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Genetic selection for an increased growth rate in meat-type chickens has been

accompanied by excessive fat accumulation particularly in abdominal cavity. These

progressed to indirect and often unhealthy effects on meat quality properties and

increased feed cost. Advances in genomics technology over recent years have led to

the surprising discoveries that the genome is more complex than previously thought.

Studies have identified multiple-genetic factors associated with abdominal fat deposition.

Meanwhile, the obesity epidemic has focused attention on adipose tissue and the

development of adipocytes. The aim of this review is to summarize the current

understanding of genetic/epigenetic factors associated with abdominal fat deposition,

or as it relates to the proliferation and differentiation of preadipocytes in chicken.

The results discussed here have been identified by different genomic approaches,

such as QTL-based studies, the candidate gene approach, epistatic interaction,

copy number variation, single-nucleotide polymorphism screening, selection signature

analysis, genome-wide association studies, RNA sequencing, and bisulfite sequencing.

The studies mentioned in this review have described multiple-genetic factors involved in

an abdominal fat deposition. Therefore, it is inevitable to further study the multiple-genetic

factors in-depth to develop novel molecular markers or potential targets, which will

provide promising applications for reducing abdominal fat deposition in meat-type

chicken.

Keywords: abdominal fat deposition, QTL, SNP, gene expression studies, miRNAs, lncRNAs, epigenetic alterations

INTRODUCTION

Adipose tissue is an essential endocrine organ producing hormones and other substances that can
deeply affect our health (Butterwith, 1997; Gregoire et al., 1998; Kershaw and Flier, 2004; Resnyk
et al., 2015). Abdominal fat and subcutaneous fat are major parts of adipose tissue but researchers
hint that abdominal fat cell is more biologically active (Ibrahim, 2010). In addition, abdominal
fat depositions are of particular concern because it’s a key factor in a variety of health problems.
Chicken abdominal fat deposition is regulated by genetic, endocrine hormones, environmental
factors and multiple behavioral (Cahaner and Nitsan, 1985; Fouad and Elsenousey, 2014; Resnyk
et al., 2015). Chicken abdominal fat has a higher heritability rate (0.82) than that of live body

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2018.00262
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2018.00262&domain=pdf&date_stamp=2018-07-19
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nqinghua@scau.edu.cn
https://doi.org/10.3389/fgene.2018.00262
https://www.frontiersin.org/articles/10.3389/fgene.2018.00262/full
http://loop.frontiersin.org/people/401688/overview
http://loop.frontiersin.org/people/378467/overview
http://loop.frontiersin.org/people/401041/overview


Abdalla et al. Genomic-factors Controlling Abdominal Fat Deposition

weight (0.55) and body parts; thighs (0.31), drumsticks (0.51),
and breast muscle (0.55) at the age of selection (Cahaner and
Nitsan, 1985). Abdominal fat accumulation needs more energy
(wastes feed and increases costs to farmers) than does lean
tissue accumulation and farmers are interested in reducing cost
by increasing system efficiency. There is a positive correlation
between abdominal fat traits and body weight in chicken
(Zerehdaran et al., 2004). High-fat content in poultry can be a risk
to human health (Milićević et al., 2014). To date, high-abdominal
adipose accumulation in a commercial broiler is an obstacle
to the profitable farming (Chambers, 1990; Zhou et al., 2006;
Sun Y. et al., 2013; Zhang et al., 2017). In human, studies have
shown that excessive abdominal fat deposition is associated with
metabolic syndrome (Björntorp, 1992; Després, 2006; Alvehus
et al., 2010). Although intensive selection in chickens has
increased daily growth rate and body weight and reduced market
age, commercial broilers have increased the tendency toward
physiological disorders, such as obesity (Li et al., 2003). Obesity is
a serious public health problem around the world that increases
the risk of some common diseases, such as type 2 diabetes,
cardiovascular disease, metabolic syndrome, hypertension, and
a few types of cancer (Kopelman, 2000; Alvehus et al., 2010),
and it arises from a complex interaction between genetic and
environmental factors (Norman et al., 1997; Romao and Roth,
2008). Overweight and obesity are defined as abnormal or
excessive fat deposition that damages health. However, the
genetic and molecular mechanisms that link to obesity are largely
not known. The genes or molecules that regulating abdominal
fat deposition or abdominal adipose tissue development can
be identified by many different genomic approaches (Tatsuda
and Fujinaka, 2001; Abasht and Lamont, 2007; Huang et al.,
2015a; Ouyang et al., 2016; Jin et al., 2017; Zhang et al., 2017).
Comparison studies between lean and fat chickens in abdominal
fat can provide useful information about the underlying genetic
variation in the trait.

The purpose of this review paper is to summarize the
current understanding of genetic/epigenetic factors associated
with abdominal fat deposition, or as it relates to proliferation
and differentiation of preadipocyte in chicken. Researchers
have investigated the abdominal fat deposition in chicken
using different genomic approaches, such as quantitative trait
locus (QTL) analysis, the candidate gene approach, epistatic

Abbreviations: ACSBG2, acyl-CoA synthetase bubblegum family member 2;

ACSL1, acyl-CoA synthetase long-chain family member 1; ADRB2, beta-2

adrenergic receptor; AFP, abdominal fat percentage; AFW, abdominal fat weight;

ATGL, adipose triglyceride lipase; CAURP, China Agricultural University Resource

Population; cM, Cri-Map; F2, an F2 resource population; FABP4, fatty acid

binding protein 4; GH, growth hormone; GHR, growth hormone receptor;

GHRL, ghrelin/obestatin prepropeptide; GHSR, growth hormone secretagogue

receptor; IGF1, insulin like growth factor 1; IGFBP, insulin-like growth factor

binding protein; KCTD15, potassium channel tetramerization domain containing

15; LEPR, leptin receptor; NEAU, Northeast Agricultural University; NEAUF2,

Northeast Agricultural University F2 resource population; NEAUHLF, Northeast

Agricultural University high and low fat; NEAURP, Northeast Agricultural

University Resource Population; MFGE8, milk fat globule-EGF factor 8 protein;

PRKAB2, protein kinase, AMP-activated, beta 2 non-catalytic subunit; TGFB3,

transforming growth factor beta 3; wk, week; WPR, White Plymouth Rock; WRR,

White Recessive Rock; XH, Xinghua.

interaction, copy number variation (CNV), single-nucleotide
polymorphism (SNP) screening, genome-wide association
studies (GWAS), selection signature analysis, gene expression
studies (microarray and RNA sequencing), microRNA (miRNA)
and long non-coding RNA (lncRNA) regulation, and bisulfite
sequencing analysis.

