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Although significant progress has been made in the fight against cancer, successful treat-
ment strategies have yet to be developed to combat those tumors that have metastasized
to distant organs. Poor characterization of the molecular mechanisms of cancer spread is
a major impediment to designing predictive diagnostics and effective clinical interventions
against late stage disease. In hematogenous metastasis, it is widely suspected that circu-
lating tumor cells (CTCs) express specific adhesion molecules that actively initiate contact
with the vascular endothelium lining the vessel walls of the target organ. This “tethering”
is mediated by ligands expressed by CTCs that bind to E-selectin expressed by endothelial
cells. However, it is currently unknown whether expression of functional E-selectin ligands
on CTCs is related to cancer stem cell regulatory or maintenance pathways, particularly
epithelial-to-mesenchymal transition and the reverse, mesenchymal-to-epithelial transition.
In this hypothesis and theory article, we explore the potential roles of these mechanisms
on the dynamic regulation of selectin ligands mediating CTC trafficking during metastasis.
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INTRODUCTION
Distant metastasis is the culmination of an elaborate cascade of
events in which cancer cells break away from the primary tumor,
intravasate through blood vessel walls into the circulatory sys-
tem, travel throughout the body, and finally extravasate through
the vessels of a distant organ to establish a secondary colony.
While resident in the blood vasculature, circulating tumor cells
(CTCs) must survive biochemical and biophysical assaults induc-
ing necrosis or apoptosis, plus avoid elimination by immune
cells, in order to metastasize. Regardless of their ultimate fate,
the clinical interpretation of CTCs arising from solid tumors has
been the subject of much debate, with definitive answers yet to
emerge as to if, when, and for which cancers these cells offer
significant diagnostic, prognostic, or therapeutic value. Despite
lack of consensus on their clinical utility, CTCs can still pro-
vide a meaningful portrait of a cancer patient’s health, or rather
disease, status. CellSearch, a test marketed by Johnson & John-
son’s Veridex division, is FDA-approved to capture and enumerate
CTCs in metastatic breast, colon, and prostate cancer patients for
prognostic purposes (Dawood et al., 2008; Mostert et al., 2009;
Riethdorf and Pantel, 2010). More recently, the development of
next-generation fluidics-based CTC isolation devices by the Haber
and Toner groups, the CTC-chip and herringbone (HB)-chip
(Nagrath et al., 2007; Stott et al., 2010; Yu et al., 2011), has gener-
ated increased attention to CTCs and the use of “liquid biopsies”or
“blood biopsies” to enumerate and capture CTCs for further study.

As with any portrait, further examination reveals nuances not
observed at first glance. For instance, post-capture investigation
using RT-PCR in the AdnaTest (AdnaGen) may reveal upregu-
lated pathways related to cancer stem cells (CSCs), metastatic
aggressiveness, or responsiveness to treatment (i.e., trastuzumab
for HER-2 overexpressing breast cancers) that are impossible to
observe through a simple CTC count (Fehm et al., 2007; Dawood
et al., 2008; Riethdorf and Pantel, 2008, 2010; Mostert et al., 2009).
Though the scientific and medical communities may achieve sig-
nificant new insights from these blood biopsies, the information
itself is static. Cancer is dynamic. How medical professionals
interpret a particular patient’s case, as well as predict future
outcomes of an ever-changing disease, will depend partially on
information gleaned from CTC assessments at single moments
in time.

In general, CTCs possessing enhanced survival capabilities will
generate metastatic colonies in distant organs, as well as reseed
the original primary tumor with more aggressive cells (Kim et al.,
2009). Uncovering the molecular mediators by which CTCs ini-
tiate adhesion with endothelial cells lining the blood vessel walls
of the target site may therefore prove useful in predicting and
thwarting metastasis. In particular, stimulated vascular endothe-
lium expressing E-selectin can capture CTCs expressing E-selectin
ligands, thereby initiating adhesion and subsequent CTC inva-
sion. However, this statement is a simplification of a tangle of
issues underlying functional selectin ligand expression on cancer
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cells. To be qualified as a true selectin ligand, Varki (1997) pro-
posed that the purported ligand must be expressed “in the right
place at the right time” among other criteria. So do all CTCs
express selectin ligands, or even the “right” selectin ligands? How
and when do these selectin ligands arise? Are they modulated
by pathways associated with epithelial-to-mesenchymal transition
(EMT) or other mechanisms of CSC generation and mainte-
nance, or are they independent of these pathways? In this article,
we explore the complex networks through which selectin ligands
on CTCs may be regulated and propose working theories based
on ongoing studies with breast cancer in our laboratories. New
findings from these investigations, coupled with additional dis-
coveries from other labs, will address significant shortcomings in
our understanding of the molecular networks promoting cancer
metastasis.

