
1Scientific Reports | 6:24676 | DOI: 10.1038/srep24676

www.nature.com/scientificreports

Predicting the epidemic threshold 
of the susceptible-infected-
recovered model
Wei Wang1,2,3, Quan-Hui Liu1,2, Lin-Feng Zhong1,2, Ming Tang1,2, Hui Gao1,2 & 
H. Eugene Stanley3

Researchers have developed several theoretical methods for predicting epidemic thresholds, including 
the mean-field like (MFL) method, the quenched mean-field (QMF) method, and the dynamical message 
passing (DMP) method. When these methods are applied to predict epidemic threshold they often 
produce differing results and their relative levels of accuracy are still unknown. We systematically 
analyze these two issues—relationships among differing results and levels of accuracy—by studying the 
susceptible-infected-recovered (SIR) model on uncorrelated configuration networks and a group of 56 
real-world networks. In uncorrelated configuration networks the MFL and DMP methods yield identical 
predictions that are larger and more accurate than the prediction generated by the QMF method. As for 
the 56 real-world networks, the epidemic threshold obtained by the DMP method is more likely to reach 
the accurate epidemic threshold because it incorporates full network topology information and some 
dynamical correlations. We find that in most of the networks with positive degree-degree correlations, 
an eigenvector localized on the high k-core nodes, or a high level of clustering, the epidemic threshold 
predicted by the MFL method, which uses the degree distribution as the only input information, 
performs better than the other two methods.

Because many real-world phenomena incorporate spreading dynamics on complex networks, the topic has 
received much attention over the last decade1,2. Notable examples include the spread of sexually-transmitted 
diseases through contact networks3, the spread of malware on wireless networks4, and the spread of computer 
viruses through email networks5. In each case the spreading dynamics are strongly affected by network topol-
ogy, and this complicates the task of understanding their behavior. Existing studies of spreading dynamics have 
focused on both theoretical aspects (e.g., nonequilibrium critical phenomena6,7) and practical issues (e.g., propos-
ing efficient immunization strategies8,9). Researchers have focused on developing ways of accurately identifying 
epidemic thresholds because of their important ramifications in many real-world scenarios. Theoretically speak-
ing, an epidemic threshold characterizes the critical condition above which a global epidemic occurs7. Being able 
to predict an epidemic threshold allows us to determine the critical exponents10 and Griffiths effects11, which are 
important in research on nonequilibrium phenomena6. Practically speaking, quantifying an epidemic threshold 
allows us to determine the effectiveness of a given immunization strategy8. A proposed immunization strategy is 
effective if it increases the epidemic threshold. In addition, knowing the epidemic threshold enables us to more 
accurately determine the optimum source node12.

Researchers have put much effort into developing a theory for quantifying the thresholds in epidemic spread-
ing models such as the susceptible-infected-recovered (SIR) model1. The best-known theoretical methods fall 
into three categories based on the topology information that they use. The first is the mean-field like (MFL) 
approach, which uses the degree distribution as the sole input parameter. This category includes the hetero-
geneous mean-field theory7,13, the percolation theory14, the edge-based compartmental approach15–18, and the 
pairwise approximation method19,20. The second type is the quenched mean-field (QMF) method that describes 
network topology in terms of the adjacent matrix. Examples include the discrete-time Markov chain21 and the 
N-intertwined approach22. The third type is the dynamical message passing (DMP) method23 that describes 
network topology in terms of the non-backtracking matrix. This approach is accurate in the case of tree-like 

1Web Sciences Center, University of Electronic Science and Technology of China, Chengdu 610054, China. 2Big data 
research center, University of Electronic Science and Technology of China, Chengdu 610054, China. 3Center for 
Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215, USA. Correspondence 
and requests for materials should be addressed to M.T. (email: tangminghan007@gmail.com)

received: 21 December 2015

accepted: 31 March 2016

Published: 19 April 2016

OPEN

mailto:tangminghan007@gmail.com


www.nature.com/scientificreports/

2Scientific Reports | 6:24676 | DOI: 10.1038/srep24676

networks. Researchers have used these three approaches to uncover the macroscopic statistical characteristics 
(e.g., degree7 and weight distributions17), mesoscale structure (e.g., degree-degree correlations24, clustering25 and 
community26), and microcosmic characteristics (e.g., node degree27 and edge weight17) that strongly affect the 
epidemic threshold. For example, uncorrelated or correlated networks with a strongly heterogeneous degree dis-
tribution can, under certain conditions, reduce or even eliminate the epidemic threshold7,24.

