. 3a). Similarly, consistent results were found in RFS analyses (P = 0.003; Fig. 3c). Finally, the evalu-
ation of the LASSO regression model using the receiver operating characteristic (ROC) curves and area under 
the curve (AUC), and results revealed that the signature had more accurate prognostic predictability in the 
training set (AUC OS = 0.757 for 5-year survival rate and AUC RFS = 0.776 for 5-year recurrence-free rate; Fig. 3b,d) 
for CC prognosis prediction. Interestingly, our single-gene ROC analysis demonstrated that ZC3H13 had the 
highest AUC in both OS (AUC = 0.698; Fig. S3a) and RFS (AUC = 0.711; Fig. S3b) predictions, which indicated 
the potential role of ZC3H13 in patient prognosis. We then constructed a nomogram, which included the clin-
icopathological characteristics with ZC3H13 expression of patients, and evaluated the accuracy of the model 
through the calibration curve (Fig. S3c,d). An obvious trend was notable that the models had a better prognosis 
prediction value (Fig. 3e,f). Subsequently, DCA plots illuminated that the risk score obtained from LASSO got 
the highest net benefit than other clinical-pathological features for both OS (Fig. 3g) and RFS (Fig. 3h). The 
patients with high-risk scores exhibited reduced OS and RFS (Fig. S3e,f).

To expound on the scientificity and stability of predictive models, internal or external validation of OS 
and RFS models were also performed. Principal component analysis (PCA) as well as t-distributed stochastic 
neighbor embedding (t-SNE) processes were performed to show the patients with a different risk score based 
on prognostic models, and the outcome suggested that risk scores differentiated patients sufficiently (Fig. S4a,b). 
Moreover, several gynecological cancers contain Breast invasive carcinoma (BRCA), Ovarian serous cystad-
enocarcinoma (OV), Uterine Corpus Endometrial Carcinoma (UCEC), and an HPV-associated tumor, Head 
and Neck squamous cell carcinoma (HNSC) were selected for OS prediction model validation. In addition, the 
GSE44001 cohort was acquired to verify the RFS model. The consequence indicated that the prognostic model 
conducted could convincingly define the survival risk or recurrence-free survival risk with reasonable accuracy 
(Ps < 0.001, ROCs > 0.6; Fig. S4c,d).