CTCs AND CELL ADHESION MEDIATED BY E-SELECTIN
AND ITS LIGANDS
It has been proposed that the early steps by which CTCs cells leave
the bloodstream to invade secondary sites mimic the physiologic
trafficking of leukocytes to sites of inflammation and hematopoi-
etic stem cells to bone marrow. Because numerous excellent review
articles on cell trafficking have been published through the years
(Springer, 1994; Sackstein, 2005; Barthel et al., 2007; Konstan-
topoulos and Thomas, 2009; Zarbock et al., 2011; Bendas and
Borsig, 2012; Chase et al., 2012; Geng et al., 2012), only a gen-
eral overview is presented here (Figure 1). Circulating cells are
first captured or “tethered” from bulk blood flow onto vascu-
lar endothelial cells, which is immediately followed by rolling
on the endothelium. Tethering and rolling are typically medi-
ated by interactions between ligands expressed on the surface
of the circulating cells that recognize E-selectin, an endothe-
lial adhesion molecule upregulated in response to inflammatory
stimuli as well as constitutively expressed by bone and dermal
endothelial cells (Springer, 1994; Sackstein, 2004). Subsequently,
rolling cells firmly adhere and migrate through the vessel wall
into the underlying tissue in response to specific cytokines and
chemokines.

Therefore, this multi-step model indicates that CTCs must ini-
tially tether on endothelial cells, presumably through E-selectin
ligand recognition of E-selectin, in order to trigger the series of
events necessary for metastatic growth. These adhesive interac-
tions occur under hydrodynamic shear stresses generated by blood
flow (post-capillary venule and bone marrow endothelial venule
wall shear stress ranges from 0.5 to 4.0 dyn/cm2; Jones et al., 1991;
Mazo et al., 1998), enabled by the hallmark catch-slip bonds and
rapid bond formation/breakage kinetics of selectins and their lig-
ands (Dembo et al., 1988; Marshall et al., 2003; Zhu and McEver,
2005; Evans and Calderwood, 2007; Ham et al., 2007; McEver and
Zhu, 2007). E-selectin has been established as a mediator of colon
and prostate cancer adhesion and distant metastasis (Khatib et al.,
2002; Barthel et al., 2007, 2009), and there is clinical and in vitro
evidence for the role of E-selectin in promoting metastasis of sev-
eral other cancers, including breast, pancreatic, and head and neck
cancers (Wenzel et al., 1995; Eshel et al., 2000; Barthel et al., 2007;
Geng et al., 2012). The other two members of the selectin family,
P-selectin expressed by activated platelets and activated endothe-
lium and L-selectin expressed by most leukocytes, also have been
proposed to participate in cancer metastasis (Laubli and Borsig,
2010; St Hill, 2012).

Notably, the expression levels of the minimal selectin-binding
epitopes sialyl Lewis X (sLeX,NeuAcα(2,3)Galβ(1,4)[Fucα(1,3)]
GlcNAc) and its stereoisomer sialyl Lewis A (sLeA, NeuAcα(2,3)
Galβ(1,3)[Fucα(1,4)]GlcNAc) on certain glycoproteins and gly-
colipids increase progressively from normal tissue to early stage
cancer to metastatic disease, consistent with aberrant glycosyla-
tion rendering altered cell adhesion molecules relative to normal
tissue in most cancers, including breast, bladder, and colon can-
cers (Izumi et al., 1995; Klopocki et al., 1996; Renkonen et al.,
1997; Skorstengaard et al., 1999; Kajiwara et al., 2005). Transfer
of sialic acid (NeuAc) onto a terminal galactose (Gal) residue
occurs through the action of α(2,3) sialyltransferases. The enzymes
directing α(1,3) fucosylation for sLeX production are multiple-
fucosyltransferases (FTs) III, IV, V, VI, and VII while FTIII and
FTV are also α(1,4) FTs involved in the production of sLeA

(Edbrooke et al., 1997; de Vries et al., 2001; Dupuy et al., 2004).