The theoretical approaches always assume (i) that an epidemic can spread on a large, sparse network7,14,16,28, 
(ii) that dynamical correlations among the neighbors do not exist7, and (iii) that all the nodes or edges within a 
given class are statistically equivalent7,17. These three methods also usually focus on a class of networks, such as 
uncorrelated networks, clustering networks, and community networks. In any given network, the three theo-
retical methods usually predict different epidemic thresholds29. To determine the relationships among the three 
differing outcomes of the MFL method, the QMF method, and the DMP method and to determine which more 
closely describes real-world epidemic thresholds, we use a comprehensive study of the SIR model on uncorre-
lated configuration networks and of a group of 56 real-world networks. We find that the MFL and DMP methods 
predict the same epidemic threshold value for uncorrelated configuration networks and that this value is larger 
and more accurate than the value predicted by the QMF method. The relationships among the three theoretical 
predictions for real-world networks, however, remain unclear. In the 56 real-world networks studied, the DMP 
method performs the best in most cases because it considers the full topology and many of the dynamical cor-
relations among the states of the neighbors, but due to the localized eigenvector of the adjacent matrix the QMF 
method often deviates from accurate epidemic threshold values. For networks with an eigenvector localized on 
the high k-core nodes, positive degree-degree correlations, or high clustering, the prediction by MFL method is 
more likely to be accurate than the predictions from other two methods, even though the MFL method uses the 
degree distribution as the sole input parameter. For networks with an eigenvector localized on the hubs, negative 
degree-degree correlations, or low clustering, the DMP method performs the best in most occasions. Finally, we 
note that the performances of the three predictions do not exhibit an obvious regularity versus the modularity, 
and in most cases the DMP method performs better than other two.

Results
Theoretical predictions of epidemic threshold.  In the SIR pattern of the spread of disease through a 
network, at any given time each node is either susceptible, infected, or recovered. A susceptible node does not 
transmit the disease. Infected nodes contract the disease and spread it to their neighbors. A recovered node has 
returned to health and no longer spreads the disease. The synchronous updating method30 is applied to renew the 
states of nodes. To initiate the epidemic, we randomly select a “seed” node and designate all other nodes suscepti-
ble. At each time step, infected nodes transmit the disease to susceptible neighbors with a probability β. Infected 
nodes can also recover with a probability γ. The spreading terminates when all infected nodes have recovered. The 
spreading dynamics can be characterized by the effective spreading rate λ =  β/γ. More details are shown in the 
Supporting Information. When λ is below the epidemic threshold λc (i.e., λ ≤  λc), the disease spreads locally (i.e., 
only a tiny fraction of nodes transmit the disease). Epidemics can occur when λ >  λc (i.e., when a finite fraction 
of nodes transmit the disease).

The mean-field like (MFL) method, the quenched mean-field (QMF) method, and the dynamical message 
passing (DMP) method are commonly-used theoretical methods of predicting an epidemic threshold. In this 
section we clarify the relationships among these epidemic thresholds predicted by the three theoretical methods.

The mean-field like (MFL) method incorporates the heterogeneous mean-field theory, percolation theory, 
the edge-based compartmental approach, and the pairwise approximation method. Here the epidemic threshold 
is predicted by using only the degree distribution, and it is assumed that (i) all the nodes and edges in a given 
class are statistically equivalent, (ii) the states of nodes among neighbors are independent, and (iii) the network 
size is infinite. Using the degree distribution P(k) as the only input parameter, the theoretical epidemic threshold 
prediction using the MFL method is

λ =
−

k
k k

,
(1)

c
MFL

2

where 〈 k〉  and 〈 k2〉  are the first and second moments of the degree distribution, respectively. Although λc
MFL is a 

good predictor of the epidemic threshold in uncorrelated networks, the prediction may fail in real-world net-
works because of their complex structure (e.g., degree-degree correlations, clustering, and community) and the 
strong dynamical correlations among the states of neighbors27,31.

