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Abstract

In various fields, statistical models of interest are analytically intractable and inference is

usually performed using a simulation-based method. However elegant these methods

are, they are often painstakingly slow and convergence is difficult to assess. As a result, sta-

tistical inference is greatly hampered by computational constraints. However, for a given

statistical model, different users, even with different data, are likely to perform similar com-

putations. Computations done by one user are potentially useful for other users with differ-

ent data sets. We propose a pooling of resources across researchers to capitalize on this.

More specifically, we preemptively chart out the entire space of possible model outcomes in

a prepaid database. Using advanced interpolation techniques, any individual estimation

problem can now be solved on the spot. The prepaid method can easily accommodate dif-

ferent priors as well as constraints on the parameters. We created prepaid databases for

three challenging models and demonstrate how they can be distributed through an online

parameter estimation service. Our method outperforms state-of-the-art estimation tech-

niques in both speed (with a 23,000 to 100,000-fold speed up) and accuracy, and is able to

handle previously quasi inestimable models.

Author summary

Interesting nonlinear models are often analytically intractable. As a result, statistical infer-

ence has to rely on massive, time-intensive, simulations. The main idea of our method is

to avoid the redundancy of similar computations that typically occur when different

researchers independently fit the same model to their particular dataset. Instead, we pro-

pose to pool computational resources across the researchers interested in any given

model. The prepaid method starts with an extensive simulation of datasets across the

parameter space. The simulated data are compressed into summary statistics, and the rela-

tion to the parameters is learned using machine learning techniques. This results in a

parameter estimation machine that produces accurate estimates very quickly (a 23,000 to

100,000-fold speed up compared to traditional methods).
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This is a PLOS Computational BiologyMethods paper.

Introduction

Models without an analytical likelihood are increasingly used in various disciplines, such as

genetics [1], ecology [2, 3], economics [4, 5] and neuroscience [6]. For such models, parameter

estimation is a major challenge for which a variety of solutions have been proposed [2, 1, 7].

All these methods have in common that they rely on extensive Monte Carlo simulations and

that their convergence can be painstakingly slow. As a result, the current methods can be very

time consuming.

To date, the practice is to analyse each data set separately. However, considering all the cal-

culations that have ever been performed during parameter estimation of a particular type of

model, for each different data set, one cannot help but notice an incredible waste of resources.

Indeed, simulations performed while estimating one data set may also be relevant for the esti-

mation of another. Currently, each researcher estimating the same model with different data

will start from scratch, and can not benefit from all the possibly relevant calculations that have

already been performed in earlier analyses by other researchers, in other locations, on different

hardware, and for other data sets, but concerning the same model.

Hence, we propose an estimation scheme that dramatically increases overall efficiency by

avoiding this immense redundancy. Most current algorithms are inherently iterative and

(slowly) adjust their window of interest to the area of convergence. Instead, we propose to gen-

erate an all-inclusive and one-shot prepaid database that is capable of estimating the parame-

ters of a particular model for all potential data sets and with almost no additional computation

time per data set. Our approach starts with the extensive simulation of data sets across the

entire parameter space. These data are then compressed into summary statistics, after which

the relation between the summary statistics and the parameters can be learned using interpola-

tion techniques. Finally, global optimization methods can be used on the previously created

(hence, prepaid) database for accurate and fast parameter estimation on any device. This

results in a mass lookup and interpolation scheme that can produce estimates to any given

dataset very quickly.

In Fig 1 we present a graphical illustration of the prepaid parameter estimation method.

First (panel A), for a sufficient number of parameter vectors θ, large data sets are simulated,

compressed into summary statistics (i.e., ssim) and saved—creating the prepaid grid. This pre-

paid grid is computed beforehand and the results are stored at a central location. Second

(panel B1), the observed (data) summary statistics (sobs) are compared to the simulated (data)

summary statistics (i.e., ssim) using an appropriate objective loss function d(ssim, sobs) and a

number of nearest neighbor simulated summary statistics are selected. The loss function is

related to the loss function used in the generalized method of moments [8] and method of sim-

ulated moments [9].