FIGURE 1 |The multi-step model of cell adhesion and migration in blood

vessels. Schematic representation of the cascade of events involved in
cellular transit from the vasculature into the underlying tissue space. Tethering
recruits circulating cells from the bulk flow stream, then rolling slows lateral

translocation across the endothelium and facilitates firm arrest. If the correct
cytokine and/or chemokine gradients are present, adherent cells will
transmigrate through the endothelium and infiltrate the tissue
microenvironment.
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Clearly, these enzymes must be (dys)regulated in cancer cells
through the transition from primary tumor to advanced stage
cancer to result in the observed upregulation of sLeX/A and thus
selectin ligands (Renkonen et al., 1997; Matsuura et al., 1998).
Although the tumor stroma and hypoxic conditions are known
to influence tumor cell glycosylation (Stern et al., 2001, 2002;
Kannagi, 2004), the exact biochemical (or biophysical) regulators
of cancer glycosylation are unknown. Nevertheless, the presence
of sialofucosylated moieties such as sLeX/A is significant in that
upregulated expression of functional selectin ligands may indicate
their role in promoting CTC adhesion during metastasis (Burdick
et al., 2001; Kannagi et al., 2004; Barthel et al., 2007). Thus, it is
necessary to identify the core proteins or lipids presenting sialo-
fucosylated glycans to better characterize roles for specific selectin
ligands.

To date, several major tumor cell surface glycoprotein selectin
ligands that may fulfill the criteria of “real” selectin ligands have
been identified, most prominently the specialized CD44 glyco-
form HCELL as an E-/L-/P-selectin ligand on colon cancer cells
(Hanley et al., 2005, 2006; Burdick et al., 2006), and an E-selectin
ligand on prostate and breast cancer cells (Barthel et al., 2009;
manuscript in preparation). Carcinoembryonic antigen (CEA,
CD66) and podocalyxin-type protein-1 (PCLP-1) have also been
named E-selectin ligands expressed on colon and prostate cancer
cells (Barthel et al., 2009; Thomas et al., 2009). On breast can-
cer cells, CD24 acts as a P-selectin ligand but not an E-selectin
ligand (Aigner et al., 1998), and Mac-2bp acts as an E-selectin lig-
and (Shirure et al., 2012). Additional mucinous proteins, such as
MUC-1, CD43, and PSGL-1, have also been proposed as selectin
ligands on a variety of cancer cells (Barthel et al., 2007; Geng et al.,
2012). Contributory roles have also been identified for colon,
prostate, breast, and head and neck cancer sialofucosylated gly-
colipids in adhesion to endothelial E-selectin (Burdick et al., 2003;
Dimitroff et al., 2004; Barthel et al., 2007; Shirure et al., 2011; Geng
et al., 2012). Though the understanding of selectins and their
ligands is growing, it is imperative to consider their functional-
ities in the wider context of biochemical and biophysical factors
encountered by CTCs in transit.

CTC TRANSIT THROUGH CAPILLARIES
The ability of cancer cells to enter small vessels such as capil-
laries (as well as to roll in larger vessels such as post-capillary
venules described above) depends critically on the mechanical
deformability of the cells. Capillaries range from 2 to 8 μm in
diameter (Doerschuk et al., 1993) and cancer cells, which tend to
be large and stiff, may not be able to deform enough to enter
at least some portions of the capillary bed (Liotta, 1987; Weiss
et al., 1988; Chambers et al., 1992; Lafrenie et al., 1993). Organs
with small vessels that are susceptible to metastasis include the
lung microcirculation (which is particularly important because
it is the first capillary bed that a metastasizing cancer cell enter-
ing the venous circulation will encounter after passing through
the first two chambers of the heart), bone marrow and liver
sinusoids, and the kidney microcirculation. The mechanical prop-
erties of cancer cells surely play a role in transit: if certain CTCs
are stiff and resistant to deformation, then the possibility of
sequestration at the entrance of small vessels should be large.

Conversely, if CTCs are less stiff (more deformable), then their
potential to pass through the microcirculation and metastasize
could be enhanced. Furthermore, it is possible that deforma-
tion is not a by-stander process for the cell; deformation itself
may induce changes affecting molecular and mechanical phe-
notype, perhaps in a manner that promotes CTC survival and
metastasis.