The quenched mean-field (QMF) method21,32,33 takes into account the complete network structure by using 
the adjacent matrix A. This distinguishes it from the MFL method, which simply uses the degree distribu-
tion. The adjacent matrix A is also used to describe network topology by the discrete-time Markov chain21, the 
N-intertwined method22, and other similar methods, and thus they fall into the same class as the QMF method. 
The QMF method is unable to capture the dynamical correlations among the states of neighbors and uses only 
the correlation between the theoretical epidemic threshold and the leading eigenvalue of the adjacent matrix to 
predict the epidemic threshold, i.e.,

λ =
Λ
1 ,

(2)c
A

QMF

where the leading eigenvalue of the adjacent matrix is22
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where v is a column vector with N elements, and N is the network size. Note that the epidemic threshold predicted 
by Eq. (2) is the same with the lower bound of epidemic threshold of SIS model33. Since the epidemic threshold of 
SIS model is smaller than that of SIR model34, we know that λc

QMF is precise a lower bound of epidemic threshold 
of SIR model.

The dynamical message passing (DMP) method was recently developed and used to study nonreversi-
ble epidemic spreading dynamics in an SIR modeled finite-sized network23,28,35. The DMP method uses the 
non-backtracking matrix to determine the complete network structure. This method can both describe the com-
plete network structure and capture some of the dynamical correlations among the states of neighbors that are 
neglected in the MFL and QMF methods. In large sparse networks the DMP method provides a good estimation 
of the epidemic threshold, i.e.,

λ =
Λ
1 ,

(4)c
M

DMP

where
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is the leading eigenvalue of the non-backtracking matrix36–39

= −( )M A D1
1 0

,
(6)

and 1 is a N ×  N unit matrix, D is the diagonal matrix with the vertex degrees along its diagonal, and 0 is a N ×  N 
null matrix. From Eqs (1, 2 and 4), we know that the predicted epidemic threshold of SIR model has the same for-
mula with the bond percolation model36. Since the SIR spreading is a dynamical evolution process, the interplay 
between complex structures and dynamical correlations may result in a distinct accurate critical point from the 
bond percolation model40,41. Therefore, how the above three classical theoretical methods perform in predicting 
the epidemic threshold of SIR model in complex networks is worth pursuing.

The three theoretical predictions of epidemic threshold are closely correlated. In any given network they dis-
tinct, e.g., λc

QMF is less than 〈 k〉 /〈 k2〉 12. To determine other relationships among the three theoretical thresholds, 
we assume that κ is a eigenvalue of non-backtracking matrix M and that =  w w w( , )T1 2  is the corresponding 
eigenvector of κ, where w1 and w2 are the first and last N elements of vector w, respectively. Using Eq. (6), the 
eigenvalue problem is written

κ
κ
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Multiplying the left vector =� �u (1, , 1) on the first line of (7) and combining the second line of (7) yields

κ = −
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1  and di is the degree of node i. In uncorrelated networks the nonbacktracking centrality 
of a node is proportional to its degree37, i.e., ~w di1i

. Here the theoretical prediction λc
DMP using the DMP 

method is the same as λc
MFL using the MFL method.

To examine the eigenvalue relationships between the adjacent matrix and non-backtracking matrix, we insert 
the second equation of (7) into the first equation and obtain

κ κ+ − = .
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Multiplying w T
2  on both sides of Eq. (9) and dividing  w wT

2 2, we get
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Using matrix theory22 we know that the eigenvalue  and its corresponding eigenvector 


h of a matrix   satisfy 
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. We assume that ξ1 and ξ2 are the eigenvalue of A and 1 −  D, respectively, i.e., ξ =
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. Thus Eq. (10) can be written as
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Because the minimum eigenvalue of 1 −  D is 1 −  kmax, we find that

κ κξ≤ + − .k1 (12)
2

1 max

Rewriting Eq. (12) we get

κ
κ

ξ+
−

≤ .
k 1

(13)
max

1

Note that κ and ξ1 are the eigenvalues of matrixes M and A respectively, and we get

λ λ≥ . (14)c c
DMP QMF

With similar arguments in ref. 42 and combining Eq. (14), we know that λc
DMP is a tight lower bound of the 

accurate epidemic threshold λc for local tree-like networks. For real-world networks, the basic assumption (i.e., 
local tree-like) can not always be satisfied, thus, λc