Chicken as a Research Model
Chicken has been utilized as a good animal model to study basic
mechanisms of adipogenesis, embryonic development, immune
function, nutrition, endocrine function, and cancer (Butterwith,
1997; Hillier et al., 2004; Bader et al., 2006; Fouad and Elsenousey,
2014; Jun et al., 2014; Gan et al., 2015; Li et al., 2017).
Chicken embryos are a unique model that overcomes many
limitations for investigating cancer biology (in vivo method).
Commercial broilers can be used as a good biomedical model
to study obesity or obesity-related disease. In fact, there are
many good reasons that make the chicken a useful model for
studying adipogenesis or obesity. For example, the good isolated
chick preadipocyte does not contain any other contaminating
cell types, which can be an obstacle in cell isolation from other
species (Butterwith, 1997). An in vitro differentiation of these
cells can be achieved by a similar method of hormonal induction
to that used for rodents and human (Ramsay and Rosebrough,
2003). In addition, abdominal fat weight (AFW) or abdominal
fat percentage (AFP) in chicken can be measured directly (but
not the human abdominal fat), and experiments can be designed
to identify genetic variants associated with abdominal fat traits.
The results from this type of experiment not only provide
useful comparative information for human obesity studies but
also lead to the genetic improvement for reducing abdominal
fat deposition in chicken. Moreover, there are fundamental
similarities between chicken and human genomes. For example,
Hillier et al. (2004) reported that the chicken genome is
significantly smaller in size than the human genome, but almost
the same number of genes. This explains that chicken genome
has a substantial reduction in the DNA duplications, DNA
repeat sequences, and fewer pseudogenes. About 60% of chicken
genes correspond to almost the same as a human gene. Chicken
genes responsible for the fundamental structure and function
of the cells displayed more similarity in the sequence with
human genes than did those involved in reproduction, host
defense mechanisms and environmental adaptation. Sequence
alignments of chicken and human genes show that about 2,000
human genesmay truly start at different locations than previously
thought. The detection of these (true) start locations, which
seem to lie within the previously hypothesized gene boundaries,
may help for understanding human diseases and the design and
development of new therapies. Chickens possess interleukin-26
(IL-26) gene, a protein regulating immune response. This IL-
26 was found only in human. The finding indicates that the
chicken can now serve as a model organism in which studies
can examine IL-26 function. Transgenic chicken, gene editing
etc. methods have now been established in chicken (Cooper
et al., 2017), this can give many advantages same as mice and
rats as an avian model for future studies of complex human
diseases.
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Adipose Tissues
Mammalian adipose tissues can be anatomically and functionally
distinct into white adipose tissue (WAT) and brown adipose
tissue (BAT). Recent studies have identified a new distinct type
of thermogenic adipocyte interspersed within WAT, called beige
cells or brite cells. Beige and brown adipocytes seem to be
functionally similar (Shabalina et al., 2013). White adipocyte
contains a single large lipid droplet, but brown adipocyte has
many small lipid droplets, a large number of iron-containing
mitochondria, and more capillaries than white adipocyte. The
high iron content gives brown adipocyte its identity; brown color
(Enerbäck, 2009). WAT plays a key role in energy homeostasis,
stores excess energy in the form of triglycerides. BAT takes
calories from WAT and burns it for producing heat (Sarjeant
and Stephens, 2012). In human, BAT is abundant in newborns,
which helps them keep warm by thermogenesis mediated by
uncoupling protein-1 (Cypess et al., 2009). Previously, BAT was
believed to be almost absent and without physiological role in
human adults (Cannon and Nedergaard, 2004). It is currently
accepted that BAT is existed in posterior regions of the neck,
thorax, and abdomen of lean and obese adult humans, and
may regulate energy metabolism, cold sensitivity, and body-
weight gain (Leitner et al., 2017; Nedergaard and Cannon,
2017). Similar to white adipocytes, brown adipocytes require key
transcription factors (such as peroxisome proliferator-activated
receptor gamma (PPARγ), CCAAT/enhancer-binding proteins
(C/EBPs), signal transducers and activators of transcription
(STATs), and Krüppel-like factor (KLF) proteins) that are so
important to accelerate adipocyte precursor cell differentiation
into mature adipocyte (Sarjeant and Stephens, 2012). The topic
has not been thoroughly investigated or being detected in
chicken.

QTL Locations Controlling Abdominal Fat
Deposition
Quantitative trait locus (QTL) is a section of DNA (the
locus) for a gene that influences a quantitative trait. Molecular
genetic techniques have made it possible to search genomes for
QTL. These loci have been identified and mapped on specific
chromosomes for many organisms, including livestock such as
chicken and cattle. In general, association studies are useful in the
investigation of quantitative traits. In chicken, genetic variations
in QTLs for many traits have been studied for over 20 years.
The strategy of identifying the QTLs or causal genes that are
related to abdominal fat traits is a powerful tool to illustrate
the genetic control of abdominal fat deposition. Abdominal fat
traits have been a focus of QTL mapping investigations and
several chromosomes are involved in chicken (Hu et al., 2016).
To our knowledge, study by Tatsuda and Fujinaka (2001) is the
first study to identify QTLs affecting abdominal fat deposition
in chicken. As reviewed in Table 1, these studies have identified
significant QTLs affecting abdominal fat deposition in chicken.
Large numbers of QTLs controlling abdominal fat deposition are
located on chromosome 1. However, comparing with different
approaches such as GWAS and RNA-seg, QTLs exhibit some
limitations fromwhich the identifiedQTL sites are generally large

and need subsequent fine mapping to distinguish closely linked
genes or causal variants with relevance to target traits.

The Candidate Gene Approach of
Abdominal Fat Traits
The candidate gene approach is another popular approach for
QTL identification. Functions of genes are excellent candidates
for linkage relationships with quantitative traits of important
traits (Zhu and Zhao, 2007; Bohannon-Stewart et al., 2014). In
general, the candidate gene approach has been widely used in the
detection of genes responsible for disease and quantitative traits
as well as evolutionary genomics, and has revealed important
findings. In chickens, this approach has been used for many
decades to distinguish genes associated with important traits. A
brief summary of some candidate genes involved in abdominal
fat deposition in chicken is given in the following lines.

Adipocyte fatty acid-binding protein (A-FABP; also known as
FABP4) is a subfamily of the fatty acid-binding proteins (FABPs),
and seem to function in fat metabolism. Shi et al. (2010) evaluated
the expression of FABP4 in different tissues and its correlation
between expression of fat and lean chickens in abdominal adipose
tissue. The protein expression of this gene was expressed only
in abdominal adipose tissue and there was no protein band
detected in heart, liver, muscle, muscle stomach, spleen, small
intestine, lung, and kidney. The FABP4messenger RNA (mRNA)
expression in fat chicken was lower than that of lean chicken at 2,
3, 4, 6, 7, 9, and 10 weeks (wk) of age, and the protein expression
of fat chicken was lower than that of lean chicken at 6 and 10 wk
of age. However, FABP4 may regulate abdominal fat deposition
through lipolysis. Another two types of fatty acid-binding protein
subfamily named L-FABP (liver fatty acid-binding protein) and
liver “basic” fatty acid-binding protein (Lb-FABP) have been
investigated their expression in liver between fat and lean male-
chickens by Zhang et al. (2013). L-FABP mRNA expression in
fat birds was higher than that in lean birds at 2, 3, 4, 5, 6, and
10 weeks of age, and L-BABP mRNA expression in fat birds was
higher than that in lean birds at 1, 2, 3, 4, 8, and 10 wk of age.
Western blotting demonstrated that the L-FABP protein level in
fat birds was higher than that in lean birds at 3, 5, 6, and 7 wk of
age, and L-BABP protein level in fat birds was higher than that
in lean birds at 3, 4, 5, and 6 wk of age. However, L-FABP and
L-BABP may regulate abdominal fat deposition through changes
in their expression and lipolysis.

The expression of the high mobility group AT-hook 1
(HMGA1) gene has been shown to be significantly associated
with relative abdominal fat content and abdominal fat weight
(AFW) in broiler (Larkina et al., 2011). This gene shows a
significant expression difference in the liver of broiler between
high and low abdominal fat groups, which is increased in high
abdominal fat group.

The fat mass and obesity associated (FTO) gene was identified
as an important locus harboring common variants impact on
obesity predisposition and fat mass (Scuteri et al., 2005; Frayling
et al., 2007). The FTO SNP is associated with higher body mass
index (BMI), as well as weight and abdominal adiposity in human
(Pausova et al., 2009). In chicken, FTO mRNA expression is
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TABLE 1 | QTL positions significantly controlling abdominal fat deposition in chicken.

(cM) Chr. Flanking marker Abdominal

fat trait

Population or breed/line

(age; days)

References

38 7 MCW316-MCW92 AFP F2 Satsumadori × WPR (112 d) Tatsuda and Fujinaka, 2001

126 1 ADL0188-LEI0068 AFP F2 originated from White leghorn Layer ×

Broiler cross (63 d)

Ikeobi et al., 2002

40, 50 3 ADL0177-MCW0083 AFW, AFP

50, 51 5 ROS0013-ADL0292 AFP, AFW

39, 41 7 LEI0064-ROS0019 AFP, AFW

127 9 MCW0135-ROS0030 AFP

17 13 ADL0147-ADL0225 AFW

0, 0 15 LEI0083-MCW0080 AFW, AFP

17 28 ROS0095-ADL0299 AFW and AFP

127 Z LEI0111-LEI0075 AFW and AFP

18, 25 1 ADL0160-HUJ0001 AFP, AFW F3 broiler dam lines originated from WPR (70 d) Jennen et al., 2004

241 1 MCW0058-MCW0101 AFP

214 1 LEI0174-ADL0361 AFW

573 1 ADL0350-MCW0107 AFP (63 d)

356 2 MCW0264-ADL0164 AFP (49 d)

0 3 MCW0037-MCW0148 AFP (49 d)

22 4 LEI0063-MCW0098 AFW (49 d)

71, 75 4 LEI0076-MCW0276 AFW, AFP (63 d)

126 4 LEI0094-LEI0122 AFW (49 d)

149 7 MCW0092-MCW0316 AFW (70 d)

27 11 ADL0287-ADL0210 AFW (49 d)

0 13 MCW0104-MCW0322 AFW (49 d)

0 15 MCW0031-MCW0226 AFP (49 d)

21 15 LEI0120-MCW0231 AFW (70 d)

22 15 LEI0120-MCW0231 AFP (70 d)