Risk scores based on  m6A regulators and the LASSO model were sufficient to forecast patient prognostic 
risk robustly, but several interesting factors that combined into risk scores attracted our attention. ZC3H13 and 
B3BP1 were common variables in both OS and RFS models, although their direction of effect on prognostic 
outcomes appeared to be inconsistent. Subsequently, the KM plots downloaded from GEPIA revealed that only 
upregulation of ZC3H13 expression was significantly associated with worse prognosis (P = 0.006 for OS and 
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Figure 1.  The flowchart of this study. CC cervical cancer, RF Random Forest, SVM support vector machines, 
ANN artificial neural networks, OS overall survival, RFS recurrence-free survival, KM Kaplan–Meier; TCGA  
The Cancer Genome Atlas, GEO Gene Expression Omnibus, GSCA Gene Set Cancer Analysis, GSEA Gene Set 
Enrichment Analysis.
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Figure 2.  Diagnostic model construction and key  m6A regulators identification. (a) Variable importance 
screening based on RF. (b) Variable importance screened via SVM. (c) Venn diagram showed the top 10 
candidate regulators contained both in RF and SVM. (d) ROC curves based on machine learning methods for 
diagnostic probabilities. (e) The nomogram diagnostic prediction model based on ten filtered  m6A regulators. 
(f) The calibration plots suggested the comparison between prediction and actual outcome for incidence 
probabilities in the nomogram model. (g) The decision curve analysis showed the net benefit in the nomogram 
model. (h) Establishment of CC diagnosis model with  m6A factor as input layer based on ANN method. (i) 
ROC curves described the predictive ability of ANN model for CC incidence probabilities with the GSE63514 as 
train group. (j) ROC curves described the predictive ability of ANN model for CC incidence probabilities with 
the GSE6791 as test group.
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Figure 3.  Prognostic model construction and key  m6A regulators identification. (a) The Kaplan–Meier survival 
curves for CC patients with high- and low-risk. (b) ROC curves described the predictive ability of OS-LASSO 
model for 2-, 3-, and 5-year survival probabilities. (c) The Kaplan–Meier survival curves for CC patients with 
high- and low-risk. (d) ROC curves described the predictive ability of RFS-LASSO model for 2-, 3-, and 5-year 
survival probabilities. (e,f) The calibration plots suggested the comparison between prediction and actual 
outcome for 2-, 3-, and 5-year survival probabilities in the nomogram model for both OS (e) and RFS (f). (g,h) 
Decision curve analysis for the evaluation of the net benefits of riskscore, Age, HPV_Status, Grade, Genes 
(ZC3H13 expression) and Stage at 2-, 3-, and 5-year for both OS model (g) and RFS model (h). (i) KM analysis 
for patients with ZC3H13 different expression level for OS and RFS using GEPIA online tool. (j) KM analysis 
was performed in OS and RFS patients with different expression levels of G3BP1 using the GEPIA online tool. 
(k) Multivariate Kaplan–Meier survival curves for patients with different expression level of ZC3H13&G3BP1, 
which were selected by LASSO-Cox regression algorithm for OS and RFS prediction.
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P = 0.002 for RFS; Fig. 3i), but not G3BP1 (P = 0.007 for OS and P = 0.140 for RFS; Fig. 3j). When the bivariate 
K-M analysis was carried out, we found that the presence of ZC3H13 significantly predicted patient outcomes 
(Ps < 0.01, Fig. 3k), patients with low expression of both had better prognosis, while patients with high expres-
sion of both had worse prognosis. It was evident that this trend was highly correlated with the expression level 
of ZC3H13. Briefly, ZC3H13 was a vital factor in CC prognosis prediction, and combined with G3BP1, can 
improve the predictive power.

Considering whether key factors could be used as stable CC biomarkers, we detected seven diagnostic ele-
ments and one prognostic factor in 20 pairs of population tissues. The comparison elucidated that RBM15 
(P = 0.046; Fig. 4a), NSUN2 (P = 0.001), METTL3 (P = 0.001), CBLL1 (P = 0.003), RBMX (P < 0.001), and ZC3H13 
(P = 0.008; Fig. 4b) were significantly up-regulated in CC tissues, while the expressions of HNRNPAB1 (P = 0.027) 
and YTHDF3 (P = 0.033) and showed the opposite trend.

Two CC subgroups were identified by consensus clustering and immune-associated explora-
tion based on  m6A RNA methylation regulators. To further explore the effect of  m6A RNA modifica-
tion in CC, we calculated cluster fitting values of k = 2 to 10 on 306 cancer samples based on the expression cor-
relation of 33 regulators. The results, as shown in Fig. 5a and Fig. S5a, indicated that k = 2 was relatively optimal 
for further analysis. Based on this, the cluster 1 (n = 151) and cluster 2 (n = 155), respectively. Furthermore, to 
intuitively obtain the effect of two subgroups and reflect the reliability of our results, we calculated PCA and 
t-SNE analysis based on two subgroups. We found the clustering results could effectively distinguish the two 
clusters (Fig. 5b, Fig. S5b). Subsequent KM analysis results indicated that cases in cluster 1 had better prog-
nostic status than in cluster 2 (P = 0.015 for OS and P = 0.045 for RFS; Fig. 5c). Gene Set Enrichment Analysis 
(GSEA) was either conducted to investigate the enrichment of the genes in two clusters. The result showed that 
mitochondrial drug metabolism (P450 and other enzymes) was significantly enriched in cluster 1, while cell 
cycle, DNA replication, nucleotide excision repair, and spliceosome-associated biological processes was found 
in cluster 2 (Fig. S5c).