Protocols to quantify cellular mechanical properties have
existed for nearly 30 years, and parameters for models of cell
mechanics have been measured using many experimental tech-
niques: micropipette aspiration (Figure 2), magnetic twisting
rheometry, cell stretching with optical tweezers or mechanical
stretching devices, nanoscale indentation with probes or AFM
tips, particle tracking microrheology, etc. (Mason and Weitz,
1995; Shroff et al., 1995; Choquet et al., 1997; Mason et al., 1997;
Thoumine and Ott, 1997; Bausch et al., 1999; Yap and Kamm,
2005; Sirghi et al., 2006). As a result of these efforts, much is known
about the deformability of red and white blood cells (which are
known to undergo massive deformations in the normal course of
circulation) and a sampling of other cell types. On the basis of
these collective works (Mason and Weitz, 1995; Shroff et al., 1995;
Choquet et al., 1997; Mason et al., 1997; Thoumine and Ott, 1997;
Bausch et al., 1999; Yap and Kamm, 2005; Sirghi et al., 2006), it was
found that the major distinction in cell rheological properties is
whether the cell behaves like a liquid drop with a cortical tension
(as white blood cells clearly do) or as a viscoelastic solid (most
other cell types). Devices to identify cell subsets based on differ-
ences in cellular mechanical properties are in early development
stages (Oakey et al., 2010; Sraj et al., 2010), and these method-
ologies are being considered for identifying and isolating normal
healthy mesenchymal stem cells (MSCs) for use as therapeutics
and in regenerative medicine (Porada et al., 2006; Parekkadan
and Milwid, 2010). These cells lack unique cell surface molecules
through which they can be easily isolated from their sources (e.g.,
bone marrow, umbilical cord; Porada et al., 2006; Pountos et al.,
2007) but have distinct mechanical properties compared to their

FIGURE 2 | Breast cancer cells can be aspirated into a glass

micropipette. A CD44+/CD24− Hs578T breast cancer cell (A) before and
(B) after partial aspiration into a micropipette of 8.4 μm diameter. A
CD44+/CD24+ BT-20 breast cancer cell (C) before and (D) after partial
aspiration into a 9.0 μm diameter micropipette. Scale bar is 10 μm in all
Figures.
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differentiated daughter cells. These differences are currently being
explored as specific identifying MSC characteristics (Darling et al.,
2008; Tan et al., 2008; Yu et al., 2010). Similarly, benign versus
tumorigenic cancer cells have been explored for differing traits
(Kim et al., 2008; Hou et al., 2010). However, much more work
needs to be performed to understand CTC metastatic potential
attributable to inherent or alterable molecular and mechanical
properties. It is tantalizing to speculate a role for biophysical mod-
ulation of CTC properties, including effects on selectin ligand
expression or function.

CSCs, EMT, AND MESENCHYMAL-TO-EPITHELIAL
TRANSITION
The discovery and identification of leukemic stem cells (LSCs)
effectively ushered in a new era of cancer research (Lapidot et al.,
1994; Bonnet and Dick, 1997). LSCs share the properties of self-
renewal and pluripotency with their normal hematopoietic stem
cell brethren, but are also leukemogenic. LSCs are particularly
dangerous in that they can survive chemotherapy (Costello et al.,
2000; Graham et al., 2002; Holtz et al., 2002), leading to relapse
with LSCs even more aggressive than their previous incarnation
(Oravecz-Wilson et al., 2009). Shortly after LSC identification, a
groundbreaking report by Al-Hajj et al. (2003) found that breast
cancers similarly harbor deadly CSCs, which exhibited a much
greater propensity for tumor formation than cells of a differ-
ent phenotype. These breast CSCs were putatively characterized
by the expression levels of glycoprotein markers on the surface
of the cell: high expression of CD44, little to no expression of
CD24, high expression of epithelial-specific antigen (ESA), and
lack of lineage markers (lin), or CD44+/CD24−/low/ESA+/lin−
(Al-Hajj et al., 2003). These CSCs were able to form heteroge-
neous tumors from a relatively small number of cells. Specifically,
only 200 CD44+/CD24−/low/ESA+/lin− breast cancer cells, iso-
lated from patient primary tumors, could regenerate and expand
to form secondary tumors that also contained CSCs, in as little
as 12 weeks in mice (Al-Hajj et al., 2003). In contrast, as many
as 20,000 cells of alternate phenotypes from the same tumor
origin as the CD44+/CD24−/low/ESA+/lin− cells were unable to
form new tumors. Thus, the breast CSCs were capable of self-
renewal and differentiation, two general properties possessed by
normal stem cells, and the ability to generate new tumors (Al-Hajj
et al., 2003; Ponti et al., 2005; Fillmore and Kuperwasser, 2008).
Since this initial breast cancer study, CSCs have reportedly been
found in nearly all solid cancers, with a specific molecular phe-
notype for each type of cancer. However, the cancer research
community continues to debate the true nature of CSCs (Camp-
bell and Polyak, 2007; Gupta et al., 2009; Badve and Nakshatri,
2012; Liu et al., 2012; Magee et al., 2012), including whether
CSCs are tumor-initiating or metastasis-initiating cells (Kelly et al.,
2007; Adams and Strasser, 2008; Fillmore and Kuperwasser, 2008).
The reasons for the extended scientific discussion are many and
are outlined in a comprehensive review from the Morrison lab
(Magee et al., 2012).