Third (panel B2), interpolation methods are used to find the relation s = f(θ) between the

parameter values and the summary statistics for the selected points of the previous step [10,

11]. In this paper, we use tuned least squares support vector machines, LS-SVM [12]. Finally

(panel B3), the objective loss function d(spred, sobs), now using predicted summary statistics

spred, is minimized as a function of the unknown parameter values using an optimizer.

A number of important aspects of the prepaid method deserve special mention. First, the

parameter space is required to be bounded. If this is unnatural for a given parametrization,

then the parameters have to be appropriately transformed to a bounded space. Second, we
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typically start from a uniform distribution of parameter vectors in the final parameter space.

This choice reflects on the uniformity of the grid’s resolution, but has no further implications

provided the grid is sufficiently dense. Bayesian priors can be implemented without recreating

the prepaid grid, since the prior can be taken into account in the loss function. Third, often a

Fig 1. Graphical illustration of the prepaid parameter estimation method.

https://doi.org/10.1371/journal.pcbi.1007181.g001
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user is not interested in a single instance of a model, but rather has data from several experi-

mental conditions that share some common parameters but assume other ones to be different.

Also in these cases the prepaid grid does not need to be recreated, as the parameter constraints

can be included through priors with tuning parameters (i.e., penalties). Fourth, the creation of

the prepaid database is a fixed cost and usually takes from a couple of hours to one or more

days, depending on the complexity of the model of interest (see below for a number of exam-

ples). Once its prepaid database is created, the parameters of the model can be estimated for

any data set, with any amount of data (number of observations).

The prepaid method can be studied theoretically in simple situations. For example, in

Methods, we apply the prepaid idea for estimating the mean of a normal distribution and

study some of its properties for two different summary statistics. In what follows, the prepaid

method will be applied to three more complicated, realistic scenarios.

Results

Example 1: The Ricker model

In a first example, we apply our prepaid method to the Ricker model [13, 2] which describes

the dynamics of the number of individuals yt in a species over time (with t = 1 to Tobs):

yt � Poisð�NtÞ

Ntþ1 ¼ rNte� Ntþet
ð1Þ

where et � N ð0; s2Þ. The variables Nt (i.e., the expected number of individuals at time t) and

et are hidden states. Given an observed time series fytg
Tobs
t¼1

, we want to estimate the parameters

θ = {r, σ, ϕ}, where r is the growth rate, σ the process noise and ϕ a scaling parameter. The

Ricker model can demonstrate near-chaotic or chaotic behavior and no explicit likelihood for-

mula is available.

Wood [2] used the synthetic likelihood to estimate the model’s parameters. In the original

synthetic likelihood approach (denoted as SLOrig), the assumed multivariate normal distribu-

tion of the summary statistics is used to create a synthetic likelihood. The mean and covariance

matrix of this normal distribution are functions of the unknown parameters and are calculated

using a large number of model simulations. The synthetic likelihood is proportional to the pos-

terior distribution from which is sampled using MCMC and a posterior mean is computed.

Wood’s synthetic likelihood SLOrig approach is compared to the prepaid method, where we

create a prepaid grid of the mean and the covariance matrix of a similar set of summary statis-

tics. Prepaid estimation comes in multiple variants, depending on the use of an interpolation

method. The first, which uses only the prepaid grid points and chooses the nearest neighbor

(maximum synthetic likelihood) as final estimate, will be called SLGridML . The second, SLSVMML , uses

LS-SVM to interpolate between the parameters in the prepaid grid to increase accuracy. The

differential evolution algorithm (a global optimizer; [14]) is used to maximize this interpolated

synthetic (log)likelihood. Additional details on the implementation of the synthetic likelihood

can also be found in Methods.