To clarify the association between  m6A regulators and clusters, an  m6A-related score, named  m6AScore, based 
on 33 key factors was calculated via PCA analysis to quantitatively describe the  m6A level of each patient. Obvi-
ously, patients in cluster 1 had higher  m6AScore than patients in cluster 2 (P < 0.001; Fig. 5d). After KM survival 
analysis, a trend was revealed that patients with higher  m6AScore had better prognostic status (P = 0.003 for OS 
and P = 0.005 for RFS; Fig. S5d,e). Understandably, most of the 33 genes were significantly different expression 
in two clusters (Fig. S5f) and  m6AScore groups (Fig. S5g) based on  m6A regulators. These results suggested that 
 m6AScore based on  m6A regulators could also predict the prognostic risk of patients.

Few studies have delved into the association of  m6A regulators and immune function comprehensively. Firstly, 
stromal score, immune score, and tumor purity analysis were developed via the ESTIMATE algorithm, and the 
differentiation of patients in different  m6AScore groups was identified. The result showed that StromalScore, 
ImmuneScore, and total score, ESTIMATEScore, were significantly lower in the high-m6AScore group than in 

Figure 4.  RNA expression detection of 20 pairs human cervical tissues using Real-time Quantitative PCR 
Detecting System. The expression comparison of RBM15, NSUN2, HNRNPA2B1, METTL3, CBLL1, RBMX, 
YTHDF3, and ZC3H13.
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Figure 5.  Identification and characteristic description of consensus clustering. (a,b) Consensus clustering 
for k = 2 based on  m6A regulators (a) and visualization by PCA plot (b). (c) Kaplan–Meier survival curves 
for patients in different subgroups, OS and RFS. (d) Representation of the groups character by  m6AScore. 
(e) Analysis and comparison of tumor microenvironment in patients with different  m6AScore level. (f) The 
comparison of proportion of 22 immune cells in 309 patients of different  m6AScore group. (g) Immune function 
analysis and comparison in patients with different  m6AScore group. (h) Immune escape analysis (Merck18, 
TIDE, MSI score and T cell Exclusion) and comparison in patients with different  m6AScore level. (i) Tumor 
mutation burden between different  m6AScore and TMB. (j) Box plot showed the comparison of HLA family 
genes expression between different  m6AScore groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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the low-m6AScore group (Ps < 0.05; Fig. 5e). Subsequently, we performed immune infiltration analysis using the 
same cases mentioned above and explored the association between different  m6AScore groups (Fig. 5f). However, 
only the abundance of plasma cells, regulatory T cells (Treg), and eosinophils had obviously difference between 
low- and high-m6AScore patients. Analysis of immune function were executed subsequently and results implied 
that co-inhibition of antigen presenting cells (APCs), B cells, Chemokine receptors (CCRs), HLA, and T cell 
co-stimulation in high-m6AScore group were less than low-m6AScore group (Ps < 0.05; Fig. 5g). Hereafter, TIDE 
scores reflecting the patient sensitivity to immune checkpoint inhibitors (ICIs) were calculated to explore the 
discrepancy between high- and low-m6AScore groups. As Fig. 5h showed, Merck18 and TIDE score were reduced 
in high-m6AScore group, but MSI score and T cell Exclusion showed no significant difference. The tumor muta-
tion burden (TMB) in different  m6AScore groups were developed and an insignificant difference was observed 
(P = 0.050, Fig. 5i). The following KM curves proved that patients with high TMB level had better RFS (P < 0.001; 
Fig. 5h), but not OS (P = 0.152). Only when  m6AScore and TMB were analyzed together, was it observed that 
the group with high-TMB+ low-m6AScore had the best prognostic status (P = 0.015 for OS and P < 0.001 for 
RFS; Fig. 5i). In general, the results of this part showed that  m6AScore was significantly associated with tumor 
microenvironment, immune infiltration, immune function, immune escape, and TMB in CC patients.  M6AScore 
could be used as an indicator of patients’ immune status, immune escape and prognosis, but its role limited.