DMP is possible larger than λc.
Many real-world networks have a heterogeneous degree distribution, e.g., a power-law degree distribution 

ν−~P k k( ) D, where νD is the degree exponent. In uncorrelated scale-free networks, λc
MFL vanishes in the thermo-

dynamic limit when νD <  3 because 〈 k2〉  diverges. When νD >  3, λc
MFL is a finite value. Using the QMF method, 

the epidemic threshold λc
QMF is determined by the maximum degree kmax. When the degree exponent νD >  2.5, 

Figure 1.  Predicting epidemic threshold for uncorrelated configuration networks under different network 
sizes. Theoretical predictions of λc

MFL (black solid lines), λc
QMF (red dashed lines), λc

DMP (blue dash-dotted 
lines) and numerical prediction (gray squares) versus network size N for degree exponent νD =  2.1 (a) and 
νD =  3.5 (b). The absolute errors between λc and λc

MFL (black solid lines), λc
QMF (red dashed lines) and λc

DMP 
(blue dash-dotted lines) versus N for νD =  2.1 (c) and νD =  3.5 (d).
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and λ ∝ k1/c
QMF

max. When νD <  2.5, we have λ ∝ k k/c
QMF 2 43, which indicates that λ λ<c c

QMF MFL. Note that 
λ = 〈 〉 〈 〉 − 〈 〉k k k/( )c

DMP 2  for uncorrelated networks38 is the same with λc
MFL. According to Eq. (14), λc

DMP is 
always larger than λc

QMF. Unfortunately, the complex topology of the real-world networks makes the relationships 
among the three types of prediction unclear.

Simulation results.  Increasing the amount of network topology information utilized in any predictive 
method, the intuitional understanding tells us that the better performance of the method. Using the assumptions 
listed in previous section, we expect the DMP method to outperform the QMF method and the QMF method 
to outperform the MFL method. We next evaluate the performance of the three types of method using a large 
number on SIR studies of (i) uncorrelated configuration networks, and (ii) 56 real-world networks. We employ 
the estimators supplied in previous section to determine the theoretical epidemic threshold, and use the relative 
variance to determine the accurate epidemic threshold (see details in Method).

To better understand the performance of the three types of method, we further classify the networks into two 
classes according to the distinct eigenvector localizations of the leading eigenvalue of the adjacent matrix44, i.e., 
(i) localized hub networks (LHNs) in which the leading eigenvalue of the adjacent matrix Λ A is closer to kmax 
than 〈 k2〉 /〈 k〉 , where kmax is the maximum degree of the network (the eigenvector is localized on the hub nodes), 
and (ii) localized k-core networks (LKNs) in which Λ A is closer to 〈 k2〉 /〈 k〉  than kmax (the eigenvector is local-
ized on nodes with a high k-core index).

Uncorrelated configuration networks.  Figure 1 shows a systematic study of the SIR model on uncorre-
lated configuration networks. We focus on size N scale-free networks with power-law degree distributions, i.e., 

ν−~P k k( ) D, where νD is the degree exponent. The minimum degree is kmin =  3, and the maximum degree kmax is 
set at N , which ensures that there will be no degree-degree correlations in the thermodynamic limit. Without 
lack of generality, we can set γ =  1 in simulations. Two values, νD =  2.1 and νD =  3.5, are considered. According to 
definition44, networks with νD =  2.1 are LKNs and networks with νD =  3.5 are LHNs. Figure 1 shows that predic-
tions from the MFL (λc

MFL) and DMP (λc
DMP) methods in general produce similar theoretical values and perform 

better than the prediction from the QMF (λc
QMF) method. When νD =  2.1, the absolute errors in the epidemic 

threshold from the MFL and DMP methods are very small for all values of N, and the absolute errors from the 
QMF method decrease with N. The absolute error for method u ∈  {MFL, QMF, DMP} is λ λ λ∆ = −( )c

u
c
u

c . 