Fig 2 shows both the accuracy of parameter recovery (as measured with the RMSE) and

computation time for the three methods under comparison: (1) SLOrig as in [2], the prepaid

method (2) with interpolation (SLSVMML ), and (3) without (SLGridML ) interpolation. As can be seen in

Fig 2, the prepaid estimation techniques lead to better results than the synthetic likelihood for

Tobs = 1, 000, both in accuracy and speed. The SLOrig method leads to some clear outliers (see

Methods) which testifies to possible convergence problems (probably due to local minima).

The prepaid method suffers much less from this problem. Most striking is the speed up of the
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prepaid method: The SLGridML version of the prepaid estimation is finished before a single itera-

tion of the 30,000 iterations in the synthetic likelihood method has been completed—100,000

times faster. In addition, it is demonstrated that the coverages of the prepaid method confi-

dence intervals are very close or exactly equal to the nominal value (we look at 95% bootstrap-

based confidence intervals). SVM interpolation is mainly helpful for large Tobs, where one

expects a higher accuracy of the estimates and the grid is too coarse. The analyses with large

Tobs could only be completed in a reasonable time using the prepaid method (See Methods for

more detailed information).

In the application above, the tacitly assumed prior on the parameter space is uniform. In

addition, there is only one data set for which a single triplet of parameters (r, σ, ϕ) needs to be

estimated. In Methods, we show how both limitations can be relaxed. First, it is explained how

different priors for the Ricker model can be implemented. Second, it is discussed what can be

done if there are two data sets (i.e., conditions) for which it holds that r1 = r2 and σ1 = σ2 but ϕ1

and ϕ2 are not related.

Finally, we also tested our estimation process on the population dynamics of the Chilo par-

tellus, extracted from Fig 1 in Taneja and Leuschner [15, 16]. Here we found that r = 1.10 (95%

confidence interval 1.06–1.34), σ = 0.43 (95% confidence interval 0.30–0.54) and ϕ = 140.60

Fig 2. The RMSE versus the time needed for the estimation of the three parameters of the Ricker model (see Eq 1).

The RMSE and time are based on 100 test data sets with Tobs = 1000. The three colors represent the three parameters

(blue for r, red for σ and yellow for ϕ). Solid lines represent the SLOrig approach, dashed lines the SLGridML approach

(using only nearest neighbors), and dotted lines the SLSVMML approach (using interpolation). The stars and the dots

represent the time needed for the SLGridML and the SLSVMML estimation, respectively. The estimates for SLOrig are posterior

means, based on the second half of the finished MCMC iterations. The time of the prepaid method shown in this

picture does not include the creation of the prepaid grid, but only the time needed for any researcher to estimate the

parameters once a prepaid grid is available.

https://doi.org/10.1371/journal.pcbi.1007181.g002
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(95% confidence interval = 43.94–208.19). We found similar results using the synthetic likeli-

hood method (see Methods), but our estimation was 4000 times faster.

Example 2: A stochastic model of community dynamics

A second example we use to illustrate the prepaid inference method is a trait model of commu-

nity dynamics [17] used to model the dispersion of species. For this model (see also Methods

section), there are four parameters to be estimated: I, A, h, and σ. As with the first application,

there is no analytical expression for the likelihood [17].

As an established benchmark procedure for this trait model, we apply the widely used

Approximate Bayesian Computation (ABC) method [18, 19, 20, 21] as implemented in the

Easy ABC package and denoted here as ABCOrigPM (PM stands for posterior means, which will be

used as point estimates) [22]. As priors, we use uniform distributions on bounded intervals for

log(I), log(A), h and log(σ) (see Methods for the exact specifications), but this can be easily

changed as explained for the first example.

To allow for a direct comparison with the ABC method (ABCOrigPM ), and to illustrate the ver-

satility of the prepaid method, we have also implemented three Bayesian versions of the pre-

paid method. The first, SLGridPM , creates a posterior proportional to the prepaid synthetic

likelihood. The second method, ABCGridPM , saves not only the mean and covariance matrix of the

summary statistics for every parameter in the prepaid grid, but also a large set of uncom-

pressed summary statistics. Using these statistics we are able to approximate an ABC approach.

