Suppl. Table 1. Notations and emergent properties associated with each model type.

	Notation	Emergent properties
Α	The generalised Lotka-Volterra model is characterised by a set of interacting populations/species, B_i	Community
	(orange bug) where $i=1\dots N$. Each population's intrinsic growth rate, r_i (dark blue arrow), can be	resilience, co-
	impacted by other populations via corresponding interaction coefficients as defined in matrix $lpha_{ij}$ (maroon	existence
	arrow). Besides antagonistic interactions, each population is also limited by its intrinsic maintenance/death	
	rate, m_i (bright red arrow).	
В	The generalised MacArthur Consumer-Resource model is characterised by populations and their direct	Community
	interactions with resources/cross-fed metabolites, R_{α} (purple hexagons) where $\alpha=1\dots M$. The growth of	resilience,
	each population is not only defined by intrinsic growth (or: biomass conversion) rates, but also by a	coexistence,
	resource utilisation matrix, $C_{i\alpha}$ (rate at which each species uptakes each resource), and a resource quality	phenotypic range
	function, $\Delta w_{i\alpha}$, captures the amount of biomass each species produces per unit of each resource	(i.e., substrate
	consumed while maintaining energy balance (as described in [88]). To include secretion of metabolic by-	utilisation)
	products, and therefore the possibility of cross-feeding, the model includes a stoichiometric matrix, $D_{\beta\alpha}^l$	
	(green dashed arrow), which defines the units of metabolites β (yellow circles) secreted by species i per	
	unit resource α consumed.	Camanaita
С	Trait-based models are characterised by a set of species interacting with a (set of) environmental factor(s), which influences e.g., nutrient uptake rates. (Initial) nutrient (and species) distributions can be considered	Community resilience, phenotypic
	uniform, however, there is environmental variability along at least one dimension, producing variable	range, spatial
	species distributions - mediated by defined trade-offs - along the modelled dimension(s). In the given	structure
	example, the influence of the environmental factor, T (gradient along the x-axis), on growth rates is	Structure
	represented like an Arrhenius-like equation, where sensitivity to T is captured by a species-specific	
	sensitivity coefficient, S_i (as in Grigoratou et al., [104]). In this example, the trade-off is intrinsic maximum	
	growth rate versus sensitivity. Strategies produced by this trade-off could indirectly depend on modelled	
	resources (e.g., a higher maximum growth rate at the expense of higher sensitivity only 'paying off' if the	
	resource for growth, R_{α} , is available beyond its half-saturation constant, $K_{i\alpha}$). In the demonstrated case,	
	the resource is fixed, and sensitivity (the trait) to the environmental factor, T , needs to be defined a priori.	
D	Individual-based models are defined by individual agents (e.g., cells) interacting with local environment via	Community
	an a priori defined set of rules. In the given example, the model is defined by two spatial dimensions (x, y) ,	resilience, co-
	where a cell, <i>i</i> , only gets to consume and grow (no longer density-dependent) on resources present within	existence, phenotypic
	its current grid cell, with each grid cell allowing a maximum of one cell. As it grows, the cell secretes	range, spatial
	metabolic by-products, R_{β} (yellow circles), into its immediate environment (i.e., current grid cell). These	structure
	subcellular agents can disperse across the space via diffusion. Diffusion operates on a different timescale	
	than cellular growth and migration (with $\delta t \ll dt$), and hence, requires separation of timescales when simulated. Cells enter and exit grid cells via a set of rules or probabilities, e.g., a new daughter cell will	
	occupy any of its mother cell's vacant neighbouring grid cells by some probability, P. Cell migration	
	probabilities can be skewed by availability of certain nutrients, allowing for chemotaxis. Cell death events	
	can be made random (e.g., via Moran process), allowing freeing up of grid cells. In the given example, grid	
	cells are only variable by their occupation (which is binary) and concentrations of subcellular agents, but	
	they can also be made environmentally heterogeneous by including variables such as temperature and pH	
	(unless individual protons are modelled explicitly as well).	