To precisely connect  m6AScore and immune process, we shifted our focus to the HLA family mentioned above 
and a comparison between different  m6AScore groups was performed. Unexpectedly, 18 of the 24 traits had lower 
levels in the high-m6AScore group, and other insignificant traits showed the same downward trend (Fig. 5j). 
This motivated us to explore the association between  m6AScore and immune checkpoint expression. A total of 
15 immune checkpoints (BTLA, CD2, CD200R, CD244, CD27, PD-L1, CD28, CD40, CD80, ICOS, KLRC1, 
KLRD1, LAG3, SIRPA, and TIGIT) were identified for subsequent analysis. The results clarified that CD2, CD27, 
LAG3, CD40, and BTLA had less abundance in high-m6AScore groups (Ps < 0.05; Fig. 6a). No distinct differences 
were observed in the expression abundances of TIGIT, ICOS, PD-L1, and others in between different  m6AScore 
groups. At the end of this section, to predict the response of ICIs, we determine the association in  m6AScore 
and immunophenoscore (IPS) in CC patients. As Fig. 6b illustrated, patients with low-m6AScore had higher 
PD-1 and CTLA4/PD1 scores (Ps < 0.05), elucidating patients with the high immunogenicity on ICIs. This was 
consistent with the result of lower expression of immune checkpoints in high-m6AScore group mentioned above. 

Figure 6.  Immune checkpoint expression analysis and immunotherapy exploration based on  M6AScore. (a) 
Expression differences in immune checkpoints (CD2, CD27, LAG3, BTLA, TIGIT, ICOS) between different 
 m6AScore groups. (b) The comparison of the relative distribution of immunophenoscore (IPS) between different 
 m6AScore groups.
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In conclusion, there were significant differences in  m6AScores between immunotherapy non-responders and 
responders, and  m6AScore could provide a new reference for individualized treatment of CC patients.

Drug sensitivity analysis for clinical chemotherapy strategies. It was mentioned earlier that there 
were ten key molecules (RBM15, NSUN2, HNRNPA2B1, METTL3, CBLL1, ELAVL1, RBMX, ABCF1, FXR1, 
and YTHDF3) in the CC diagnostic model constructed and similarly two key elements (ZC3H13 and G3BP1) in 
the prognostic model (Figs. 2, 3). Based on this, we sought to explore the association of key factors with widely 
recognized chemotherapeutic agents. Figure 7 revealed that RBMX was strong positive correlation with Cheler-
ythrine (R = 0.560, P < 0.001), Nelarabine (R = 0.520, P < 0.001), and Fenretinide (R = 0.437, P < 0.001); ELAVL1 
was identified obvious related to Chelerythrine (R = 0.530, P < 0.001), Nelarabine (R = 0.523, P < 0.001), and 
Hydroxyurea (R = 0.384, P = 0.002). When the perspective turns to the prognostic factors, the results suggested 
that Selumetinib (R = 0.518, P < 0.001), Dabrafenib (R = 0.506, P < 0.001), and Cobimetinib (R = 0.491, P < 0.001) 
were filtered as the potential ZC3H13 associated drugs. As Fig. 7 showed, Chelerythrine, Nelarabine, Ifosfamide, 
and Selumetinib were considered as potential chemotherapeutic agents to target these factors.