24 15 LEI0120-MCW0231 AFP (63 d)

21 18 ADL0304-MCW0217 AFP (70 d)

23 18 ADL0304-MCW0217 AFW (70 d)

0 27 MCW0076- MCW0146 AFP (63 d)

94 1 LEI0146-LEI0174 AFP F2 broiler × layer (42 d) Nones et al., 2005

196 1 ADL0020-LEI0160 AFW

251 1 ADL0148-MCW036 AFP

155, 168 1 MCW0297-LEI0101 AFP, AFW F2 broiler × broiler (40–42 d) McElroy et al., 2006

10, 13 2 MCW0205-MCW0082 AFP, AFW

274 3 MCW0277-MCW0207 AFP

160 4 LEI0076-MCW0240 AFW, AFP

64, 76 5 GCT0050-MCW0106 AFP, AFW

59 6 LEI0192-ADL0230 AFW

82, 85 7 MCW0201-MCW0236 AFP, AFW

25, 27 8 ADL0258- ADL0345 AFW, AFP

449 1 ADL0328-LEI0061 AFP F2 broiler × broiler (56 d) Lagarrigue et al., 2006

84 3 MCW0083-HUJ0006

121 3 HUJ0006-LEI0161

68 5 MCW0038-MCW0214

150 5 ADL0233-ADL0298

32 7 LEI0064-MCW0120

438 1 LE10162-LE10134 AFW F2 WPR × WPR (56 d) Park et al., 2006

125 3 MCW0222-MCW0004

41 7 ADL0169-ADL0279

69 1 MCW0010-MCW0106 AFP F2 NEAURP (84 d) Liu et al., 2007

183 1 LEI0068-MCW0297 AFW

548, 550 1 ADL0328-ROS0025 AFP, AFW

205 1 ACW0356-LEI0160 AFW F2 WRR × XH (90 d) Rao et al., 2007

221 1 MCW0112-MCW200 AFP
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highly expressed in abdominal fat at 19 wk of age in male
leghorn layer (Wang Y. et al., 2012). Jia et al. (2012) found
variations in FTO gene associated with growth, body weight
and fatness traits in chicken F2 populations crossing between
White Recessive Rock (WRR) and Xinghua (XH). Unfortunately,
very few reports concerned genetic mechanisms of FTO in fat
deposition in broiler.

Chicken transcription factor PPARγ is a key factor in the
regulation of abdominal fat deposition (Sato et al., 2004), and it is
a master regulator of chicken abdominal adipocyte development
in vitro (Wang L. et al., 2012; Yu et al., 2014). This transcription
factor was detected among the differentially expressed proteins
in adipose tissue of divergently selected broilers (Wang D. et al.,
2009). Correlation coefficients of the gene expression with AFW
and AFP were significantly higher (Larkina et al., 2011). PPARγ

expressions were up-regulated with age and significantly higher
in fat chicken than lean chicken lines at 2, 3, and 7 wk of age (Sun
et al., 2014).

A previous study on broiler adipose tissue development
investigated the effect of high-caloric diet vs. standard diet
on mRNA expression of 8 candidate genes [fibroblast growth
factor receptor 3 (FGFR3), EPH receptor B2 (EPHB2), insulin
like growth factor binding protein 2 (IGFBP2), gremlin 1, DAN
family BMP antagonist (GREM1), tenascin C (TNC), collagen
type III alpha 1 chain (COL3A1), acyl-CoA binding domain
containing 7 (ACBD7), and stearoyl-CoA desaturase (SCD)] in
abdominal fat at 2, 4, 6, and 8 wk of age. FGFR3 expression was
affected significantly by diet, age, and diet:age interaction;COL3A
expression was down-regulated by high-caloric diet; expression
of EPHB2, ACBD7, and SCD were affected by age; expression of
TNC was modulated by age:diet interaction; changes in GREM1
and IGFBP2 expressions were statistically similar (Bohannon-
Stewart et al., 2014).

The glucosamine-6-phosphate deaminase 2 (GNPDA2) is
a member of Glucosamine-6-phosphate (GlcN6P) deaminase
subfamily, which encodes an allosteric enzyme of GlcN6P
(Ouyang et al., 2016). In humans, the identified SNP rs10938397
of GNPDA2 gene is found to be associated with adipose
tissue accumulation and obesity (Renström et al., 2009). In
chicken, GNPDA2 gene expression has been examined in XH
chickens. This gene is highly expressed in chicken abdominal
fat, duodenum and hypothalamus, which may relate to fat
metabolism and energy balance. One SNP g.6667C>T of this
gene shows a significant association with AFW in F2 populations
crossing between WRR and XH chicken (Ouyang et al., 2016).
GNPDA2 gene expression is altered in response to fasting in
XH chicken. The GNPDA2 gene expression was up-regulated
with a high-glucose-fat diet compared to the control basal
diet in adipose tissue (abdominal fat and subcutaneous fat)
in XH chicken. When chicken GNPDA2 was overexpressed
in abdominal preadipocytes, the mRNA level of some genes
involved in fat and/or energy metabolism such as acetyl-coA
carboxylase alpha (ACACA), fatty acid synthase (FASN), FTO,
and PPARG coactivator 1 alpha (PPARGC1A) were up-regulated,
whereas GNPDA2 knockdown had the opposite effect. These
data show that the GNPDA2 may regulate fat deposition in both
human and chicken.

Recently, Jin et al. (2017) investigated the expression of 6
top candidate genes [steroid 5 alpha-reductase 3 (SRD5A3),
sarcoglycan zeta (SGCZ), DLC1 Rho GTPase activating
protein (DLC1), 1,4-alpha-glucan branching enzyme 1 (GBE1),
polypeptide N-acetylgalactosaminyltransferase 9 (GALNT9), and
DnaJ heat shock protein family (Hsp40) member B6 (DNAJB6)]
obtained from GWAS result (unpublished data) in abdominal fat
between fat and lean broilers of NEAUHLF population. SRD5A3
and SGCZ expressions were significantly positively associated
with AFW and AFP. DNAJB6 expression was significantly
negatively correlated with AFW and AFP. However, the DLC1,
GBE1, and GALNT9 are expressed in abdominal fat but no
association with AFW and AFP has been observed. Of these
GBE1 is differentially expressed between fast- and slow-growing
chickens (Claire D’Andre et al., 2013), which is expressed at
higher level in fast-growing chicken. For the observed effects, it is
still unclear how these genes regulating abdominal fat deposition.
Using microarray and RNA-seq, many candidate genes involved
in abdominal fat deposition in chickens have been identified.
These candidate genes will be summarized in a section on gene
expression studies.

Epistatic Interactions Contributing to
Abdominal Fat Deposition
Epistasis is an interaction between two or more genes or their
products of mRNA or protein to affect a single trait (Warden
et al., 2004), or the product of one genemay inhibit the expression
of another gene. The analysis of epistatic relationships between
fat and lean lines of chicken abdominal fat trait can suggest
ways in which genes control a trait. In chicken, it has been
suggested that the epistatic interaction between QTL or among
the candidate genes for specific trait could be a useful in defining
the genetic architecture of complex traits (Carlborg et al., 2003).
The association analysis, pairwise epistasis analysis and chicken
60K SNP chip have been used as a basic method and tool for
detecting epistatic interaction of genes and variants in abdominal
fat in chicken (Hu et al., 2010a,b; Li et al., 2013).

A previous work on chicken abdominal fat investigated the
epistatic interactions among 10 candidate genes, and constructed
a network of the interacting genes (Hu et al., 2010a). The epistatic
effects among the 10 candidate genes contributing to phenotypic
variation on the AFW were detected in both lines, and the
number of significant epistatic effects was much higher in the
fat line than in the lean line. Also, Hu et al. (2010b) analyzed
the epistatic effect between two SNPs c.2292G>A in ACACA
and c.-561A>C in fatty acid binding protein 2 (FABP2) on AFW
and AFP. The additive × additive epistatic components between
these two SNPs were detected to be significant or suggestively
significant on both AFW and AFP in lean lines, while, it was not
significantly associated with either AFW or AFP in fat lines at
7 wk of age, suggests that the epistasis mode may be dissimilar
between the lean and fat chicken lines. In addition, Li et al.
(2013) studied the epistatic effects on abdominal fat content in
broiler using genome-wide SNP-SNP interaction analysis. Fifty-
two pairs of SNPswere identified, comprising 45 pairs showing an
additive× additive and 7 pairs showing an additive× dominance
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epistatic effect. The contribution rates of significant epistatic
interactive SNPs ranging from 0.62 to 1.54%, with 47 pairs
contributing more than 1%. The SNP-SNP network affecting
abdominal fat weight was constructed. The network contains
SNPs Gga_rs14303341 and Gga_rs14988623 believed to be the
important nodes, and also the interaction between GGAZ and
GGA8 was mentioned. 22 QTL, 97 genes, and 50 pathways
were annotated on the epistatic interactive SNP-SNP network.
These data indicate that the quantitative traits of abdominal fat
deposition are often the result of a complex process controlled by
multiple loci (genes).

