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Abstract: In this study, a numerical approach—the discontinuous Meshless Local Petrov-Galerkin-
Eshelby Method (MLPGEM)—was adopted to simulate and measure material plasticity in an Al
7075-T651 plate. The plate was modeled in two dimensions by assemblies of small particles that
interact with each other through bonding stiffness. The material plasticity of the model loaded to
produce different levels of strain is evaluated with the Lamb waves of S0 mode. A tone burst at the
center frequency of 200 kHz was used as excitation. Second-order nonlinear wave was extracted
from the spectrogram of a signal receiving point. Tensile-driven plastic deformation and cumulative
second harmonic generation of S0 mode were observed in the simulation. Simulated measurement
of the acoustic nonlinearity increased monotonically with the level of tensile-driven plastic strain
captured by MLPGEM, whereas achieving this state by other numerical methods is comparatively
more difficult. This result indicates that the second harmonics of S0 mode can be employed to monitor
and evaluate the material or structural early-stage damage induced by plasticity.
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1. Introduction

An effective and reliable inspection technique for continuous monitoring and evaluation of
early-stage nonlinearities in materials is necessary for engineering parts. Among all kinds of
nondestructive methods studied for efficient damage detection and evaluation, the ultrasonic method
is most useful and has been widely exploited for many decades [1–4]. Traditional ultrasonic inspection
and monitoring methods are usually anchored on linear theory, and the characterization parameters
are velocity attenuation, transmission, and reflection coefficients of the ultrasonic wave. However,
conventional linear ultrasonic evaluation and monitoring methods are not sensitive to early stage
micro-damage or micro-plastic deformation [4], and the smallest crack that current linear ultrasonic
based approaches can monitor or evaluate is only approximately 1 mm [5]. This drawback limits their
applications and does not allow early preventive actions [5–7].

When a high-intensity ultrasonic wave passes through a nonlinear medium, the waveform may
be distorted [8]. It is well-known that a linear solid medium may become a nonlinear one gradually
in the process of fatigue damage [9], radiation damage [10], hardening [11], and thermal aging [12]
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as the microstructural features are occupied by micro-voids, multi-poles, and micro-cracks [13],
dislocation [14–16], persistent slip bands [17], and precipitation characteristics [18]. When a finite
amplitude monochromatic sinusoidal ultrasonic wave interrogates a nonlinear solid, the initial
waveform distorts and higher-order harmonic waves are generated. Overcoming the limitations of the
linear ultrasonic method, the nonlinear ultrasonic technique measures higher harmonics generated by
material intrinsic nonlinearity, and this technique has undergone rapid development in recent years. In
most experiments or theoretical studies, only bulk waves are used, and a useful acoustic nonlinearity
parameter presenting material nonlinearity is established by theoretical models [8,19,20]. However,
bulk waves propagate with great energy loss and are not efficient in a large-scale inspection approach.