In addition, we also obtained drug data through Connectivity Map (cMAP) database and performed associa-
tion analysis with  m6AScore to explore the clinical treatment strategies for CC patients. Comparison consequence 
were demonstrated that patients with low-m6AScore marked sensitivity to chemotherapeutic agents, including 
AKT inhibitor VIII (P < 0.001; Fig. S7a), BIRB.0796 (a p38 MAPK inhibitor; P < 0.001) and FH535 (a Wnt/β-
catenin inhibitor; P < 0.001), but NVP.TAE684 (an ALK inhibitor; P < 0.001) were opposite to them. Cisplatin, 
Paclitaxel, and Gemcitabine, which are commonly used clinical chemotherapy drugs for malignant tumors, 
also had significant differences in the effects of different  m6AScore patients. CC patients from low-m6AScore 
group were more sensitive to Cisplatin and Gemcitabine, but not to Paclitaxel. Our results demonstrated that 
the  m6AScore calculated based on 33  m6A regulators can be used to predict the sensitivity of patients to chemo-
therapy drugs, which might be of great significance for clinical chemotherapy drugs.

Correlational exploration of  m6A RNA modification with cell cycle and programmed 
death. Considering the potential molecular mechanism of  m6A regulators in CC, a functional enrichment 
analysis was developed. By Gene Set Cancer Analysis (GSCA) database, the active of cell cycle and apoptosis were 
the significantly acquired pathways (Fig. 8a). Correlation analysis was subsequently fulfilled to probe potential 
associations of  m6A regulators with gene lists of cell cycle and five programmed cell death, which included fer-
roptosis, pyroptosis, apoptosis, necroptosis, and cuproptosis. Figure 8b revealed a network of molecular with 
extensive connection (Rs > 0.300; P < 0.050). In summary, results exhibited cell cycle and cell programmed death 
were closely related to  m6A regulators, which were the essential pathways for CC progression.

Discussion
In recent years, epigenetic modification has been widely studied. Existing evidence shows that epigenetic modifi-
cation exists in various molecular biological processes, and it has a significant role in the occurrence and develop-
ment of  cancer27–31. As the more critical one,  m6A RNA modification has also been shown to have an important 
direct relationship with  cancers32–36. In this study, we demonstrated that the expression of  m6A RNA modification 
regulators in CC was closely related to its diagnosis and prognosis. The functional enrichment results revealed the 
feasible key signaling pathways of  m6A modification in CC, including cell cycle and cell programmed death. Next, 
the  m6AScore was calculated via PCA algorithm and used to investigate the distinction between CC patients from 
different clusters obtained by consensus clustering. Fortunately, it was found that the lower the  m6AScore, the 
better the prognosis of patients. Immune characterization and tumor microenvironment analysis subsequently 
showed significant differences in patients with low- or high-m6AScore, suggesting a potential association between 
 m6A modification and immune processes. It is highly consistent with known  reports37–39.

In the present study, we explored the diagnostic value and identified ten key regulators including RBM15, 
NSUN2, HNRNPA2B1, METTL3, YTHDF3, FXR1, RBMX, ELAVL1, CBLL1, and ABCF1, using RF and SVM 
models. Among them, RBM15 was the most crucial. Subsequent ANN results suggested that our model was 
accurate in both training and validation cohorts (Fig. 2). Although the current literature on  m6A is  numerous19,40, 
there are few reports identifying RBM15 as an essential biomarker for CC prognostic. The study found that 
RBM15 could increase the  m6A level of TMBIM6 mRNA, and increase its stability after recognition by the reader 
protein, promoting the malignant progression of laryngeal squamous cell  carcinoma41. Based on this, a hypothesis 
was proposed that RBM15 also has a non-negligible potential role in the occurrence and development of CC by 
mediating the  m6A level of targets. After experimental verification (Fig. 4b), RBM15 was indeed significantly 
up-regulated in patients, but its in-depth molecular mechanism in CC was the focus of our future work. HNRN-
PA2B1 was another important factor, which was identified as an oncogene in head and neck cancer and could 
promote Akt/PKB signaling by upregulating the RONΔ165 isoform, thereby promoting epithelial-mesenchymal 
transition of head and neck cancer  cells42. HNRNPA2B1 increased the stabilization of ILF3 mRNA through  m6A 
modification, which in turn increased AKT3 expression to promote multiple myeloma  progression43. Although 
the qPCR assay found that HNRNPA2B1 was significantly down-regulated in CC patients, which was inconsistent 
with literature reports and the result obtained from datasets, including TCGA-CESC, GSE63514, and GSE6791. 
It was consistent with them that HNRNPA2B1 was served as a risk factor in OS prognostic models, implying its 
complex mechanism in CC. Meanwhile, we also considered to detect the relative expression of HNRNPA2B1 
again after expanding the tissue sample size.