Copy Number Variations (CNVs) Affecting
Abdominal Fat Traits
CNV is a form of genomic structural variation, in which a large
DNA segment is either duplicated or deleted (Sudmant et al.,
2015). The variation in the DNA segments is approximately
ranging from kilobases to megabses (Mb) in size. The detection
methods of CNV contain the application of array-based
comparative genomic hybridization, SNP microarray and next-
generation sequencing. In chicken, CNVs affecting individual
genes such as endothelin-3 gene has been linked to visceral
pigment deposition in Silkies (Dorshorst et al., 2011). CNVs have
also been found to influence gene expression (Stranger et al.,
2007). To our knowledge, only one CNV study of abdominal fat
deposition in chicken has been conducted so far. Using the 60 k
SNP chip, Zhang H. et al. (2014) identified 188 and 271 CNV
regions (CNVRs) in the lean and fat broiler lines, respectively.
The fat lines have got less CNVRs than the lean lines, this may
be due to differences in the bird numbers (272 vs. 203 in the fat
and lean lines, respectively) and selection signature (Zhang et al.,
2012b), which mentioned that selective breeding for abdominal
fat traits may lead to CNV modifications. Integrated genome
analysis of the CNV regions, QTL and selection signature for
abdominal fat content has been conducted by the same study.
The integrated genome analysis suggests that 14 candidate genes
[including solute carrier family 9 member A3 (SLC9A3), guanine
nucleotide binding protein (GNAL; also known as G protein),
SPARC/osteonectin, cwcv and kazal like domains proteoglycan
3 (SPOCK3), annexin A10 (ANXA10), IKAROS family zinc
finger 2 (HELIOS), myosin light chain kinase (MYLK), coiled-
coil domain containing 14 (CCDC14), sperm associated antigen
9 (SPAG9), SRY-box 5 (SOX5), visinin like 1 (VSNL1), structural
maintenance of chromosomes 6 (SMC6), GEN1, Holliday junction
5’ flap endonuclease (GEN1), mesogenin 1 (MSGN1), and zona
pellucida protein (ZPAX)] may control abdominal fat deposition.
However, whether any of these genes has a critical role in chicken
adipogenesis is not known.

Single Nucleotide Polymorphisms (SNPs)
Affecting Abdominal Fat Deposition
SNP is a variation among individuals in a single nucleotide
that occurs at a single position based on the known reference
genome, where each variation exists in at least 1% of the
population. Individual SNPs may be present in one chicken
population and absent from another. Most SNPs are detected

by direct genomic DNA sequencing, microarray hybridization,
and SNP genotyping technologies. By studying these SNPs or
DNA polymorphisms in different subpopulations, it may be
feasible to define important genetic events and to predict a
chicken’s susceptibility to diseases. Because of their frequency
and distribution throughout the chicken or human genome,
SNPs have proven to be valuable genetic markers (Scuteri et al.,
2005; Renström et al., 2009; Jia et al., 2012). In this section,
the associations of SNPwith abdominal fat traits in chicken will
be summarized and discussed. Body weight or BMI may reflect
the status of abdominal adipose tissue development or obesity
phenomenon, and it has been widely reported in both avian and
mammalian studies (Frayling et al., 2007; Gilsing et al., 2012; Jia
et al., 2012). However, in this review, we will only summarize
the genes or SNPs that significantly associated with abdominal
fat traits in chicken. Another topic of practical importance is
the finding of short insertions and deletions (Indels). Indels are
also commonly referred to as deletion-insertion polymorphisms
(DIPs). Sequence variations or DNA polymorphisms in many
genes have been found to be significantly associated with chicken
abdominal fat traits (see Table 2). These DNA polymorphisms
were detected by direct-DNA sequencing of polymerase chain
reaction (PCR) products with dye-terminator chemistry analyzed
on automated DNA sequencers. SNPs can be located in the
different parts of the gene, such as 5′-flanking region, 5′-
untranslated region, intron, exon, and 3′-untranslated region
(Leng et al., 2009; Nie et al., 2009; Qing et al., 2011; Ouyang
et al., 2016). However, SNPs occur in non-coding regions
more frequently than in coding regions of the genome (Castle,
2011). In general, the genetic variation at the nucleotide level
influences the transcription and translation from gene to protein
expression subsequently influences adipose tissue development.
A nucleotide substitution that does change the amino acid
sequence specified by a codon is named a non-synonymous SNP.
A nucleotide substitution that does not change the amino acid
sequence specified by a codon is named a synonymous SNP. It has
been found that non-synonymous and synonymous coding SNP
shared similar likelihood and effect size for disease association
(Chen et al., 2010).

Identification of Candidate Genes
Associated With Abdominal Fat Traits
Using Genome Wide Association Studies
(GWAS)
GWAS is a technique able to screen majority or entire of
the genome using dense genomic markers and it has been
developed and utilized widely in the analyses of complex traits
in both avian and human (Scuteri et al., 2005; Frayling et al.,
2007; Sun Y. et al., 2013). GWAS identify SNPs and other
variants in genomic DNA associated with specific traits that
were not identified by previous microsatellite-based genotyping
studies. Using Illumina Bead Array of 3072 SNPs, significant
association of 15 and 24 SNPs with abdominal fat percentage in
F2 populations crossing between Broiler × Fayoumi or Broiler
X Leghorn at 8-wk-old, respectively, has been reported (Abasht
and Lamont, 2007). These SNPs are located on 10 chromosomes
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TABLE 2 | DNA polymorphisms significantly associated with chicken abdominal fat traits.

Polymorphisms Chr. Gene symbol Abdominal

fat traits

Population or breed/line

(age; days)

References

C2833A 5 TGFB3 AFW and AFP F2 Leghorn × Fayoumi (56 d) Li et al., 2003

9-bp indel 1 THRSPα AFW Broiler × Leghorn cross (56 d) Wang et al., 2004

9-bp indel 1 THRSPα AFW F2 WRR × XH (90 d) d’André et al., 2010

A663T 7 IGFBP2 AFW F2 WRR × XH (90 d) Lei et al., 2005

C1029T 1 PPARα AFW and AFP Arber Acres broiler (49 d) Meng et al., 2005

g.-1784_-1768del17 12 PPAR-γ AFW and AFP NEAUHLF (49 d) Qing et al., 2011

c.-1241G>A 12

c.-75G>A 12

A570C 1 IGF1 AFP F2 Leghorn × Fayoumi (56 d) Zhou et al., 2005

C1032T 7 IGFBP2 AFW and AFP F2 NEAURP (84 d) Li et al., 2006

1196C>A 7 IGFBP2 AFW and AFP F2 NEAUHLF (49 d) and F2 NEAU (84 d) Leng et al., 2009

C/T exon 1 2 FABP4 AFP Beijing-YOU (90 d) Luo et al., 2006

C/T exon 1 2 FABP4 AFW and AFP F2 NEAURP (84 d) and F2 CAURP (84 d) Wang et al., 2006

A/G exon 3 2 FABP4 AFP Arbor Acres and Baier chickens (84 d) Wang Q. et al., 2009

G144762A 27 GH AFW and AFP F2 WRR × XH (90 d) Lei et al., 2007

c.406T>C 8 PRKAB2 AFW 5 pure broiler lines and 3 crossbreeding lines (90 d) Wang J. L. et al., 2008

C-2047G 12 GHRL AFW F2 WRR × XH (90 d) Nie et al., 2009

c.782G>A 5 ATGL AFW F2 WRR × XH (90 d) Nie et al., 2010

c.2292G>A 19 ACACA AFW and AFP F2 NEAUHLF (49 d) and F2 NEAU (84) d) Tian et al., 2010

g.240066C>T 13 ADRB2 AFP F2 Anak broiler × White leghorn (70 d) and

backcrossed population (42 d)