Perhaps some of the confusion and seemingly contradictory
findings surrounding CSCs will be allayed by the growing evi-
dence demonstrating that CSCs are not a single population of cells
identified by one specific molecular signature. Rather, while all

CSCs possess general stem cell properties, CSCs are actually com-
prised of heterogeneous subpopulations with multiple molecular
and functional phenotypes that are generated through different
pathways (Liu et al., 2012; Magee et al., 2012). It is becoming
abundantly clear for breast cancer that such heterogeneity exists
in its CSCs. Breast CSCs that are CD44+/CD24− (the simpli-
fied breast CSC phenotype) are the result of cytokine-induced
EMT (Mani et al., 2008; Morel et al., 2008; Blick et al., 2010; Liu
et al., 2012), a process by which cells lose epithelial characteristics
(E-cadherin expression, cell–cell contacts, polarity) and become
more mesenchymal (N-cadherin expression, mesenchymal mor-
phology, enhanced migration abilities; Onder et al., 2008; Zeisberg
and Neilson, 2009). Many of the properties EMT confers are nor-
mally helpful to development (Kalluri and Weinberg, 2009), but
EMT can also contribute to cancer progression in adult tissue
(Mani et al., 2008; Onder et al., 2008). Often, cancer cells at the
invasive front of a primary tumor have a mesenchymal pheno-
type (Kalluri and Weinberg, 2009). Interestingly, in breast cancer
patients with metastases, CTCs have been found to express markers
of EMT in addition to stem cell traits (Aktas et al., 2009; Bon-
nomet et al., 2010; Kallergi et al., 2011). It is important to note
that EMT is reversible, such that cells can undergo mesenchymal-
to-epithelial transition (MET). The Wicha group reported that
CSCs can exist in an MET state (Liu et al., 2012) as well as an EMT
state previously found by the Weinberg group (Mani et al., 2008;
Liu et al., 2012). MET CSCs actively self-renew and express alde-
hyde dehydrogenase (ALDH, a marker independently identified as
a CSC indicator in several types of cancer (Ginestier et al., 2007;
Clay et al., 2010; Silva et al., 2011; Kryczek et al., 2012), epithelial
cell adhesion molecule (EpCAM, the same molecule that forms
the basis for the capture of CTCs by CellSearch and the CTC-
and HB-chips), and CD49f (α6 integrin subunit) in contrast to
quiescent yet invasive CD44+/CD24−/EpCAM−/CD49f+ EMT
CSCs (Liu et al., 2012). Given the interconversions between CSC
states, which are regulated by microRNAs (miRNAs), it is not
surprising that there exists a subpopulation of CD44+/CD24−
and ALDH+cells (Liu et al., 2012). However, studies linking CSCs
with properties facilitating CTC lodgment at sites of metas-
tasis (i.e., selectin ligands and cell mechanical properties) are
lacking.

PUTTING IT ALL TOGETHER: HYPOTHESIZED BREAST
CANCER MODELS LINKING REGULATION OF CSCs,
CTCs, AND E-SELECTIN LIGANDS
Arguably, CSCs and CTCs from breast cancer are the most
well-studied among all cancers, thereby easing efforts aimed at
uncovering crosstalk between CSC regulatory pathways, CTC
characteristics, and expression of functional selectin ligands. Such
investigations may aid in diagnosing breast cancer at an early
stage, when it is largely considered curable, or assist in identi-
fying new therapeutic targets or treatment modalities for those
women diagnosed at the metastatic stage, for whom the 5-year
survival rate is ∼20% (DeSantis et al., 2011). Most commonly,
breast cancer metastases are found in the lungs and bone mar-
row (Moore, 2001; Minn et al., 2005; Balic et al., 2006; Riethdorf
and Pantel, 2010), exhibiting a tropism not explainable by cir-
culation pattern alone (Minn et al., 2005; Talmadge and Fidler,
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2010). Recently, it has been reported that disseminated breast
cancer cells in human bone marrow are largely CD44+/CD24−
(Abraham et al., 2005; Balic et al., 2006), corresponding to EMT
CSCs. These CD44+/CD24− are also resistant to radiotherapy and
chemotherapy (Diehn and Clarke, 2006; Phillips et al., 2006; Reim
et al., 2009). It is therefore necessary to understand the reasons
for CD44+/CD24− breast cancer cells in bone: whether CTCs
are CD44+/CD24− CSCs that preferentially migrate and establish
metastases, or if non-CD44+/CD24− CTCs are induced to the
CD44+/CD24− phenotype in the bone marrow.