We distinguished an eight-m6A RNA modification gene signature containing FMR1, G3BP1, HNRNPA2B1, 
LRPPRC, METTL16, WTAP, YTHDF3, and ZC3H13 for CC OS prediction. Similarly, seven regulators (FXR2, 
G3BP1, IGF2BP1, RBMX, YTHDC2, YTHDF1, and ZC3H13) were identified for RFS prediction. According 
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to the risk obtained by the LASSO Cox model, we found that this score accurately distinguished patients with 
different prognostic risks. ZC3H13 and G3BP1 were served as common indicators for both OS and RFS predic-
tion. ZC3H13 could be selected alone for CC prognosis prediction, and the ROC curve showed that its AUC is 

Figure 7.  Analysis of treatment strategies for diagnosis and prognosis based on  m6A regulators. (a) The scatter 
diagram showed the association between the drugs and key regulators, which might provide new clues to 
uncover potential mechanisms for CC diagnosis. (b) The association between the drugs and key prognostic 
regulators.
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larger than other members and close to the total AUC of the model (Fig. S3a,b). We next attempted to mix both 
of them to predict CC prognostic risk. The KM plots suggested that the predictive risk was significant when 
ZC3H13 and G3BP1 were combined. For ZC3H13, studies have identified it as an important prognostic predic-
tor in  Glioblastoma44 and  CC15. It is worth mentioning that our results suggested that ZC3H13 was significantly 
up-regulated in CC tissues (Fig. 4b), which was consistent with the reported  trend15, indicating that ZC3H13 
was a stable biomarker.

Consensus clustering analysis based on  m6A regulators was executed to divide CC patients into two clusters 
with  m6AScore. Patients in cluster 1 had higher  m6AScores and worse prognosis, whereas patients in cluster 2 
had the exact opposite. In recent years, it has been reported in the literature that  m6A regulators can partici-
pate in regulating the occurrence, development, and treatment of various tumors by affecting immune-related 
processes, including but not limited to immune  response45,46, immune checkpoint  expression47,48, and immune 
 escape49,50. Immune cell infiltration analysis and tumor microenvironment analysis clarified that the immune 
status and microenvironment were significantly different in  m6AScore groups. The level of immune cell infil-
tration, immune TIDE, and TME score in the patients from high-m6AScore group were clear lower than those 
in patients with low-m6AScore. In subsequent analysis of immune infiltration, immune escape and TMB, the 
results showed that  m6AScore correlated significantly with these features, but very limited. We speculated that 
the  m6AScore constructed based on the abundance of  m6A regulators did not show a strong correlation with 
the immune infiltration and immune escape status of patients, but the  m6A-regulated target genes were directly 
related to the immune  process51–53. Therefore, the  m6AScore showed a weak correlation with immune status. In 
addition, the information loss caused by dimensionality reduction during the construction of  m6AScore may 
also weaken the association to a certain extent. Although no significant differences were observed in TMB and 
MSI in different  m6AScore groups, we found that the HLA and immune checkpoint expressions of patients with 
low-m6AScore were significantly lower than those in patients with high-m6AScore. Immunotherapy analysis 
also found that patients with low-m6AScore had better treatment benefits. For such patients, immunotherapy 
is a scientifically effective protective measure. For patients with high-m6AScore, immunotherapy might not be 
a high-benefit approach, possibly due to the high proportion of patients with advanced cancer. The pattern of 
low expression of immune checkpoints in patients with worse prognosis was previously reported in  studies54, 
which was consistent with our results. As for patients with high-m6AScore, NVP.TAE684 and Paclitaxel were 
more suitable for them.