Guided waves, such as Lamb waves, combine large-scale monitoring or inspection ranges
and the sensitivity of nonlinear parameters, which could be used for long-range monitoring
or inspection to interrogate large shell- and plate-like structures. However, the monitoring or
inspection techniques based on nonlinear Lamb waves might not be highly accurate because of
their depressiveness and multiple modes. About the conditions to generate accumulative higher-order
harmonic waves, corresponding theoretical studies may not be sufficiently clear and consistent because
of the mathematical complexity of the problem [21–27]. To date, all theoretical studies agree that
phase-velocity matching and non-zero power flux input from a primary mode to second harmonics
are at least two necessary conditions for cumulative second harmonic generation. Mode pairs that
satisfy these two conditions, such as S1–S2, S2–S4, and A2–S4 have been used in experimental studies.
These nonlinear Lamb wave–based experiments have effectively characterized tensile plasticity driven
damage [28], material nonlinearity [29], thermal fatigue [30], and fatigue damage [31], and have
monitored the stress and load levels in strands [32]. However, using those higher-order mode as
primary Lamb wave mode has some limitations in application [7]. First, in real applications, as the
excitation signal is normally a tone burst with a finite bandwidth, strict phase velocity matching
only exists at the center frequency of the whole bandwidth. Second, excited center frequency of the
primary mode may not be exactly equal to the true phase-velocity-matching frequency. Third, mode
pairs are isolated and quite limited in number. Fourth, exciting a single primary mode of the mode
pairs as desired is extremely difficult in practice and some unwanted modes would be generated
simultaneously, making the received signal quite difficult to be processed and interpreted. Finally,
time-frequency analysis is needed to process the received complicated signals in which some unwanted
Lamb modes overlap with the desired primary and secondary modes [7]. S0 mode Lamb wave could
solve these limitations and this has been confirmed by many researchers. For instance, Wan et al. [7]
used the cumulative effect of the second harmonic generated from S0 mode Lamb waves for the
detection of microstructural changes [7]. Zuo et al. [33] calculated nonlinear harmonic of low frequency
S0 wave for a 1.0 mm thick aluminum plate using the Murnaghan model, which is equivalent to the
Landau–Lifshitz nonlinear hyper elastic constitutive model. Chillara and Lissenden [34] used the
same Murnaghan model for an aluminum plate and found that the second harmonic can propagate
independently to the primary mode and the group velocity matching is not necessary for higher
harmonic generation by numerical study of S0 mode Lamb waves. By considering the effects of the
second- and third-order elastic constants of isotropic media, Matsuda and Biwa [35] revealed that the
frequency for which the second harmonic Lamb mode reaches maximum is close but not equal to the
phase speed-matching frequency in a precise sense through theory and Finite-Difference Time-Domain
method for S0 Lamb mode waves. Shan et al. [36] demonstrated that the nonlinear effects of the
bonding layers in a typical PZT-actuated structural health monitoring system by using S0 mode Lamb
waves. For micro-cracks, there are also some works using S0or A0Lamb waves [37–44]. However, there
has been no work using the S0 mode Lamb wave to characterize tensile plasticity-driven damage.

It is well known that numerical exploration is attractive in ultrasonic nondestructive testing (NDT)
to verify theoretical and experimental results and to find some new phenomena difficultly tackled by
theory or experiment. The advantages of this method include ideal center frequency and single desired
primary mode excitation [7], reduced cost, celerity, and simplicity. For instance, nonlinearities induced
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by buried micro-breathing cracks [32,37–44], material and geometry [45], and fatigue damage [46]
are simulated through finite element method (FEM). The aforementioned simulations investigate on
cumulative second-harmonic generation. In general, FEM, finite volume method, finite difference
method, and boundary element method are suitable for simulating dynamic behaviors of continuum
medium. However, special additional treatments, such as intensive remeshing to tackle mesh distortion
caused by finite deformation and contact judgment, have to be considered in the calculation, where
damage or fracture appears, simulating the entire failure procedure is difficult [47]. Under tensile
loading, the plasticity-driven material damage and its evolution process is a problem that is difficult to
simulate by commercial software such as ABAQUS or ANSYS. To ensure improved understanding of
plasticity-driven cumulative second-harmonic generation, an alternative simulation method that could
solve the problem is the discontinuous Meshless Local Petrov-Galerkin-Eshelby Method (MLPGEM),
which is similar to the Discrete Element Method. It is very efficient for solving finite deformation
nonlinear problems. For instance, it requires no explicit mesh in computation and therefore avoid mesh
distortion difficulties and subsequent remeshing effort of traditional FEM in finite deformation analysis.
Therefore, it should be a powerful tool to simulate the wave propagation in a largely deformed medium
with the plasticity-driven material damage and its evolution process under tensile loading.