As mentioned previously, E-selectin is constitutively expressed
on bone marrow endothelium (Keelan et al., 1994; Schweitzer
et al., 1996), and breast cancer cells have been shown to express
E-selectin ligands on their surface (Tozeren et al., 1995; Narita
et al., 1996; Zen et al., 2008; Julien et al., 2011; Shirure et al., 2011,
2012). Previous studies have also demonstrated the E-selectin-
dependence of binding interactions between commercially avail-
able breast cancer cell lines and human umbilical vein endothelial
cells (HUVECs; Giavazzi et al., 1993; Narita et al., 1996; Julien
et al., 2011; Shirure et al., 2011, 2012). As the expression levels
of the minimal selectin-binding epitopes sLeX and sLeA increase
progressively from normal tissue to early stage breast cancer to
metastatic disease (Renkonen et al., 1997), it may be hypothe-
sized that CTCs retain expression of selectin ligands that were
generated in the primary site, then upregulate such ligands dur-
ing transit to the metastatic site. Altogether, these findings imply
that E-selectin and its ligands are likely to comprise important
elements of breast cancer metastasis in vivo. Since breast cancer
cells at the invasive front of a primary tumor tend to be mes-
enchymal (Kalluri and Weinberg, 2009) and breast CTCs have been

found to express markers of EMT in addition to stem cell traits
(Aktas et al., 2009; Bonnomet et al., 2010), it would seem a logical
extension of the hypothesis that E-selectin ligands are upregulated
with EMT and the corresponding CD44+/CD24− CSC pheno-
type. However, our studies with human breast cancer cell lines
revealed surprising results: non-CD44+/CD24− cells expressed
much greater E-selectin ligand activity than CD44+/CD24− cells
(Figure 3 and Table 1; Shirure et al., 2011, 2012; manuscript
in preparation). These findings imply that lower expression of
E-selectin ligands correlates with CD44+/CD24− breast CSCs aris-
ing from EMT. Notably, the bone marrow microenvironment is
enriched in TGF-β, a cytokine that is well-known to induce EMT
(Brown et al., 2004; Lee et al., 2008; Mani et al., 2008; Lenferink
et al., 2010), and production of TGF-β by microenvironment stro-
mal cells may be responsible for CD44+/CD24− breast cancer
cells in bone (Abraham et al., 2005; Balic et al., 2006). Thus, it
may be speculated that soluble TGF-β decreases the expression of
E-selectin ligands either before or during CTC engagement with
bone marrow endothelium (Figure 4), thus throwing into doubt
the relevance of E-selectin ligands on breast CTCs in establish-
ing bone metastases. Studies in which EMT is induced in breast
cancer cells need to be performed, with coordinated monitor-
ing of glycosylation machinery, core E-selectin ligand protein and
lipid expression, E-selectin ligand activity under flow conditions,
and EMT and CSC markers, in order to verify or refute mecha-
nistic links between functional E-selectin ligand expression and
transition/maintenance of CD44+/CD24− CSCs. Ultimately, it
may be found that downregulation of E-selectin ligands is not
dependent on EMT per se, since E-selectin ligand activity fails to
decrease consistently from the least mesenchymal luminal to the

FIGURE 3 | Expression of CD44 and CD24 on breast cancer cell lines.

Flow cytometric analysis of cell surface expression on human breast cancer
cells from the American Type Culture Collection (ATCC). Cells were
simultaneously stained with CD44-FITC and CD24-PE mAbs and analyzed on
a BD FACSort cytometer/sorter. Quadrants were set using appropriate FITC or

PE-labeled isotype controls. The upper left quadrant represents
CD44−/CD24+ cells, upper right quadrant represents CD24+/CD24+, the
lower right quadrant represents CD44+/CD24− cells (i.e., phenotype of
purported breast cancer stem cells), and lower left quadrant represents
CD44−/CD24−. Data are representative of n = 6 independent experiments.
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FIGURE 4 |TGF-β and SDF-1 can alter CTC phenotype and behavior in the

bone. The cytokine TGF-β and the chemokine SDF-1 are constitutively
expressed in the bone microenvironment and control pathways related to cell

adhesion and homing, EMT, MET, cell cycle, and tumorigenicity. It is currently
unknown if inducible EMT or MET affects cancer cell expression of functional
E-selectin ligands and thus CTC capacity to metastasize.

somewhat mesenchymal basal A to the most mesenchymal basal
B cells (Table 1). Instead, persistent suppression of E-selectin
ligands in CD44+/CD24− CSCs may be controlled by EMT
pathways.