Figure 2.  Comparing the accuracy between three types of theoretical and numerical predictions of the 
epidemic threshold on 56 real-world networks. (a) Theoretical predictions of λc

MFL (gray squares), λc
QMF (red 

circles) and λc
DMP (blue up triangles) versus numerical predictions λc of the epidemic threshold. (b) In all the 

entire sample of real-world networks, the fraction of λc
MFL [λc

QMF or λc
DMP] is the closest value to λc.



www.nature.com/scientificreports/

6Scientific Reports | 6:24676 | DOI: 10.1038/srep24676

When νD =  3.5, the absolute error from the QMF method stabilizes to finite values even in infinitely large net-
works, and the absolute errors for the MFL and DMP methods decrease with N. From these results we find that 
the performance of the QMF method is counterintuitive, i.e., that its performance is even worse than the MFL 
method. At the same time, all of these results confirm the relationships among the three theoretical predictions 
for uncorrelated networks previously discussed.

Real-world networks.  We now examine the performances of the three theoretical predictions λc
MFL, λc

QMF 
and λc

DMP on a group of 56 real-world networks of various types, e.g., social networks, citation networks, infra-
structure networks, computer networks, and metabolic networks. The Supporting Information supplies addi-
tional statistical information about these real-world networks. Note that spreading processes are performed on 
giant connected clusters. At times, for the sake of simplicity, we treat the directed networks as undirected and the 
weighted networks as unweighted.

Figure 2(a) shows the accuracy of λc
MFL, λc

QMF, and λc
DMP when applied to the 56 networks. Each symbol 

marks a theoretical prediction versus a numerical network prediction. We compute the relative frequency of 
λc

MFL, λc
QMF, and λc

DMP to determine which one produces a value closest to λc [see Fig. 2(b)]. Because the DMP 
method considers the full information of network topology and also some dynamical correlations, λc

DMP is the 
best prediction in more than 40% of the networks. The λc

QMF value is the closest to the actual epidemic threshold 
in 25% of the networks, and the epidemic threshold predicted by the MFL method, which uses the degree distri-
bution as the only input parameter, is closest to the real epidemic threshold in about one-third of the real-world 
networks. Comparing these three predictions we find that the DMP method outperforms the other two, i.e., when 
determining the epidemic threshold in a general network, the DMP method is more frequently accurate than the 
other two.

Theoretical predictions λc
MFL given by the MFL method often fail because it neglects much structural infor-

mation and also all dynamical correlations. The performance of the QMF method is counterintuitive because of 
the localized eigenvector of the leading eigenvalue of the adjacent matrix [see Fig. 3(a)]. Figure 3 shows the effects 
of the inverse participation ratios (IPR)39,45 of the adjacent and non-backtracking matrixes. We find that the rela-
tive and absolute errors between the theoretical and numerical predictions increase with IPR, i.e., the QMF and 
DMP methods deviate from the accurate epidemic threshold more easily when IPR is large because the eigenvec-
tor centralities of adjacent and non-backtracking matrixes are localized on hub nodes or high k-core index 
nodes44. The relative error of method u ∈  {MFL, QMF, DMP} can be λ λ λ λ∆′ = −( ) /c

u
c c

u
c.

Recent research results indicate that networks have distinct eigenvector localizations44. In real-world networks 
they are either localized on hubs networks (LHNs) or localized on k-core networks (LKNs). Depending on the 

Figure 3.  The effects of inverse participation ratio (IPR) of the adjacency and the nonbacktracking 
matrices on the accuracy of theoretical predictions. (a) The relative errors and (b) absolute errors as a 
function of IPR of the principal eigenvectors of the adjacency (black squares) and the nonbacktracking matrices 
(red circles). The inset of (b) is the average absolute errors as a function of IPR.
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localization of the eigenvector of adjacent matrix, there are 19 LHNs and 37 LKNs among the 56 real-world net-
works. Figure 4(d) shows that the values Λ A of LHNs are close to kmax

1/2  (blue squares), and the values Λ A of LKNs 
are close to 〈 k2〉 /〈 k〉  (red circles). In LHNs [see Fig. 4(a,c)] the three methods perform as we would expect. The 
DMP method is the best predictor and the MFL method the worst because it neglects much detailed network 
structure information. In contrast, in the LKNs [see Fig. 4(b,c)], the simple MFL method performs the best, and 
it is slightly accurate than the DMP method.