In this study, an MLPGEM module released by commercial software LS-DYNA is employed
directly to deal with the above problem. The theory of MLPGEM and material plasticity is briefly
explained as a foundation for simulating nonlinear Lamb waves. Unlike most previous works using
those higher-order mode as primary Lamb wave mode [13,28–32], e.g., S1, S2, A2, etc., we focus on
the case of S0 primary mode because of its remarkable merits [7] and investigate its second-harmonic
generation. S0 Lamb wave with tone-burst cycles of 10 at the center frequency of 200 kHz has been
used as a primary mode in the simulation. As shown in Figure 1, the condition of phase-velocity
matching [21–25,31] can be satisfied approximately when considering S0 (400 kHz) as the second
harmonic of this primary mode. The detailed descriptions of the numerical model as well as signal
excitation and processing are presented. The results for the simulated material plasticity versus tensile
strain and acoustic nonlinearity parameter corresponding to the different plasticity levels are provided
and discussed. The results show that S0 Lamb wave and its corresponding second harmonic can be
effectively employed to monitor and evaluate the plasticity driven early stage material damage.
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2. Material Nonlinearity and Its Measurement

Theoretical models for longitudinal waves in one-dimensional medium [46] and Lamb waves in
isotropic, homogeneous, and nonlinear elastic infinite plate [22,27] show that the acoustic nonlinearity
parameter of a material, i.e., β can be defined as,
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β =
8

xk2 (
A2

A2
1
) (1)

where k is wavenumber, x is wave propagation distance, A1 is magnitude of the primary wave
mode at ω, and A2 is second harmonic wave mode at 2ω. The amplitude ratio A2/A2

1 is a measure
of the nonlinearity parameter β and is widely used in experiments and simulations [38,45,48–51].
A monotonic increase between β and the accumulated plasticity of some metals was confirmed for bulk
waves [17,52] and Lamb waves with S1–S2 pair [28]. Therefore, the tensile-plasticity-driven material
damage might be characterized by directly measuring A2/A2

1.

3. Theory and Model of MLPGEM

3.1. Theory

MLPGEM combines the Meshless Local Petrov-Galerkin (MLPG) Methods of Atluri and the
energy conservation laws of Noether and Eshelby [53]. MLPG is a truly meshless method that involves
both non-element interpolation and non-element integration [54]. MLPG may alleviate problems such
as element distortion, locking, remeshing during large deformation process. With the help of the
“energy-momentum tensor” given by Eshelby, Han and Atluri solved the singular integrals appearing
in the local boundary integral equation and proposed a numerical method called MLPGEM [53]. This
method is simply described as follows: a body is assembled by spheres (in 3-D or circles in 2-D)
centered at each meshless node. The moving least squares (MLS) approximation over a number of
nodes within the domain of influence is used to construct the trial functions. Trial functions is based
on the fictitious nodal value of the undeformed configuration. The test functions for configurational
changes of the deformed configuration are also based on meshless nodes. While the local sub-domain
is defined as the support of the test function on which the integration is carried out, the domain of
influence is defined as a region where the weight function of the node inside of it does not vanish in the
local sub-domain of the current node. In other words, the domain of influence contains all the nodes
that have non-zero coupling with the current nodal values in the stiffness matrix. In Figure 2a, the
sphere surrounding node I represents the local sub-domain where the integration is carried out. The
spheres surrounding node J, K, L, M . . . represent the supporting domain of weight functions of nodes,
whose weight functions do not vanish in the local sub-domain. The volume surrounded by dashed
curve represents the domain of influence of node I. In general, the size of the domain of influence has
to be large enough in order to ensure continuity. Piecewise-linear predictor solutions are generated
based on the local weak-forms of the Noether/Eshelby energy conservation laws for the Lagrangian
unsymmetric Eshelby stress tensor in the undeformed configuration. Corrector solutions are generated
based on Newton-Raphson (or Jacobian-inversion-free iterations) using the local weak-forms of the
Noether/Eshelby energy conservation laws in the current configuration, for a newly introduced
Eulerean symmetric stress tensor (which is the counter part of the Lagrangian unsymmetric Eshelby
stress tensor) in the current configuration.