Alternatively, the MET state of CSCs (indicated by ALDH
expression but not necessarily CD44+/CD24− cells; Liu et al.,
2012) may regulate E-selectin ligand expression or function. Inter-
estingly, a recent study of all cell lines in Table 1 except Hs578T
revealed that BT-20 and MDA-MB-468 cells, both CD44+/CD24+
cell lines of the basal A type with relatively high E-selectin ligand

Table 1 | Expression of CD44, CD24, and E-selectin ligands on human

breast cancer cell lines.

Cell line CD44/CD24 Subtype E-selectin ligand

status activity

MDA-MB-231 +/low Basal B +
Hs578T +/low Basal B +
ZR-75-1 low/+ Luminal +++
T-47D low/+ Luminal ++
MCF-7 +/+ Luminal +++
MDA-MB-468 +/+ Basal A +++
BT-20 +/+ Basal A ++++

Column 1: Human breast cancer cell lines from ATCC. Column 2: Flow cytometric
analysis of cell surface expression on breast cancer cells. Key: − is <2% positive
(i.e., same intensity as isotype control antibody), low is 2–10% positive, moderate
is 10–80% positive, + is >80% positive. Column 3: Breast cancer cell subtype as
reported by Neve et al. (2006). Column 4: E-selectin ligand activity was assessed
in the parallel plate flow chamber (Shirure et al., 2011, 2012; and manuscript in
preparation). Key: +, upper limit of E-selectin-dependent tethering (i.e., recruit-
ment from fluid flow) to IL-1β-stimulated HUVECs typically observed at wall shear
stress of 0.5 dyn/cm2, beyond which no tethering was observed; ++, upper limit
of tethering observed at wall shear stress of 0.8 dyn/cm2; +++, upper limit of
tethering observed at wall shear stress of 1.0 dyn/cm2; ++++, upper limit of
tethering observed at wall shear stress of 2.0 dyn/cm2. Data are representative
of n > 5 independent experiments.

activity (Figure 3 and Table 1), possessed the highest percent-
age of cells with ALDH activity (Deng et al., 2010). CSCs in
the MET state may thus maintain or potentially upregulate E-
selectin ligands, in contrast to CSCs in EMT. This notion merits
further investigation, in that CTCs from breast cancer patients
can simultaneously express mesenchymal and stem cell mark-
ers in addition to epithelial markers, and not just EMT markers
(Aktas et al., 2009; Bonnomet et al., 2010; Armstrong et al., 2011;
Kallergi et al., 2011). Moreover, the bone resident chemokine stro-
mal derived factor-1 (SDF-1, Figure 4), known to mediate HSC
homing and breast cancer migration through ligation of CXCR4,
has been shown to regulate miRNAs in breast cancer cells and
stromal cells that control breast cancer cell tumorigenicity and
quiescence (Lim et al., 2011; Rhodes et al., 2011a,b). It may only
be a matter of time until it is shown that SDF-1 also regulates
miRNAs associated with EMT-MET phenotypes of CSCs. Thus,
bone microenvironment expression of E-selectin, TGF-β, and
SDF-1 may beckon a certain type of CTC to establish a metastatic
colony: a circulating CSC already equipped to infiltrate the bone
parenchyma, or else another cell, CSC or otherwise, that will
undergo EMT or MET as needed to attach to endothelium, invade,
and grow.

Epithelial-to-mesenchymal transition and MET are, by their
very names, dynamic transitional regulators of cellular pheno-
types and behaviors. Thus far, we have proposed that these
pathways modulate E-selectin ligands on breast CTCs and CSCs.
However, it is valid to explore the potential roles of E-selectin
and its ligands as regulators of EMT and MET. The proper E-
selectin ligands expressed at the right time in the right place (e.g.,
HCELL, Mac-2bp, and/or glycolipids; Burdick et al., 2006; Shirure
et al., 2011, 2012; manuscript in preparation) on a breast CTC
in the vasculature at the metastatic site) could facilitate EMT- or
MET-generated/maintained CSCs in response to microenviron-
mental cues. E-selectin-primed cells may then effectively establish
metastatic colonies. If a CTC encounters a small capillary rather
than a larger venule, another possibility arises. Assuming the CTC
can sufficiently deform to enter the capillary, which can be tested
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in vitro in a micropipette assay (Figure 2), transit through the
capillary with or without E-selectin ligand/E-selectin engagement
could also effectively modulate CTC and CSC phenotype. For
now, these complex, highly speculative models remain in the the-
oretical realm, but as separate discoveries are made about CTCs,
CSCs, cancer cell mechanical properties, and selectin ligands, com-
prehensive investigations linking these subjects will become less
daunting and perhaps even routine.