Twito et al., 2011

g.2422364G>A 10 MFGE8

g.2422376G>A 10 MFGE8

rs10731268 28 ACSBG2 AFW and AFP F2 WRR × XH (90 d) Claire D’Andre et al., 2013

rs15248801 28 ACSBG2 AFW

rs15822158 18 FASN AFP

rs15822181 18 FASN AFW

C3286>T 9 GHSR AFW and AFP Arian broiler (42 d) Darzi et al., 2014

g.7300C>T 11 KCTD15 AFW F2 WRR × XH (90 d) Liang et al., 2015

g.32333C>T 11 KCTD15 AFW

g.6667C>T 4 GNPDA2 AFW F2 WRR × XH (90 d) Ouyang et al., 2016

(GGA1, 2, 3, 4, 7, 8, 10, 12, 15, and 27) and considered to be
associated with QTL with cryptic alleles as an essential factor
in heterosis for fatness in the two chicken F2 populations. The
candidate genes identified by Abasht and Lamont, including
FABP4, apolipoprotein B (apoB), insulin like growth factor 1
(IGF1), insulin-like growth factor 2 (IGF2), L-FABP, Myostatin,
PPARGC1A, transforming growth factor beta 3 (TGFB3), and
thyroid hormone responsive α (THRSPα). Of these, PPARGC1A
(also known as PGC-1α) is a master regulator of energy
metabolism. PPARGC1A may be also involved in regulating
blood pressure, cholesterol homoeostasis, and the development
of obesity (Tobina et al., 2017). It has been demonstrated that
myostatin increased expression of CCAAT/enhancer-binding
protein alpha (C/EBPα) and adipogenesis in mesenchymal stem
cells, suggesting a myostatin can in turn modulate PPAR-
γ expression and/or function, reviewed by Shi et al. (2007).
In chicken, studies have shown that DNA polymorphisms in
FABP4, IGF1, TGFB3 and THRSPα significantly associated with
abdominal fat traits (Li et al., 2003; Wang et al., 2004, 2006;

Zhou et al., 2005; Wang Q. et al., 2009). L-FABP may also be
involved in lipid metabolism (Zhang et al., 2013). Using the
Illumina 60K SNP Beadchip in Beijing-You chicken samples
(100-d-old), Liu et al. (2013) identified several candidate genes
[Pumilio homolog 1 (PUM1), small nuclear ribonucleoprotein U5
subunit 40 (SNRNP40), zinc finger protein 521 (ZNF521), and
ankyrin repeat and SOCS box containing 6 (ASB6)] associated
with abdominal fat traits. To date, it remains unclear the role of
these 4 candidate genes in fat deposition.

Sun Y. et al. (2013) used GWAS (600K SNP array) and
mRNA expression analysis to identify loci and genes influencing
abdominal fat traits in chicken. They identified SNPs at 15 loci
were associated with abdominal fat traits (at day 93 of age) in
chicken F2 resource population crossing between Beijing-You
chickens and Cobb broilers. Seven candidate genes [RET proto-
oncogene (RET), natriuretic peptide B (NPPB), sterol regulatory
element binding transcription factor (SREBF)1, collagen type XII
alpha 1 chain (COL12A1), vacuolar protein sorting 4 homolog
B (VPS4B), BR serine/threonine kinase 2 (BRSK2), forkhead
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box C1 (FOXC1)] containing or near the SNPs significantly
associated with abdominal fat traits were determined. The
mRNA expressions of these 7 candidate genes were evaluated
by quantitative real-time PCR, expressions of RET, NPPB
and SREBF1 were found to be significantly up-regulated in
chicken with the highest-abdominal fat content group compared
to those in the lowest-abdominal fat group. However, the
expressions of COL12A1, VPS4B, BRSK2, and FOXC1 were
found to be significantly down-regulated in highest-abdominal
fat group or lowest-abdominal fat group, but the exact reason
for this is unknown. RET (Söhle et al., 2012), SREBF1 (Sekiya
et al., 2007; Sayolsbaixeras et al., 2016), and NPPB (Glöde
et al., 2017) are known to play a role in lipid metabolism
in human or rodents. In chicken, SREBF1 gene was highly
expressed in abdominal adipose tissue (Wang et al., 2010) and
is involved in fat metabolism in Beijing-You chickens (Fu et al.,
2014). Expression of NPPB is positively correlated with the
abdominal fat weight of Beijing-You chickens (Huang et al.,
2015b).

Selection Signature Analysis of Abdominal
Fat Traits
Selection signature analysis is a promising approach to address
the unexplained variability within a data sample from genetic
drift and hitchhiking effect. Studies of selection signature
revealedmany genes associated with chicken abdominal fat traits.
Integrated analysis of selection signature and GWAS provides a
new approach that has the powers of both methods. Integrated
analysis of selection signature and GWAS (60 k SNP chip)
has been reported between lean and fat chicken lines (Zhang
et al., 2012a). This integrated analysis identified 10 selection
signatures on chromosomes 1, 2, 4, 5, 11, 15, 20, 26, and Z.
The proprotein convertase subtilisin/kexin type 1 (PCSK1; also
known as PC1) region (Z chromosome) at 55.43–56.16Mb has
been identified as the candidate region for abdominal fat yield
by the same study. This region had 26 SNP markers and 7 genes
[membrane associated ring-CH-type finger 3 (MARCH3), solute
carrier family 12 member 2SLC12A2, fibrillin 2, endoplasmic
reticulum aminopeptidase 1, calpastatin, PCSK1 and elongation
factor for RNA polymerase II 2], and it is believed to be the most
heavily selected region. Genetic variants in the human PCSK1
gene may be associated with obesity (Renström et al., 2009). To
date, it remains unclear whether these 26 SNP markers or the
7 genes have any influence on the regulation of abdominal fat
deposition in chicken. Another genome-wide signature analysis
was performed between lean and fat chicken lines (Zhang
et al., 2012b). This genome-wide signature analysis identified 10
candidate genes [retinoblastoma 1(RB1), Bardet-Biedl syndrome
7 (BBS7), monoamine oxidase A (MAOA), monoamine oxidase B
(MAOB), EH domain binding protein 1 (EHBP1), LRP2 binding
protein (LRP2BP), low-density lipoprotein receptor-related protein
1B (LRP1B), myosin VIIA (MYO7A), myosin IXA (MYO9A),
and phosphoribosyl pyrophosphate synthetase-associated protein
1 (PRPSAP1)] may play a role in chicken abdominal fat
accumulation.