We now compare the accuracy between the three theoretical epidemic thresholds under different microscopic 
and mesoscale topologies of real-world structures, including degree-degree correlations r, clustering c, and mod-
ularity Q. To measure the accuracy of the three methods in each theoretical prediction, we compute the average 
relative errors in the interval (x −  Δx/2, x +  Δx/2), where x is r, c, and Q. Here we set Δx =  0.1 unless otherwise 
specified. Figure 5(a,b) show that in all cases except the Facebook (NIPS) network the DMP method has a lower 
relative error when the Pearson correlation coefficient value is r <  0. The Facebook (NIPS) network may be an 
exception because the IPR value of its non-backtracking matrix is relatively large, i.e., 0.012. When r <  0, we can 
conclude that the DMP method performs the best and the MFL method performs the worst. When r >  0, the MFL 
method is the most accurate and the QMF method is the least. Figure 5(c–f) show the 56 real-world networks, 
separating them according to eigenvector localization. In LHNs we see a phenomenon similar to that shown in 
Fig. 5(a,b), i.e., when r <  0 the DMP method is the most accurate and the MFL method is the least, but when r >  0 
the MFL method is the most accurate and the QMF method is the least. In LKNs, when r <  0 the DMP method 
is the most accurate, when r >  0 the MFL method is the most accurate, and the QMF method is always the least 

Figure 4.  Verify the accuracy for three types of theoretical epidemic threshold on real-world networks. The 
theoretical predictions of λc

MFL (gray squares), λc
QMF (red circles) and λc

DMP (blue up triangles) versus 
numerical predictions λc of the epidemic threshold on (a) LHNs and (b) LKNs. (c) In the collective of LHNs and 
LKNs of real-world networks, the fraction of λc

MFL [λc
QMF or λc

DMP] is the closest value to λc. (d) The values of 
kmax

1/2  for LHNs and 〈 k2〉 /〈 k〉  for LKNs versus the leading eigenvalue Λ A of the adjacent matrix.
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accurate. This suggests that the MFL method is the best for predicting epidemic thresholds in networks with pos-
itive degree-degree correlations, but that the DMP method is better in all other cases.

Using an analytic framework similar to that shown in Fig. 5, we compare the accuracy among the three the-
oretical predictions under different clustering coefficient c in Fig. 6. Figure 6(a,b) show that when c <  0.1, the 
relative error of the DMP method is the lowest and the relative error of the MFL method is the largest. When 
c >  0.1, the relative error of the MFL method is the lowest and the relative error of the QMF method is, in most 
cases, the largest. Thus when c <  0.1 the DMP method is the most accurate in predicting the epidemic threshold, 
but when c >  0.1 the MFL method is the most accurate. In LHNs, we find the same phenomena as shown in 
Fig. 6(a,b). The DMP method is the best predictor when c <  0.1, and the MFL method the best when c >  0.1 [see 
Fig. 6(c,d)]. Figure 6(e,f) show that in LKNs the DMP method performs the best for small c and the MFL method 
the best for large c.

Finally, Fig. 7 compares the effectiveness between the three predictions under different modularity Q. Note 
that in real-world networks the relative errors increase with Q. In the 56 networks, in LHNs, and in LKNs, we note 
that the performances of the three predictions do not exhibit an obvious regularity versus the modularity, and in 
most cases the DMP method performs better than other two.

Figure 5.  Effects of degree-degree correlations on the relative errors of different theoretical predictions. 
In the first column, figures (a,c,e) are the the relative errors of the three different theoretical predictions versus 
degree-degree correlations r. In the second column, figures (b,d,f) are the the average relative errors for the 
three different theoretical predictions versus r. The first row exhibits the results of 56 real-world networks, the 
second row shows the results of LHNs, the third row performs the results of the LKNs.
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Conclusions
In this study we have systematically examined the accuracies and relationships among the MFL, QMF, and DMP 
methods for predicting the epidemic threshold in the SIR model. To do this we have focused on a large number of 
artificial network simulations and on 56 real-world networks. We first analyzed the differences and correlations 
among the three theoretical epidemic threshold predictions. Generally speaking, the three predictions differ, and 
the epidemic threshold predicted by the DMP method is often larger than that predicted by the QMF method. 
In uncorrelated networks, the DMP and MFL methods produce the same epidemic threshold prediction, which 
is larger than the prediction produced by the QMF method. When applied to real-world networks, however, the 
relationships among the three predictions are still unclear.