There have been many literatures on the  m6A molecules in CC, some of which are similar but not the same. 
Pan’s  study15 analyzed 13  m6A regulators in the TCGA-CESC dataset and identified ZC3H13, YTHDF1, and 
YTHDC1 as OS-related factors. Consistently, we also identified ZC3H13 as a key factor on patient OS prediction, 
and both of our studies found ZC3H13 to be the most essential influencing factor (observed from the coeffi-
cients). Neither YTHDF1 nor YTHDC1 were in our model, and we presume the reason for the discrepancy may 
be the difference in the number of included independent variables, which would result in non-essential variables 
not being stably retained in the model. Furthermore, the expression trend of METTL3 was inconsistent with 
our experimental results. In addition to individual differences in the population, it was our conjecture that the 
small sample size causes biased results. In addition, complex mechanisms between RNAs and proteins may also 
lead to different outcomes. Zhang’s  research16 explored the expression patterns of  m6A molecules in CC and 
comprehensively analyzed the connection with immune-related processes. Although expression patterns were 
explored for both, we ultimately constructed  m6AScore based on  m6A regulator expression values rather than 
differential genes. This was the main difference between our two studies and the main reason for the difference 

Figure 8.  Correlation analysis of m6A regulators with cell cycle and programmed death. (a) The essential 
pathway enrichment analyses of 33  m6A regulators by GSCA. (b) The correlation network between  m6A 
regulators and programmed death genes of interest, which including cell cycle, apoptosis, pyroptosis, 
necroptosis, ferroptosis and cuproptosis (|R|> 0.3 and P < 0.05). Solid lines represent positive correlations, 
dashed lines represent negative correlations. The thicker the line, the stronger the correlation between the two 
edges.
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in the results that follow. Most importantly, this study also constructed a cervical cancer diagnostic model and 
RFS prognostic model, and proposed chemotherapy regimens for the identified key targets, while complement-
ing the shortcomings of immunotherapy in the study.

The limitations of this study should be considered when interpreting the results. The dataset we used when 
building the diagnostic model was GSE63514, and the validation dataset was GSE6791. However, most of this 
study is based on the TCGA database, which is a completely different group. The reason was that in the diagnostic 
model, we needed the population of different groups in the data to be as balanced as possible, and TCGA was 
difficult to meet this requirement (306 CC patients and 3 normal samples). In addition, the necessary survival 
data in the prognostic model was also difficult to obtain in the GEO dataset; there is not yet a public database 
that can simultaneously meet the requirements of both. We are currently constructing a balanced CC follow-up 
cohort and hope to fill this gap in future studies. Another important point is that the experiments on the expres-
sion of key  m6A regulators in the study only did qPCR, and there was a lack of evidence from a large number of 
immunochemistry results. This deficiency will also be improved and published in the future work.

Conclusion
In conclusion, our findings supported a systematic analysis that  m6A regulators executed vital functions in the 
diagnosis, prognosis, immune microenvironment, and treatment of CC. And these mechanisms not yet com-
pletely elucidated today might be achieved by immune biological process, cell cycle, and cell programmed death. 
This study also offered a theoretical basis for CC clinical treatment.

Data availability
The datasets generated and analyzed during the current study are available in the TCGA (https:// portal. gdc. 
cancer. gov/) and GEO (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE63 514; https:// www. ncbi. nlm. 
nih. gov/ geo/ query/ acc. cgi? acc= GSE67 91) database. The other data, algorithms and code that support the findings 
of this study are available on request from the corresponding author. The algorithms and code were not publicly 
available due to privacy or ethical restrictions.
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