The third, ABCSVMPM , again interpolates between the grid points to achieve a higher accuracy.

All methods result in accuracies of the same order of magnitude as can be seen in Table 1.

The main difference is again the speed of the methods: ABCGridPM is about 23,000 times faster

than traditional ABC. For small sample sizes, all ABC based methods achieve good coverage.

However, for large sample sizes, ABCOrigPM cannot be used anymore (because of the unduly long

computation time). For the prepaid versions and large samples, it is necessary to use SVM

interpolation between the grid points to get accurate results.

Example 3: The Leaky Competing Accumulator for choice response times

In a third example, we apply our method to stochastic accumulation models for elementary

decision making. In this paradigm, a person has to choose, as quickly and accurately as possi-

ble, the correct response given a stimulus (e.g., is a collection of points moving to the left or to

the right). Task difficulty is manipulated by applying different levels of stimulus ambiguity.

Table 1. The RMSE of the estimates of the test set of the trait model. Tobs refers to the number of observations (i.e., vector with species frequencies) andO is the number

of prepaid points.

Tobs version O log(I) log(A) h log(σ)

1 ABCOrigPM / 0.17 0.67 7.45 0.74

1 SLGridPM
100000 0.17 0.66 7.49 0.7

1 ABCGridPM
100000 0.16 0.63 7.9 0.7

1 ABCGridPM
500000 0.16 0.62 8.17 0.7

1000 ABCGridPM
100000 0.07 0.35 6.41 0.61

1000 ABCGridPM
500000 0.05 0.27 4.83 0.48

1000 ABCSVMPM 100000 0.03 0.23 5.24 0.42

1000 ABCSVMPM 500000 0.03 0.21 4.39 0.4

https://doi.org/10.1371/journal.pcbi.1007181.t001
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A popular neurally inspired model of decision making is the Leaky Competing Accumula-

tor (LCA [23]). For two response options, two noisy evidence accumulators (stochastic differ-

ential equations, see Methods section) race each other until one of them reaches the required

amount of evidence for the corresponding option to be chosen. The time that is required to

reach that option’s threshold is interpreted as the associated choice response time. For differ-

ent levels of stimulus difficulty, the model produces different levels of accuracy and choice

response time distributions. The evidence accumulation process leading up to these choices

and response times is assumed to be indicative of the activation levels of neural populations

involved in the decision making.

As in the first two examples, there is no analytical likelihood available that can be used to

estimate the parameters of the LCA. Moreover, the LCA is an extremely difficult model to esti-

mate. To the best of our knowledge, only [24] systematically investigated the recovery of the

LCA parameters, but for a slightly different model (with three choice options) and with a

method that is impractically slow for very large sample sizes, making it difficult to show near-

asymptotic recovery properties with.

For an experiment with four stimulus difficulty levels, the LCA model has nine parameters.

However, after a reparametrization of the model (but without a reduction in complexity), it is

possible to reduce the prepaid space to four dimensions (see Methods) and conditionally esti-

mate the remaining subset of the parameters with a less computationally intensive method.

Three variants of the prepaid method have been implemented: taking the nearest neighboring

parameter set (based on a symmetrized χ2 distance between distributions) on the prepaid grid

(CHISQGrid
NN ), averaging over the grids nearest neighboring parameter sets of 100 non-paramet-

ric bootstrap samples (CHISQGrid
BS ), using SVM interpolation for every bootstrap estimate

(CHISQSVM
BS ). A nearest neighbor or bootstrap averaged estimate completes in about a second

on a Dell Precision T3600 (4 cores at 3.60GHz), an SVM interpolated estimate requires a cou-

ple of minutes extra.