We then checked the accuracies of the three predictive methods using uncorrelated configuration networks, 
and found that the MFL and DMP methods perform well, but that the QMF method does not. In the group of 56 
real-world networks we found that the DMP method performs the best in most occasions, and that the epidemic 
threshold predicted by the MFL method is more accurate than the one predicted by the QMF method in most of 
the networks. In networks with an eigenvector localized on high k-core nodes, i.e., LKNs, the MFL method per-
forms the best and the QMF method the worst, but in networks with an eigenvector localized on hubs, i.e., LHNs, 
the DMP method performs the best and the MFL method the worst.

Finally we measured the performances of the three methods versus the microscopic and mesoscale topolo-
gies in the 56 real-world networks, including degree-degree correlations r, clustering c, and modularity Q. For 
this purpose, we compute the average relative errors between theoretical thresholds and accurate thresholds for 
the networks in the interval (x −  Δx/2, x +  Δx/2), where x is r, c, and Q. The smaller value of the relative error 

Figure 6.  Effects of clustering on the relative errors of different theoretical prediction. In the first column, 
figures (a,c,e) are the the relative errors of the three different theoretical predictions versus clustering c. In the 
second column, figures (b,d,f) are the the average relative errors for the three different theoretical predictions 
versus c. The first row exhibits the results of 56 real-world networks, the second row shows the results of LHNs, 
the third row performs the results of the LKNs.
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indicates the better performance of the theory. In networks with negative degree-degree correlations, we found 
that the DMP method performs the best, and the QMF method performs than the MFL method. In the networks 
with positive degree-degree correlations, the MFL method is the most accurate, and the QMF method is the least. 
In networks with low clustering, the DMP method is the most accurate, and the MFL method is the least. In net-
works with high clustering, the MFL method is the most accurate, and the QMF method is the least. The relative 
accuracies of the three predictions versus the modularity are, unfortunately, irregular.

Predicting accurate epidemic thresholds in networks is profoundly significant in the field of spreading dynam-
ics. Our results present a counterintuitive insight into the use of network information in theoretical methods, 
i.e., the performance level of a method is not only proportional to the topological information used, but also 
correlates with the dynamical correlations among the states of neighbor nodes. Our results expand our under-
standing of epidemic thresholds and provide ways of determining which method of theoretical prediction is best 
in a variety of given situations. Our results also indicate directions for further research into the development of 
more accurate theoretical methods of predicting epidemic thresholds. It should be noted that we just considered 
the SIR spreading dynamics with synchronous updating method, whether or not the results apply to the case 
with asynchronous updating method needs to be further studied. Some further investigations about the effects 
of network structural characteristics (e.g., degree-degree correlations) on the accuracy of the theoretical meth-
ods are still called for. For instance, one can study the effect of degree-degree correlations on the accuracy of the 
three theoretical methods by changing the degree-degree correlations46 of the configuration model gradually (see 
details in Supporting Information).

Figure 7.  Effects of modularity on the relative errors of different theoretical prediction. In the first column, 
figures (a,c,e) are the the relative errors of the three different theoretical predictions versus modularity Q. In the 
second column, figures (b,d,f) are the the average relative errors for the three different theoretical predictions 
versus Q. The first row exhibits the results of 56 real-world networks, the second row shows the results of LHNs, 
the third row performs the results of the LKNs.
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Methods
Predicting numerical threshold.  To determine the theoretical epidemic threshold, we employ the estima-
tors supplied by the MFL, QMF and DMP methods and use the relative variance χ to numerically determine the 
size-dependent epidemic threshold47,

χ =
−r r

r
,

(15)

2

2

where r denotes the final epidemic size and 〈 ···〉  is the ensemble averaging. We use at least 105 independent 
dynamic realizations on a network to calculate the average value of χ, which exhibits a maximum value at the 
epidemic threshold λc. This numerical prediction λc obtained by observing χ we consider the accurate epidemic 
threshold47. The Supporting Information supplies illustrations of numerically locating the epidemic threshold by 
observing χ. There are also other ways of determining λc, e.g., susceptibility27 and variability methods48.
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