Gene Expression Studies
Microarray Studies
A growing number of biomedical and biological research-
questions count on acquiring global views of gene expression.
Microarray technology is a powerful technique used to compare
differences in gene expression between two mRNA samples.
Gene expression analysis by microarray and high throughput
RNA sequencing (RNA-Seq) provides a wide scanning of
the transcriptome. Using microarray or high-throughput
sequencing in chicken high and low abdominal fat samples,
researchers have identified many candidate genes related to
abdominal adipose tissue development. (Wang et al., 2007)
conducted gene expression analysis (microarray) in abdominal
adipose tissue at 7-wk-old between fat and lean chicken lines
(NEAUHL populations). The gene expression analysis detected
13,234–16,858 probe sets. Of these, several genes involved in
lipid metabolism and immune response, such as FABP, thyroid
hormone-responsive protein (Spot14), lipoprotein lipase (LPL),
insulin-like growth factor binding protein 7 (IGFBP7), and major
histocompatibility complex (MHC) were highly expressed. In
contrast, some genes related to lipogenesis, such as leptin receptor,
SREBF1, ApoB, and IGF2 were not detected. 230 differentially
expressed genes between the two lines in adipose tissue have
been found by the same study. These differentially expressed
genes are found to be mainly involved in lipid metabolism, signal
transduction, energy metabolism, tumorigenesis, and immunity.
The most highly expressed genes, such as A-FABP and LPL were
apparently not differentially expressed between the two lines
(Wang et al., 2007). In contrast, these two genes (A-FABP and
LPL) have been found to be differentially expressed between
high-fat vs. low-fat group, and fast-growing vs. slow-growing
lines in chickens (Shi et al., 2010; Claire D’Andre et al., 2013).
Fast growing WRR and slow-growing XH chickens were used
to characterize specific genes for fat deposition by Affymetrix
Genechip R© Chicken Genome Arrays 32773 transcripts (Claire
D’Andre et al., 2013). 400 genes in the liver and 220 genes in
hypothalamus were detected to be differentially expressed in fast-
growing and slow-growing chickens, respectively. Expression
levels of gene involved in lipid metabolism [sulfotransferase
family cytosolic 1B member 1 (SULT1B1), acyl-CoA synthetase
bubblegum family member 2 (ACSBG2), patatin like phospholipase
domain containing 3 (PNPLA3), LPL, acyloxyacyl hydrolase
(AOAH)], carbohydrate metabolism [mannosyl (alpha-1,3-)-
glycoprotein beta-1,4-N-acetylglucosaminyltransferase, isozyme B
(MGAT4B), xylulokinase (XYLB), GBE1, phosphoglucomutase 1
(PGM1), hexokinase domain containing 1 (HKDC1)], cholesterol
biosynthesis [farnesyl diphosphate synthase (FDPS), lanosterol
synthase (2,3-oxidosqualene-lanosterol cyclase) (LSS), 3-hydroxy-
3-methylglutaryl-CoA reductase (HMGCR), NAD(P) dependent
steroid dehydrogenase-like (NSDHL), 24-dehydrocholesterol
reductase (DHCR24), isopentenyl-diphosphate delta isomerase
1 (IDI1), malic enzyme 1(ME1), hydroxysteroid 17-beta
dehydrogenase 7 (HSD17B7), and other processes [cytochrome
P450, family 1, subfamily A, polypeptide 1 (CYP1A4), cytochrome
P450, family 1, subfamily A, polypeptide 1 (CYP1A1), aldo-keto
reductase family 1 member B10-like 1 (AKR1B1), cytochrome
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P450 family 4 subfamily V member 2 (CYP4V2), and D-aspartate
oxidase (DDO)] were higher in the fast-growing chicken than
in the slow-growing chickens. Another study by Resnyk et al.
(2013) conducted microarray analysis in chicken samples with
high or low abdominal fat deposition (2.5-fold difference at
9-wk-old). They revealed that 131 differentially expressed genes
as the main effect of genotype, 254 differentially expressed genes
as an interaction of age and genotype and 3,195 differentially
expressed genes as the main effect of age. Many of these
differentially expressed genes belong to different pathways
controlling the lipid synthesis, metabolism and transport or
endocrine-signaling pathways (adipokines, retinoid and thyroid
synthesis). In addition, using Ingenuity Pathway Analysis (IPA),
many target genes of the transcription factors that control
the divergence of abdominal fatness between fat and lean
chickens have been predicted by the same study. For example,
C/EBPα: 34-; PPARγ : 48-; SREBF1: 29-target genes, respectively.
However, all these predicted target genes still need to be validated
empirically. Moreover, many adipogenic and lipogenic genes
are highly expressed in high-abdominal fat chicken, whereas
many others involved in blood-coagulation pathway are highly
expressed in low-abdominal fat chicken (Resnyk et al., 2013).
For example, the lipogenic genes such as FASN, SCD, SREBF1,
SREBF2, and THRSPα are differentially expressed and greater in
high-abdominal fat chickens than did low-fat chickens. The high
expressions of blood-coagulation genes in low-fat chickens may
be due to DNA polymorphisms in the blood-coagulation genes
of the lean-chicken that can affect blood coagulation protein
levels (de Lange et al., 2001). Adipocytes are a major source of
free fatty acids in some mammals, such as dog and cat, whereas
liver is widely considered as the major source or active site of
de novo lipogenesis in avian and human (Leveille et al., 1975;
Patel et al., 1975; Stangassinger et al., 1986; Richard et al., 1989;
Han et al., 2009). However, it has been suggested that abdominal
adipocytes could make a more important contribution to fatty
synthesis in avian than previously appreciated (Griffin et al.,
1992; Resnyk et al., 2015).

RNA Sequencing Technologies
Currently, high-throughput RNA-Seq techniques have been
widely used to uncover molecular biomarkers that may serve
as potential new predictors and to examine differential or gene
expression level between sample groups. In addition, RNA-Seq is
a wider dynamic range andmore sensitive thanmicroarrays, with
novel detection of transcript and long non-coding RNA (Weikard
et al., 2013). RNA-Seq analysis was performed by Resnyk et al.
(2015) to identify candidate genes for abdominal fat deposition in
two broiler lines which exhibit a 2.8-fold difference in abdominal
fatness at 7-wk of age. They showed that about 164 genes were
up-regulated in fat chicken, while 155 genes were up-regulated
in lean chicken. High expressions of lipogenic, angiogenic,
and adipogenic genes were detected in fat chickens, whereas
numerous hemostatic and lipolytic genes are expressed higher in
lean chicken. The highest expressed and differentially expressed
fat metabolism genes including 12 genes [fatty acid binding
protein 3 (FABP3), fatty acid binding protein 5 (FABP5), fatty acid
desaturase 2(FADS2), FASN, glycerol-3-phosphate dehydrogenase

1 (), hexokinase 2 (), HSD17B7, IGFBP2, malate dehydrogenase
2 (MDH2), progesterone receptor membrane component 1
(PGRMC1), serine incorporator 1 (SERINC1), and SCD] were
found to be up-regulated and three genes [ATP-binding cassette,
sub-family A (ABC1), member 1 (ABCA1), IGFBP7, and platelet
derived growth factor receptor beta (PDGFRB)] were found to be
down-regulated. In addition, 21 highest expressed fat metabolism
genes including PPARγ , SREBF2, FABP4, adiponectin, C1Q and
collagen domain containing (ADIPOQ), LPL, GHR, perilipin
(PLIN) 1, PLIN2, signal transducer and activator of transcription
5B (STAT5B), ELOVL fatty acid elongase 1 (ELOVL1), ACACA,
ACACB, ACAD9, acyl-CoA dehydrogenase, long chain (ACADL),
ATP citrate lyase (ACLY), acyl-CoA oxidase 1 (ACOX1), acyl-
CoA synthetase long-chain family member 1 (ACSL1), acyl-CoA
synthetase short-chain family member 2 (ACSS2), ribonuclease
A family member k6 (RNASE6; also known as ANG), THRSPα

and NFKB inhibitor alpha (NFKBIA) are found by the same
study. However, some well-known fat metabolism genes or
transcript isoforms in mammals/birds were not identified, such
as C/EBPα, SREBF1, adipose triglyceride lipase (ATGL), and
signal transducer and activator of transcription 3 (STAT3) (Rosen
et al., 2002; Zimmermann et al., 2004; Lefterova et al., 2008;
Resnyk et al., 2013; Yuan et al., 2017). These discrepancies in
the expression are probably due to difference in species, age,
environmental factors and the stage of adipogenesis. Another
integrated analysis of mRNA and miRNA, performed RNA-
seq analysis between high and low abdominal fat libraries,
a total of 303 differentially expressed genes were detected,
and among them 11 genes are involved in fat metabolism-
signaling pathways (ATP binding cassette subfamily D member
3 (ABCD3), FADS2, SCD, PECR, AKT serine/threonine kinase 1
(AKT1), and caveolin 2 (CAV2) are upreguated, whereas ACSL1,
chondroadherin (CHAD), integrin subunit alpha 11 (ITGA11) and
laminin subunit alpha 2 (LAMA2) are downregulated (Huang
et al., 2015a). More recently, another integrated analysis of
mRNA and lncRNA, conducted RNA-seq in chicken abdominal
preadipocytes at different stages (day 0, 2, 4, and 6) during
abdominal preadipocyte differentiation. This RNA-seq identified
1759 genes to be differentially expressed across various stages;
days 0, 2, 4, and 6 of preadpiocyte differentiation (Zhang
et al., 2017). These differentially expressed genes showed a
decline in the number as the differentiation of preadipocytes
advanced. Several pathways have been found for the first
time by the same study, including the propanoate metabolism,
fatty acid metabolism, and oxidative phosphorylation pathways.
In summary, the chicken HSD17B7 gene was detected by
microarray and RNA-seq from two studies (Claire D’Andre et al.,
2013; Resnyk et al., 2015) to be highly expressed in fast-growing
chicken or high-fat group; therefore, it may play a potential role
in fat deposition in chicken.

Multiple Factors Regulating Abdominal
Adipocyte Precursor Cell Proliferation and
Differentiation in Vitro
Preadipocyte (also known as adipocyte precursor cell) is an
undifferentiated fibroblast that can be stimulated by different
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ways to form an adipocyte. In vitro studies of preadipocyte
development prepared from abdominal adipose tissue might help
us to explore the molecular mechanisms underlying abdominal
adipose accumulation because many genes, transcription factors,
non-coding RNAs are expressed in tissue/cell-specific manner.
Indeed, it is essential to fully identify the genes or pathways that
regulated in abdominal fat through culture system, and establish
transcriptome atlas for abdominal adipose tissue development.