Thus, several intriguing theories proposing crosstalk among
biochemical and biophysical factors and selectin ligands on CTCs
remain to be tested, and are the subject of ongoing collaborative
studies in our laboratories. It is anticipated that the results of these
investigations will contribute to the fundamental understanding
of the cross-regulation of functional selectin ligands with trans-
formative molecular pathways in breast cancer progression, as well
as other cancers for which selectins and their ligands are suspected
promoters of metastasis.

BEYOND THE HYPOTHESIZED MODEL
Although this article has been focused on presenting the poten-
tial relationships between CSCs, CTCs, and E-selectin ligands
in hematogenous distant metastasis, the pathways mediating
metastasis in total are far more extensive. Restricting the dis-
cussion to the selectins, CTCs may engage P-selectin expressed
on blood vascular endothelial cells (Ludwig et al., 2004; Laubli
and Borsig, 2010; St Hill, 2012), which is arguably less under-
stood than endothelial E-selectin-mediated pathways. CTCs in
the bloodstream may also form multicellular aggregates with
platelets and/or leukocytes (Borsig et al., 2002), and the pres-
ence of these other cells can alter the manner in which CTCs
interact with the vascular endothelium (Kim et al., 1999; Bur-
dick and Konstantopoulos, 2004; Liang and Dong, 2008; Gong
et al., 2012). The initial formation of heterotypic aggregates pre-
sumably occurs through engagement of P-selectin on platelets or
L-selectin on leukocytes with their respective ligands on CTCs
(Mannori et al., 1995; Jadhav et al., 2001; McCarty et al., 2002),
such as the aforementioned HCELL (Hanley et al., 2005, 2006;
Burdick et al., 2006; Barthel et al., 2009), sulfated glycosamino-
glycans or proteoglycans (Ma and Geng, 2002; Monzavi-Karbassi
et al., 2007; Cooney et al., 2011), or sulfatides (Needham and
Schnaar, 1993; Simonis et al., 2010). Perhaps multicellular aggre-
gation induces CSC phenotype(s). This theory warrants further
investigation, given the discovery in HB-chips of CTC aggregates
indicating prior CTC–leukocyte engagement (Stott et al., 2010),
and a recent publication revealing that platelet–cancer cell contact
can induce EMT in breast and colon cancer cells (Labelle et al.,
2011). Alternatively, completely novel mechanisms of CTC–CSC
regulation may be encountered in lymph node metastasis, consid-
ering the vastly different biochemical and biophysical environment

of the lymphatic system compared to the blood vasculature
(Lund and Swartz, 2010; Swartz and Lund, 2012). Thus, other
compelling models of CTC–CSC regulation may be proposed
and tested, which could lead to new ways to inhibit cancer
metastasis.

CONCLUSION
A full understanding of how a cancer cell progresses from primary
tumor cell to CTC to disseminated tumor cell remains elusive.
Although EMT, MET, and stem cell pathways are clearly relevant,
their effects relative to selectin ligands (and vice versa) on CTCs
remain to be determined. On their directed journey to establish
new metastatic colonies, CTCs are subject to the influences of a
bevy of biochemical and biophysical stressors that may change
their phenotype at specific times and at specific locations. CTCs
captured from the blood of cancer patients by CellSearch, CTC-
or HB-chips, AdnaTest, and other devices reflect only a single
temporal data point from which inferences about disease status,
treatment strategies, and survival predictions are extrapolated.
While this information from blood biopsies is extraordinarily
important, some caution is warranted. Molecular markers and
phenotypes serving as the basis of capture in these assays have
limitations, and information derived from these assays may have
further shortcomings in light of CTC dynamism. Therefore, novel
CTC capture techniques and therapeutic strategies currently in
development must respect the changing epithelial, mesenchymal,
CSC-associated, etc., markers and functional phenotypes (e.g.,
expression of selectin ligands) to be truly meaningful for patients.
Ultimately, collective efforts to elucidate the molecular descrip-
tors of CTCs, including selectin ligands and their regulators such
as CSC generation/maintenance pathways, will greatly improve
the clinical utility of CTCs as diagnostics, prognostics, therapeutic
indicators, or therapeutic targets.
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