Fig 3 displays the mean absolute error (MAE) of the estimates for four of the nine parame-

ters as a function of sample size, separately for three estimation methods. The results for the

other parameters are similar and can be consulted in the Methods section. It can be seen that

with increasing sample size, MAE decreases. The SVM method pays off especially for larger

samples. Fig 4 shows detailed recovery scatter plots for a subset of the parameters for 1,200

observed trials, which is the typical size of decision experiments. To get better recovery, larger

sample sizes have to be considered (see Methods section). In general, recovery is much better

than what has been reported in [24]. The coverage of the method, based on non-parametric

bootstrapping, is satisfactory for all sample sizes, provided SVM interpolated estimates are

used for Tobs > 100000. In addition, we do not find evidence for a fundamental identification

issue with the two option LCA, as has been stated in [24].

Discussion

In three examples, we have demonstrated the efficacy and versatility of the prepaid method.

The prepaid method is at least as accurate as current methods, but many times faster (23,000

to 100,000-fold speed up). Besides the improvements at the level of speed and accuracy, the

prepaid method has a number of other distinct advantages. First, the prepaid method can be

used for a very large number of observations, contrary to the synthetic likelihood or ABC

methods. The use of very large simulated data sets allows a practical investigation of large-sam-

ple properties of the estimator, which is a problem for the synthetic likelihood and ABC. Sec-

ond, because of the enormous speed improvement and having data sets available across the

whole parameter space, the prepaid method allows for fast yet extensive testing of recovery of
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simulated data across this space—the recovery of every single parameter set can be evaluated.

Such a practice leads to detailed internal quality control of the used estimation algorithm.

Although the idea behind the prepaid method is fairly simple, we want to anticipate a few

misconceptions that might arise. First, as has been demonstrated in the context of the Ricker

model (the first example), the prepaid method can easily deal with different priors and with

equality constraints on parameters, without the need to recreate the underlying prepaid grid.

Second, the observed data based on which the model parameters have to be estimated can be

of any size, again without the need to recreate the prepaid grid for each and every sample size.

In the first two examples the synthetic likelihood [2] is used, but its exact effect on likeli-

hood based model selection techniques, such as information criteria, is not known. For users

interested in model selection, we propose cross-validation as its implementation is straight for-

ward. The main draw-back of this resampling method, its computational burden, is mitigated

by the use of the prepaid method.

Fig 3. The mean absolute error of the estimates of four central parameters of the LCA (common input v, leakage γ,

mutual inhibition κ, evidence threshold a) as a function of sample size (abscissa) and for three different methods: (1)

choosing the nearest neighbor grid point in the space of summary statistics (CHISQGrid
NN , triangles); (2) using the

average of a set of nearest neighbor grid points based on bootstrap samples (CHISQGrid
BS , open circles) and (3) using

SVM interpolation between the 100 nearest neighbors (CHISQSVM
BS , crosses).

https://doi.org/10.1371/journal.pcbi.1007181.g003
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Ideally, the prepaid databases and the corresponding estimation algorithms will be con-

structed and made available by a team of experts for the model at hand. Subsequently, a cloud

based service can be set up to offer high quality model estimations to a broad public of

researchers. As an example, we created such a service for the Ricker model in Eq 1: http://

www.prepaidestimation.org/, where we allow the user to estimate the parameters of the Ricker

model for personal data as well as 4 example data sets including one real life data set [15, 16].

By using such a cloud based service, researchers that need their data analyzed with computa-

tionally challenging models, can avoid many of the pitfalls they would otherwise encounter

venturing out on their own. This practice will also lead to increased reproducibility of compu-

tational results.