We consider the finite deformation of a solid, wherein a material particle initially at X, moves to a
location x. We use a fixed Cartesian coordinate system with base vectors ei, such that,

X = XIei (2)

x = xiei (3)

The displacement of the material particle is,

u(X) = x(X)− x or ui = (xi − XI)ei (4)

The deformation gradient tensor is defined as,
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F
[

Fi J =
∂xi
∂XJ
≡ xi,J = ui,J + δi J

]
(5)

There are infinitely many possible definitions of a stress-tensor in a finitely deformed solid.
Among them, the more commonly used ones are: the Cauchy stress tensor σ; the first Piola-Kirchhoff
stress tensor P; and the second Piola-Kirchhoff stress S, which are related to each other, thus,

P = JF−1σ = S · Ft; S = JF−1 · σ · F−t = P · F−t[J = ‖F‖] (6)

Considering a general anisotropic solid, with the strain energy per unit initial volume being
denoted as W, the constitutive relation for P may be written as,

P =
∂W
∂Ft (7)

The equations of Linear Momentum Balance (LMB) and Angular Momentum Balance (AMB) can
be written equivalently in terms of σ, P, and S, as,

σij ,i + ρ f j = 0; (LMB); σ = σt(AMB)
PI j ,I + ρ0 f j = 0; (LMB); F · P = Pt · Ft(AMB)
(SIKFjK),I + ρ0 f j = 0; (LMB); S = St(AMB)

(8)

The Eshelby stress tensor is defined, for finite deformations, as,

T = WI− P · F = WI− S · Ft · F = WI− S ·C (9)

The strong form balance laws for the Eshelby stress tensor T is given as,

TI J,I + ρ0bJ = −(PIk,I + ρ0 fk)FkJ = 0, (LMB), C · T = Tt ·C, (AMB) (10)

where, by definition,

bJ ≡
1
ρ0

W,J
∣∣
exp . + fkFkJ (11)

We refer the solution variables (displacements, deformation gradient, and stresses) in the
state C(N+1)to the configuration of the body in the immediately preceding state, denoted as C(N),
which is presumed to be known, including the variables in C(N), such as u, F, σ, and T, with
the initial configuration C(0)being the reference configuration, as shown in Figure 2b. Let ṽ(X)
be the configurational changes of the initial configuration which are the trial functions in the
present MLPGEM, and let the corresponding changes to the displacements in C(N) as given in
equation∆u = F · ṽ(X). One may have the spatial tangential material stiffness for ∆SI Jin the
configuration C(N), derived as,

∆SI J =
1
2

∂2W
∂EI J∂EMN

FkMFlN [FkKF−1
Ll + F−1

Lk FlK]∆L∗KL ≡ C∗I JKL∆K∗KL (12)

The local weak-forms of the energy conservation laws can be derived as,{∫
∂Ω(I)

N
nic

tan gent
ijKL ∆K∗KLδxjdS−

∫
Ω(I)

N
ctan gent

ijKL ∆K∗KLδxj,idΩ
}
+

{∫
∂Ω(I)

N
ρN∆ f jδxjdΩ

}
+

{∫
∂Ω(I)

N
niσ

(N)
ij δxjdS−

∫
Ω(I)

N
σ
(N)
ij δxj,idΩ +

∫
Ω(I)

N
ρN f N

j δxjdΩ
}

= 0,

c∗ijKL ≡
1

J(N) (FN
0 )iM · C

∗
MNKL · (FN

0 )jN and ctan gent
ijKL = c∗ijKL + σ

(N)
IM FjKF−1

KL

and σ(N) = 1
J(N) (F

N
0 ) · (SN

0 ) · (FN
0 )

t.

(13a)
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With a constant test function δx over each local sub-domain, the domain integrals vanish and the
local weak-forms of the energy conservation laws may be further simplified as,

{∫
Ω(I J)

N

1
2 [(c

tan gent
ijKL ∆L∗KL)

(J) + ((ctan gent
ijKL ∆L∗KL)

(I)
](δx J

j − δxI
j )dS

}
=

{ ∫
∂Ω(I)

N
ρN∆ f j

δxjdΩ

}
+

{∫
Ω(I)

N
ρN f N

j δxjdΩ−
∫

∂Ω(I J)
N

1
2 [(σ

(N)
ij )

(J)
+ (σ

(N)
ij )

(I)
](δx J

j − δxI
j )dS

} (13b)