Adipogenesis is a process in which an undifferentiated
mesenchymal precursor differentiates into a preadipocyte, which
then undergoes a secondary differentiation stage to become
a mature adipocyte. It has been reported that adipogenesis
can be completed by various stages, including mesenchymal
precursor (proliferation; capable of differentiating), committed
preadipocyte (proliferation, commitment to differentiate),
growth-arrested preadipocyte (loss of proliferation), mitotic
clonal expansion (some rounds of cell divisions), terminal
differentiation (arrest of cell cycle; PPARγ and C/EBPα

induction) and mature adipocyte (lipid-filled adipocyte;
adipocyte genes transcriptional activation; elevated expression of
adipocyte genes), respectively (Gregoire et al., 1998; Sarjeant and
Stephens, 2012).

In vitro primary cell culture system from the stromal-
vascular fraction of chicken abdominal fat has been developed
by Ramsay and Rosebrough (2003). Unfortunately, the effect of
genes or transcriptional factors on the regulation of preadipocyte
proliferation and differentiation has not been well-studied in the
chicken, probably because of the lack of chicken preadipocyte
cell line. Recently, immortalized preadipocytes were successfully
produced from chicken abdominal adipose tissue of 10-day-
old (Wang et al., 2007). Both primary adipocyte precursor
cells and immortalized cell lines can be used to characterize
genetic factors that promote/inhibit preadipocyte proliferation
and/or differentiation. However, immortalized cells can modify
the biology and the genetic material of the cell and must be
taken into consideration in any analysis because these cells have
undergone significant mutations to turn into immortal (Marx,
2014). At the cellular level, adipocyte precursor cell proliferation
and differentiation are under the regulation ofmany genes and/or
transcription factors, and endocrine factors.

The transcription factor PPARγ is known as the master
regulator of adipocyte development in mammals and birds
(Tontonoz et al., 1995; Gerhold et al., 2002; Meng et al.,
2005; Tontonoz and Spiegelman, 2008; Wang Y. et al., 2008;
Yu et al., 2014). C/EBPα is another adipogenic transcription
factor and is a key regulator for adipogenesis in mammalian
and avian (MacDougald and Lane, 1995; Yu et al., 2014).
Terminal adipocyte differentiation is tightly controlled by
multiple transcription factors, such as PPARγ and C/EBPα,
which are up-regulated in a coordinated fashion and could
lead to adipocyte-specific gene expression (Rosen et al., 2002).
In chicken, it have been reported that solute carrier family 27
member 1 also known as FATP1 (Qi et al., 2013), KLF 2 (Zhang Z.
W. et al., 2014), and PPARγ andC/EBPα (Yu et al., 2014) controls
fat deposition in vitro; however, more studies are necessary to
clarify the mechanism(s) of action. In mammals, it’s well-known
that the GATA binding protein (GATA) 2 and 3 have negative

effects on adipogenesis (Sarjeant and Stephens, 2012). In chicken,
KLF2 up-regulates GATA2 expression (Zhang Z. W. et al., 2014);
therefore, both GATA2 and GATA3 in chickens may have a
similar function to that in mammals.

Several signaling pathways have been reported to be associated
with chicken adipogenesis. Among them, adiponectin suppressed
chicken preadipocyte differentiation by down-regulating C/EBPα

and FASN protein expression, while upregulating ATGL protein
expression. The mechanism of action was revealed in which
this adiponectin induces p38 mitogen-activated protein kinase
(p38 MAPK; also known as MAPK) and activating ATF-
2, which leads to inhibition of the TOR/p70 S6 Kinase
signaling pathway (Yan et al., 2013). Another signaling pathway,
recombinant globular adiponectin inhibits fat deposition by
down-regulating adipogenic marker genes, such as C/EBPα

and FASN expression, while upregulating ATGL expression in
chicken adipocytes. The mechanism of action was explained
in which the recombinant globular adiponectin activating the
phosphorylation levels of p38 MAPK/ATF-2, while suppressing
the phosphorylation levels of TOR/p70 S6 kinase pathways (Jun
et al., 2014). Recently, using deep RNA-seq combined with
Gene Ontology analysis in the integrated analysis of mRNAs
and lnRNAs, Zhang et al. (2017) identified several pathways
associated with preadipocyte differentiation at different stages,
such as glycerolipid metabolism, mammalian target of rapamycin
(mTOR) signaling, PPAR signaling, and MAPK signaling
pathways. These pathways are well-known in other species to play
essential roles in preadipocyte differentiation. Among them, four
signaling pathways are found to be significantly associated with
abdominal preadipocyte differentiation, such as Wnt, MAPK,
and TGF-b. Furthermore, other novel pathways associated with
preadipocyte differentiation were also identified by the same
study, such as propanoatemetabolism, fatty acidmetabolism, and
oxidative phosphorylation.

MicroRNAs (miRNAs) Involved in
Abdominal Fat Deposition
miRNAs are small non-coding single-stranded RNA molecules
(found in plants, animals and some viruses) consisting of
about 22 nucleotides in length that bind or target the 3′-
untranslated region of mRNAs to regulate gene expression
post-transcriptionally (Ambros, 2004; Bartel, 2004). miRNAs
are produced in the nucleus from precursor molecules
termed primiRNAs, which may consist of hundreds or
thousands of nucleotides that produce the transcriptional
units of polycistronic or monocistronic. miRNAs can affect
protein production by translational repression or mRNAs
destabilization (Filipowicz et al., 2008; Rottiers and Naar,
2012). miRNAs regulate a wide range of biological processes,
including adipogenesis, lipid metabolism, cell proliferation &
differentiation, growth, apoptosis, carcinogenesis and disease.
Early molecular cloning experiment has only identified 47
known miRNAs in chicken abdominal adipose tissue (Wang X.
G. et al., 2012). Yao et al. (2011) detected 159 known miRNAs
by Solexa sequencing in Arbor Acres preadipocytes isolated
from abdominal fat. Recently, using deep sequencing, Wang
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et al. (2015) identified 33 differentially expressed miRNA
in preadipocyte isolated from abdominal adipose tissues of
two broiler lines selected for abdominal fat content. The
most abundant miRNAs are the let-7 family, suggesting
their functional roles in fat accumulation. More recently,
integrated analysis of differentially expressed miRNAs and
mRNAs has been assessed by deep sequencing in abdominal
adipose tissues derived from a cross between a slow-growing
(low-abdominal fat) Chinese local breed (Beijing-You) and a
rapid-growing (high-abdominal fat) commercial broiler line
(Cobb-Vantress). Compared with the low-abdominal fat, 62
differentially expressed miRNAs and 303 differentially expressed
genes were determined in the high-abdominal fat group, and
106 differentially expressed genes were predicted to be as a
target for the 62 differentially expressed miRNAs (Huang et al.,
2015a). Several miRNAs have been predicted to be highly
involved in the regulation of chicken abdominal fat or fat cell
development; and are presented in Table 3. Of these, seven
miRNAs (miR-30d, miR-26a, let7c, let7j, let7f, let7b, and let7a)
might be the most involved miRNAs in fat deposition. Further
studies should first focus on the mechanisms of action of these
seven miRNAs in adipogenesis because they were detected
by more than one study to be highly regulated in abdominal
adipose tissue development. In chicken, miR-122 predicted to
bind PPARγ , suggesting that it may play an essential role in
the growth of adipose tissue. gga-miR-19b-3p is a direct target
of ACSL1 by downregulating ACSL1 gene expression (Huang
et al., 2015a). Overexpression of gga-miR-19b-3p promotes both
preadipocyte proliferation and their subsequent differentiation
in chicken, indicating their functional roles in adipogenesis and
fat deposition.