As the need for reproducibility and transparency is (fortunately) increasingly recognized by

the broader scientific community, critical model users will want to see proof of robust

Fig 4. Parameter recovery for the LCA model with 1200 observations (300 in each of the four difficulty

conditions); the true value on the abscissa and estimated value on the ordinate. The same parameters as in Fig 3 are

shown. The method used to produce these estimates is the averaged bootstrap approach (CHISQGrid
BS , see Methods for

details).

https://doi.org/10.1371/journal.pcbi.1007181.g004
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estimation across the entire parameter space, and be able to test this themselves. The current

standard of simply sharing the code of a procedure, still grants developers of complex models/

methods a layer of protection from public scrutiny, because the level of knowledge and infra-

structure required to check the work is considerable and not many are called to take up the

challenge. The prepaid method, however, allows any user with a basic grasp of statistics to

check the consistency of the model and method, using data they have simulated themselves. In

the future, we expect a natural evolution towards a situation where stakeholders in certain

models (the developers and/or heavy users) will provide an estimation service or outsource

this endeavor to a third party. The infrastructure required for hosting such a service is orders

of magnitude lighter than what is required for the calculation of the database itself or a thor-

ough simulation study for that matter. We are currently hosting the Ricker model on a very

modest system (medium level desktop).

A first possible objection to the prepaid method is the considerable initial simulation cost

(for the examples discussed, prepaid simulations took up to a couple of days on a 20-core pro-

cessor). However, this overhead cost will dissipate entirely as increasingly more estimates are

sourced from the same prepaid database. Moreover, the initial prepaid cost can be easily dis-

tributed across multiple interested parties. Further, because the database can be used for inter-

nal quality control, additional simulation studies investigating the recovery of parameters are

made redundant. Indeed, whenever a new model and associated parameter estimation method

are proposed, a recovery study is needed to study how well the parameters of the model can be

estimated using the method. When such a simulation study is set up in a rigorous way, the pre-

paid grid will have been (partially or completely) constructed. For the first and the second

example, the time to create the prepaid grid was of the same order as that of the parameter

recovery study included for the estimation techniques the prepaid grid was compared with.

Note however that the parameter recovery study of the traditional techniques was only partial,

as data sets with more observations, for which the parameter estimation would take an exces-

sively long time using only traditional methods, were excluded. If those would be included, a

parameter recovery study would be at least 10 times slower than the creation of the prepaid

grid. The fact that a parameter recovery study takes at least as much time as the creation of the

prepaid grid makes sense. A recovery study should test the estimation of parameters in the

whole realm of possible data sets. The prepaid grid exactly covers this realm.

The argumentation above shows that a parameter recovery study and a prepaid grid are

very related. In fact, Jabot, saw the necessity of reusing ABC simulations to reduce computa-

tion time in his recovery study for the model of the second example [17]. More broadly, we are

convinced that other researchers also have used similar tricks to avoid redundant simulation

within their own research context. For example, a reviewer of this manuscript noted that s/he

uses a prepaid grid (although not named so) when trying models in which the parameters

change across trials. The main difference with prepaid estimation is that we propose to reuse

these simulations to facilitate future estimations.

A second possible objection is that the prepaid grid, unsurprisingly, does not escape the

curse of dimensionality: The grid size grows exponentially with the number of parameters.

The prepaid method is most effective for highly nonlinear models with substantively meaning-

ful parameters, as they appear in various computational modeling fields. For these models, all

simulation based estimation techniques struggle with the curse of dimensionality. For the pre-

paid method, this limitation can be alleviated in a number of ways. First, the use of interpola-

tion techniques allows for a substantial reduction of the number of prepaid points (by a factor

of five for the same accuracy in the trait model example; see Methods section). Second, as is

shown in the LCA example, it is possible to only partially apply the prepaid method and com-

bine it with traditional estimation techniques. In this way, the less challenging parameters can
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be estimated conditionally on a prepaid grid of the more intricately connected ones. Third, as

shown by tackling three challenging examples, current storage and/or memory technology can

accommodate realistically sized prepaid databases.

A last possible objection is the risk, that once the prepaid grid is created for a certain model,

researchers will be biased towards using this particular model. They may prefer the relatively

easy prepaid estimation of this model over the use of other models without a prepaid grid. We

hope however that also the creation of the prepaid grid is manageable enough for any model to

prevent such scenarios.