Once the trial functions ṽ(X) (configurational changes in the initial configuration) are solved
through Equation (13), corresponding to either the unbalanced force or to the incremental loading, the
corresponding displacements can be obtained through ∆u = F · ṽ(X). It is clear that Equation (13) can
be applied in both Total Lagrangian formulation or an Updated Lagrangian formulation by setting the
displacements u(X) of the preceding solution accordingly. In Equation (13b), ctan gent

ijKL is the quantity to
reflect the current material properties, e.g., elastic or plastic behavior at different loading stages in the
analysis, which can be understood as the nonlinear stiffness connecting nodes or spheres in Figure 2a.
One may see further details in the references [53–55].
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finite deformation.

3.2. Model

Figure 3 shows the MLPGEM model (Livermore Software Technology CORP., California, CA,
USA). The Lamb waves of S0 mode propagating in an aluminum plate is symmetrical in the y-axis
direction. For simplicity, the plate with thickness 1 mm could be modeled in two dimensions by
assemblies of small spheres. The model should be long enough (2.0 m) to ensure that the received
signals are not affected by boundary reflections.
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A loading process can be described as: a tensile load is slowly applied on the plate which makes
the plate be deformed into a state needed, and the deformed plate is hold to keep this deformation.
Lamb waves of S0 mode in terms of a designed function are then generated with the line source signal
excitation acting on the left side of the present plate. The loading function of the above process can be
described as,

x(t) =


l
2 (cos( 2π

T t)− 1)
−l

A
2 sin(2π f t)(1− cos(2π

f
N t))− l

−l

t ∈ [0, T
2 )

t ∈ [ T
2 , t1)

t ∈ [t1, t2)

t ∈ [t2, te]

(14)

where l is the tensile length in mm, T is the period of tensile function in ms, f is the central frequency
in kHz, N (=10) is the number of sinusoidal cycles in a wave pulse, T

2 is the end time of the tensile
process, A (=0.01 mm) is the amplitude of tone burst, t1 is the end time of the holding process, t2 is the
end time of the loading (Hamming windowed tone-burst consisting of 10 cycles at the center frequency
200 kHz), and te is the end time of the simulation.

When l is equal to 30 mm—for example, the loading function is shown in Figure 4—the plate is
stretched by 30 mm with a strain of 0.015. Seven different ls (i.e., 0 mm, 5 mm, 10 mm, 15 mm, 20 mm,
25 mm, and 30 mm) were loaded in our model. A large l needs a large T and t1. In our simulation,
nine signal receiving points are considered with a distance from 100 mm to 900 mm with an interval of
100 mm from the left of the model, where the excitation signal actuated, as illustrated in Figure 3.Materials 2017, 10, 827  8 of 15 
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The MLPGEM module of LS-DYNA with the Newton-Raphson iterations method is used in
this study. For fundamental signal 200 kHz and higher harmonics 400 kHz, a mesh size of 0.1 mm
(particle radius 0.05 mm) and a time step of 0.02 µs are suitable and enough to ensure accuracy [56,57].
For undamaged Al 7075-T651 plate, piecewise linear plasticity with failure was chosen as the material
model, and the stress–strain constitutive relationship is shown in Figure 5. In the present work, the
plasticity of aluminum 7075-T651 was represented by a nonlinear stress-strain curve. The practical
experimental tensile stress-strain curve was used. We explain our modelling as follows: the nonlinear
constitutive law is a two-stage one, i.e., the linear elastic stage and nonlinear plastic stage after yielding
as shown in Figure 5. The Mises yield surface is used to judge isotropic yielding. It is defined by
giving the value of the uniaxial yield stress as a function of uniaxial equivalent plastic strain. Below the
yielding strength, the material behavior was modeled in a linear way as shown in Figure 5. After the
yielding, the material plastic behavior was modeled in a piecewise linear pattern using some discrete
points as shown in Figure 5. This plasticity should be considered to be caused by dislocations in the
material, which is different to hyper-elasticity. Therefore, we employ a classical phenomenological
plastic model here. Our method, unlike the theoretical way to deal with material nonlinearity, does not
use higher-order expansion of the constitutive relation between the applied stress and resulting strain.
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Figure 5. Stress–strain curve of Al 7075-T651 plate with maximum strains loaded for the seven models.