Regulation of Abdominal Fat Deposition by
Long Non-coding RNAs (LncRNAs)
LncRNAs are a novel class of regulatory RNAs with sizes ranging
from 200 bp to a greater than 100 kb (Novikova et al., 2013).
LncRNAs are involved in various aspects of cell biology such
as adipogenesis, hepatic lipid metabolism, energy balance, cell
proliferation, cell migration, tumor metastasis, transcriptional
interference, activation, post-transcriptional regulation, genomic
imprinting, X chromosome inactivation, nuclear trafficking,

and chromatin modifications (Ma et al., 2013; Sun L. et al.,
2013; Tripathi et al., 2013; Maass et al., 2014; Zhao and Lin,
2015; Li et al., 2016). As far as we know, only one lncRNA
study in abdominal preadipocytes in chicken has been reported
to date (Zhang et al., 2017). This lncRNA study identified
27,023 novel lncRNAs, 1,336 differentially expressed lncRNAs,
and 1,759 differentially expressed mRNA in preadipocytes
at different stages (day 0, 2, 4, and 6) of differentiation.
The number of differentially expressed genes (lncRNAs and
mRNAs) across different stages declined as differentiation
advanced. In addition, the identified novel lncRNAs in chicken
abdominal preadipocytes shared many properties with those
identified in other species but fewer in the number of
exons and shorter in the sequence size. 4915 target protein-
coding genes were identified by the same study. Furthermore,
among differentially expressed lncRNAs and mRNAs, 9 central
and highly connected lncRNAs and mRNAs [XLOC_068731,
XLOC_022661, XLOC_045161, XLOC_070302, chromodomain
helicase DNA binding protein 6 (CHD6), LLGL1, scribble cell
polarity complex component (LLGL1), neuralized E3 ubiquitin
protein ligase 1B (NEURL1B), kelch like family member 38
(KLHL38), and ARP6 actin-related protein 6 homolog (ACTR6)]
have been identified by bioinformatic analyses (Cytoscape 3.4.0
software). The identification of these connections important
because studies have proposed that lncRNAs could control
and are highly correlated with the expression of adjacent or
neighboring mRNAs (Ren et al., 2016; Wang et al., 2016),
suggesting that lncRNAs may act in cis on neighboring protein-
coding genes to control the differentiation of abdominal
preadipocyte.

Epigenetic Alteration Controls Abdominal
Fat Traits
Epigenetic mechanisms are likely to be involved in the
development of abdominal adipose tissue. During adipose tissue
development, epigenetic regulators are capable of promoting
the transcription of a selective group of gene and participate
in adipogenesis (Li et al., 2010; Musri and Parrizas, 2012).
Gene expression during adipogenesis can also be regulated
by epigenetic modification, such as DNA methylation. DNA
methylation is a key epigenetic contributor to the maintenance

TABLE 3 | Several miRNAs found to be highly involved in the regulation of chicken abdominal fat deposition or fat cell accumulation identified by deep sequencing.

miRNAs Expression or biological

status (candidate)

Abdominal fat

Tissue/cell

References

miR-222, miR-30d, miR-26a, let7c, let7a, let7d, let7j, let7f, let7b, and

miR-30a-5p.

Highly expressed Abdominal preadipocyte Yao et al., 2011

let-7 miRNA family (let-7a, j, b, f, c, and k) Most abundant Abdominal preadipocyte Wang et al., 2015

miR-206, miR-31, miR-3535, miR-17-3p, miR-429 and miR-200b

(up-regulated in fat line), or miR-454 and miR-1b (down-regulated in

lean line).

Most significantly differentially

expressed

miR-19a-3p, miR-19b-3p, miR-17-5p, miR-30d, miR-26a,

miR-103-3p, miR-27b-3p, miR-142-3p, and miR-92-3p.

Strong candidate Abdominal fat tissue Huang et al.,

2015a

miR-3535, miR-30e-5p, miR-301b-3p, miR-215-5p, miR-200a-3p,

miR-133a-3p, miR-133c-3p, and miR-146b-5p.

Potentially candidate
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of gene silencing. DNA methylation levels in mammals are
reprogrammed during development. In avian andmammal, three
DNA methyltransferase genes including Dnmt1, Dnmt3a, and
Dnmt3b, coordinately are regulating the methylation of DNA
in the genome. Dnmt1 plays a main role in the maintenance
of DNA methylation. On the other hand, Dnmt3a and Dnmt3b
are developmentally regulated genes required for the initiation
of de novo methylation in chicken and mouse embryos (Okano
et al., 1999; Rengaraj et al., 2011). In rodents, maternal supply
of methyl groups throughout pregnancy altered the DNA
methylation of candidate genes such as PPARα in pups (Lillycrop
et al., 2005). It seems that DNA methylation regulates the
expression of PPARγ in mammalian and avian adipogenesis
(Fujiki et al., 2009; Sun et al., 2014; Yu et al., 2014). In
chicken preadipocyte, the CpG loci of PPARγ promoter were
highly methylated in vitro (Yu et al., 2014). In addition, the
promoter methylation status of the chicken PPARγ gene has
been investigated by Sun et al. (2014) in NEAUHLF chicken
populations; the abdominal fat percentage of the fat chicken
line was 4.5-fold higher than that of the lean chicken line.
There is a differential methylation between the lean and fat
chickens, PPARγ promoter methylation levels were significantly
higher in lean than fat broilers, but the mRNA level was in
opposite manner at 2, 3, and 7 wk of age during adipose
tissue development. Although strong DNA methylation at
promoters is well-known to be associated with transcriptional
repression, recent studies suggest that DNA methylation outside
promoters also plays pivotal roles in gene regulation (Lou et al.,
2014).

Knowledge Gaps to Be Addressed
Abdominal fat deposition is a complex trait and the difficulty
this poses in identifying all the interacting genetic, epigenetic
and environmental factors involved. Although results from
research on the genetic mechanism of fat deposition in chicken
is beginning to accumulate, many gaps in the knowledge base
need to be addressed before evidence-based recommendations
can be formulated specifically for reducing fat deposition.
The focus of abdominal fat deposition research to date has
largely focused on detecting the candidate genes by SNPs,
GWAS and gene expression studies; however the knowledge
gaps are addressed in the following lines: A- Circular RNAs
(circRNAs) and DNA methylation by whole-genome bisulfite
sequencing (WGBS) in abdominal fat deposition need to be
identified because they may regulate fat storage. The circRNAs
are a new class of non-coding RNA molecules which do not
have the terminal structures (5-cap and polyA tail) but are
covalently linked to form a closed circular structure. CircRNAs
are widely expressed in animal cells and have been shown
to act as sponges for miRNAs (Hansen et al., 2013). Circ-
ZNF609 is a circular RNA that can be translated into a
protein, and mediate transcriptional and post-transcriptional
control of gene and protein expression (Legnini et al., 2017).
The WGBS is highly sensitive and provides quantitative DNA
methylation measurements (Lou et al., 2014). B- Data are
also needed on the functional mechanism and roles of the
many detected candidates from genes, transcription factors,

pathways, miRNAs, and lncRNAs to identify novel biomarkers
for reducing abdominal fat accumulation. C- Research is needed
to determine the regulatory function of DNA methylation of
gene promoters, miRNAs, lncRNAs, and circRNAs for chicken
abdominal fat deposition or adipogenesis. In addition, analyzing
the interactions of mRNAs, miRNAs, lncRNAs and circRNAs
should be a priority for further research.D- Additional GWAS at
different-chicken developmental stages in abdominal fat between
fat and lean broiler lines of different genetic backgrounds
will also be required. E- For DNA polymorphism, considering
that SNP alleles (Table 2) had a useful effect on reducing
abdominal fat deposition, it would be possible to do marker-
assisted selection programs favoring the alleles for reducing the
abdominal fat-deposition in chickens; this hypothesis must be
evaluated in selection programs. To do the selection programs
applicable, it would be important to further analyze the effects
of these gene-polymorphisms by using populations of different
genetic backgrounds (different breeds and lines) and with a
large population size. F- In mammals, many of current genetic
dissections are devoted to the investigation of pathways regulated
in important biological processes such as fat metabolism and
growth. Examining the epistatic relationships among genes can
aid to sort out the role that each gene plays in these processes.
Additional epistatic relationships are required because studying
the epistatic relationships among genes can help to sort out
the role that each gene plays in the fat deposition. G- Future
studies are needed to investigate the existence of BAT and beige
adipocytes in chicken.

CONCLUSIONS

Numerous studies have been performed to identify associations
between the genetic and abdominal fat deposition. The chicken
abdominal fat deposition is a complex and orchestrated by
induction of many genes and molecular components. With the
development of biotechnology and bioinformatics, approaches
such as QTL analysis, selection signature analysis, candidate
gene approach, CNVs, epistatic interaction of genes and
variants, SNP, GWAS, microarray, RNA-seq, and miRNA
high-throughput sequencing can be used to identify genetic
factors involved in the abdominal fat deposition. Using these
approaches, many important candidates from multiple genetic
factors including genes, transcription factors, signaling pathways,
miRNAs, and IncRNAs have been identified. However, very
few studies have investigated in-depth the functional role of
the identified important candidates. Hence, future investigations
should focus on further establishing the functional roles and
links between the identified important candidates and abdominal
fat deposition; and demonstrate the underlying molecular
mechanisms. In-depth knowledge of the regulatory roles and
molecular mechanisms of the identified important candidates
during in vivo abdominal fat development and/or during in
vitro proliferation and differentiation of preadipocytes may help
to identify novel biomarkers for reducing fat accumulation in
chicken or may be as novel therapeutic targets for obesity in
human.
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