Е	Genome-scale metabolic models are defined by mathematical representations of genome-scale metabolic	Community co-
	reconstructions. In the given example, S_i is a stoichiometric matrix for species i , where its elements are	existence, phenotypic
	stoichiometric coefficients for the corresponding metabolites (rows) and reactions (columns). Flux Balance	range (i.e., niche
	Analysis [157] then provides the in- and output fluxes (and can be used to estimate growth rates). Unlike	expansion through
	previous model types, R_{α} not only comprises extracellular (cross-fed) resources, but also intra-cellular	metabolite secretion
	metabolites, allowing for mechanistic understandings of, e.g., consequences of genetic changes (as	and utilisation of
	opposed to <i>a priori</i> definitions). These models can later be used to inform parameters for individual- or	resources inaccessible
	trait-based models, or direct community flux simulations [49].	to individual
		members), spatial
		structure

Suppl. Table 2. Ov	Suppl. Table 2. Overview over emergent properties, benefits, and limitations for each discussed model type.			
Emergent properties	Model benefits	Model limitations		
Persistent coexistence diversity Resilience & (Multi)stability	simplicity & generality adheres to laws of mass action can model arbitrarily many taxa high-dimensional Lotka—Volterra systems allow for a large variety of different qualitative behaviours such as limit cycles, chaos or attractors (Stein et al., 2013) parameters can be inferred from co-occurrence data intuitive interpretation of parameters equilibrium conditions and their stability can be attained analytically explicitly describes population dynamics	interaction coefficients fixed assumes homogenous/well mixed environment a priori assumptions interaction types generating predictions from generalised Lotka-Volterra with many species requires fitting a large number of parameter values from empirical data, i.e., prone to overfitting missing explicit indirect interactions assumes only pairwise interactions linear intrinsic growth rates lacks biochemical detail lacks stochasticity no explicit energetics lacks evolutionary process		
Resilience Persistent co-existence & diversity Community composition self- organisation Substrate utilisation	simplicity & generality adheres to laws of mass action can model arbitrarily many taxa can be adapted to model cross-feeding detailed quantitative specification of way how resource use differs among species allows for the use of different timescales of resources and consumers intuitive interpretation of parameters equilibrium conditions and their stability can be attained analytically explicitly describes population dynamics permits arbitrary complexity of resource use no a priori assumptions about species interactions	assumes no interactions between the resources themselves. assumes homogenous/well mixed environment assumes species cannot switch between resources lacks biochemical detail lacks stochasticity lacks evolutionary process excludes toxins no explicit energetics		
Phenotypic range Persistent coexistence Resilience (Large-scale) patterns	can include ecological trade-offs no a priori assumptions about species interactions no a priori description of functional groups required can model arbitrarily many taxa and traits can model temporal and/or spatial heterogeneity robustness predictions community dynamics and function (Lajoie & Kembel, 2019) can include kinetics and diffusion	needs a priori knowledge of: relevant environmental variables, trait assignment, trade-offs between traits lacks complete evolutionary process no explicit energetics lacks inclusion of cross-feeding assumes no interactions between the resources or abiotic factors themselves. underrepresentation of species interactions (other than predation) can be computationally expensive		
Spatial patterns & structures Resilience to (local) perturbations Persistent co-existence & Community diversity Complexity of phenotypes in community	 can model individual cells → increased resolution cells can respond to changes in local environment explicit inclusion of physical (thermodynamics), chemical and mechanical laws possible explicit inclusion of naturally stochastic processes (e.g., cell-cell interactions) is possible inclusion of metabolites and other compounds possible & these resources can be made to interact higher-order interactions possible growth and death rates can be made cell-specific heterogeneity in (local) environments can include biochemical detail can predict concentration gradients of hard-to-detect metabolites/toxins/signals modular: permitting the addition of further biological and physical processes (Jayathilake et al., 2017) 	high computational requirements robustness results unclear parameters not intuitive large parameter space & prone to overfitting equilibrium conditions and their stability cannot be attained analytically a priori assumptions cell 'rules' no universality to methods in Individual-based model		