In fact, a material table was defined relating the different strain-levels to the stress levels. The seven
representative tensile stresses with the corresponding maximum strains at different levels represented
by a symbol of square are also plotted in Figure 5. The first four points simulate the elastic zone and
they form a straight line. The nonlinear stress-strain zone is approximated using the piecewise linear
model with more discrete points. The material properties are shown in Table 1.

Table 1. Material properties of Al 7075-T651.

Material ρ(g/mm3) E (MPa) Poisson’s Ratio Yield Stress (MPa)

Al 7075-T651 2.7957 × 10−3 7.1705 × 104 0.33 517.84

4. Simulation Results and Discussion

4.1. Effectiveness Validation of MLPGEM

For an unloaded plate, Figures 6a,b and 7 indicate that the through thickness profile for displacement
in y-axis direction is antisymmetric and for displacement in x-axis direction is symmetric. Note that h
denotes the distance from the bottom surface of the plate and all curves in Figure 7 are overlapped.
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Thus, a pure symmetric mode Lamb wave (S0) with center frequency of 200 kHz is excited in our
MLPGEM model. To verify the validity of our model further, group velocity verification for Lamb
waves of symmetric and antisymmetric modes at center frequency of 100 kHz and 200 kHz are tested.
Note that for A0 mode, the shear stress was applied at the left end of the plate in Figure 2. The velocity
results shown in Table 2 agree with the theoretical results within the allowable error range. Based on
the preceding research, the validity of our MLPGEM model is verified.
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Figure 6. (a) Displacement in y-axis direction at different locations through-thickness direction with the
same x coordinate (=100 mm); (b) S0 mode at 200 kHz—through thickness profiles for y displacement
at x coordinate (=100 mm) for various times t = 0.02–0.07 ms.

Table 2. Group velocity verification for symmetric (S0) and antisymmetric (A0) mode Lamb waves at
center frequencies of 100 kHz and 200 kHz.

Mode Type and Frequency (kHz) Theoretical Velocity (m/s) Simulation Velocity (m/s) Error (%)

S0 (100 kHz) 5444 5263 3.32
S0 (200 kHz) 5437 5235 3.72
A0 (100 kHz) 1748 1707 2.35
A0 (200 kHz) 2283 2252 1.36
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same x coordinate (=100 mm).

4.2. Simulation Results and Discussion

Figure 8a (time domain) and Figure 8b (frequency domain) show the received signal when Lamb
waves propagate through 300 mm. As indicated in Figure 8b, second harmonics are generated at an
amplitude ratio of 0.3280, denoted by A2/A2

1. For each l (0 mm, 5 mm, 10 mm, 15 mm, 20 mm, 25 mm,
and 30 mm) in the actuating function described in Equation (14), we computed the amplitude ratios of
the received signals from the nine signal receiving points, and then we plotted the results in Figure 9
to compare and analyze for convenience. In the signal processing using Fast Fourier Transformation
(FFT), the window length of a rectangular function was adjusted continuously (but valid signals were
not cut off) until the center frequency of the primary fundamental wave was 200 kHz. We could then
obtain comparatively more accurate and consistent data.
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Figure 9 shows the amplitude ratio, i.e., A2/A2
1, which is a linear function of propagation distance.

The lines can be categorized into two groups. The first group includes tensile strains 0.01 (l = 20 mm),
0.0125 (l = 25 mm), and 0.015 (l = 30 mm, note that the yield strain is 0.0072) with larger slopes. The
second group consists of tensile strains 0, 0.0025 (l = 5 mm), 0.005 (l = 10 mm), and 0.0075 (l = 15 mm)
with smaller slopes. The slopes of the lines in each group are too close to distinguish. In every group at
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the same propagation distance, the amplitude ratio is slightly larger when the stretching deformation is
larger. Thus, the greater the tension, i.e., plasticity extent, is, the larger is the amplitude ratio (acoustic
nonlinearity). When the tensile strain exceeds the yield stain to an extent, a remarkable increase of the
amplitude ratio occurs suddenly as concluded more clearly in Figure 10.
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Figure 10. Normalized acoustic nonlinearity versus strain with the model.

Figure 10 shows a plot of A2/A2
1 versus the strain of the Lamb wave. The signal receiving

points range from 100 mm to 900 mm with an interval of 100 mm. Note that when we used different
amplitudes A of excitation signals in Equation (2) (e.g., 0.001 mm and 0.1 mm) or different frequencies
(e.g., 100 kHz and 300 kHz), the change tendencies of A2/A2

1 in Figures 9 and 10 were similar. Figure 10
shows that the amplitude ratio at different propagation distances exhibit the similar variation pattern.
At the yield strain, i.e., 0.0072, A2/A2

1 increases remarkably. Compared with those inelastic stage,
A2/A2

1 in plasticity deformation have an approximate 200% increase at around 0.01 tensile strain. For
further higher plastic strain levels, both Figures 9 and 10 show that the amplitude ratio increases only
slightly. This feature of increasing trend in A2/A2

1 of is similar to what the theoretical models [17,52,58]
for bulk waves predict essentially and has been verified by experiments when using those higher-order
modes of Lamb waves as primary mode, e.g., S1 or S2 [28]. The amplitude ratio increases remarkably
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at the happening of plasticity and this increase becomes much weaker with subsequent accumulated
plasticity. Thus, Lamb waves of S0 mode can be used to evaluate plasticity driven material damage, or
at least is capable of characterizing the occurring of plasticity.

In the simulation process of tension, geometrical discontinuous defects (such as cracks, voids,
dislocations, and impurity) were not modelled. However, A2/A2

1 caused by these defects is completely
reflected in the stress–strain curve in the present simulations, i.e., material softening.

Therefore, the present model is reasonable for simulating material plasticity. Moreover, the above
results imply that A2/A2

1 based on S0 mode can be used to characterize plasticity-driven material
damage, or at least, to monitor the occurring of plasticity. After entering into the plasticity, with the
further increase of tensile strain, there are only slight increases in A2/A2

1, although this A2/A2
1 is

around two times higher thanthat of material in elastic deformation. Whether A2/A2
1 can be used to

accurately characterize the plasticity extent or not still needs more extensive explorations.
The above simulation results are also verified by some experiments reported by others indirectly.

For example, C. Pruell et al. [28] develops an experimental method for evaluating damage due to
plastic deformation in a metal plate using nonlinear-guided waves. The material nonlinearities of
aluminum specimens loaded to produce different levels of plastic strain are measured with Lamb
waves. A pair of wedge transducers is used to generate and detect the fundamental (S1) and second
harmonic (S2) Lamb waves. The weak amplitude of the second harmonic wave is extracted from
the spectrogram of a received signal. The measured acoustic nonlinearity increases monotonically
with the level of plastic strain, which is similar to our simulations. After the plasticity stage, with the
increase of tensile strain, there is almost no obvious increase in the normalized acoustic nonlinearity
(NAN), although this NAN is around two times higher than that of material in elastic deformation.
Hong et al. [46] claim the acoustic nonlinearity parameter grows with the propagation distance, which
corresponds with the tendency of results showed in Figure 9. Jhang et al. [59,60] performed the acoustic
nonlinearity testing on samples with different stresses. The results show that the acoustic nonlinearity
increase with the tensile load, which is also consistent with Figure 10. To summarize, the simulation
result is reasonable.

5. Conclusions

This investigation demonstrates that MLPGEM can be used to simulate and evaluate plasticity
driven material damage based on nonlinear S0 mode Lamb waves in metallic plates. Simulated results
are in accordance with previous theoretical analysis and experimental research for bulk waves or
higher-order modes of Lamb waves as primary mode. The results also show that nonlinear Lamb
waves based on S0 mode can be used to assess plasticity driven material damage, or at least monitor
the occurrence of plasticity. Further research could develop MLPGEM models with micro-cracks
(micro-breathing cracks), dislocations, thermal fatigue, voids, and impurity defects.
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