A possible improvement of the prepaid method lies in a smarter construction of the prepaid

grid. First, there is a straightforward theoretical angle: spreading the grid points out according

to Jeffrey’s prior rather than a naïve parameter based prior, would lead to a more evenly dis-

tributed estimation accuracy, and therefore a smaller database size will suffice for a given mini-

mum accuracy. Additionally, the database could be improved based on the actual queries of

users. If the simulation grid proves a bit thin around the requested area (not a lot of unique

grid points), more grid points can be added there. This way more detail is added where it

matters.

Finally, the prepaid method also offers exciting opportunities for future research. First,

another typical case where the same model has to be estimated multiple times, arises in a mul-

tilevel context (where several individual analyses are regularized by a set of hyperparameters

defined on the group). Although extremely useful, multilevel analyses typically come with an

additional computational burden. Because the synthetic likelihood, as any likelihood, can be

extended to a multilevel context, the prepaid method should be too. Further research is needed

to develop this idea.

Second, the prepaid philosophy can also be used to choose a good set of summary statistics,

which are necessary for simulation based estimation techniques. During the creation of the

prepaid grid many summary statistics can be saved, with no additional simulation cost. The

effectiveness of combinations of summary statistics are then easily tested in parameter recov-

ery studies as the prepaid estimation is so quick.

It is our strong belief that this method will massively democratize the use of many computa-

tionally expensive models, which are now reserved for people with access to specific high-end

hardware (e.g., GPUs, HPC). Apart from such democratization, this approach could signifi-

cantly impact the current work flow of scientific modeling, in which every part of the estima-

tion is carried out locally by an individual researcher.

Methods

A toy example: Estimating the mean of a normal

For a very simple setting, we want to study the performance of the prepaid methods

analytically.

Assume yi* N(μ, s2) (i = 1, . . ., Tobs) with the mean μ unknown (and to be estimated and

the standard deviation s known (so number of parameters K = 1). The observed mean is

denoted as �y. We will explore two situations. In the first situation, �y will be our summary sta-

tistic sobs (hence number of summary statistics R = 1) to estimate μ (�y is also a sufficient statis-

tic for μ). In the second situation, we will study what happens if sobs ¼ �y2 is chosen to be the

summary statistic.

Situation 1: sobs ¼ �y
As a prepaid grid, we take Nr evenly spaced μ-values with spacing or gap size Δ = μj+1 − μj (see

Fig 1, left figure of panel A; in our case the parameter space is one dimensional). For each

value μj, Tsim values of y are simulated and the sample average is computed (i.e., �ysimj ) (see
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middle figure of panel A in Fig 1). Typically, Tsim = 1000 or larger. Hence, every value of μj is

paired with a particular �ysimj : ðmj; �ysimj Þ.
Given an observed �y, the N nearest neighbors of simulated statistics �ysimj are selected:

ðmð1Þ; �ysimð1Þ Þ, ðmð2Þ; �y
sim
ð2Þ
Þ; . . . ; ðmðNÞ; �ysimðNÞÞ (see panel B1 of Fig 1), such that

j�ysim
ð1Þ
� �yj � j�ysim

ð2Þ
� �yj � � � � � j�ysim

ðNÞ � �yj. Typically, N = 100. In principle, the selected μs

depend on �y, but for simplicity we suppress this dependence in the notation.

Because of the linearity of the problem, we can safely assume that if Tsim is large enough, the

N selected μ values are all consecutive or nearly consecutive (because of noise in the prepaid

simulation of �ysim, it can happen that the N selected μ values are not consecutive). We denote

the average of these N μ-values asMμ. Ordering all values from smallest to largest (denoting the

jth value as μ[j] and assuming they are exactly consecutive, Mμ can be expressed as):

M�y
m
¼

1

N

XN

j¼1

m½j�

¼
1

N

XN� 1

j¼0

m½1� þ jD
� �

¼ m½1� þ
D

N

XN� 1

j¼1

j

¼ m½1� þ
DðN � 1Þ

2

where we have defined μ[1] as

m½1� � min
i 2 1;2;:::;N

ðm½i�Þ:

In addition (assuming that all values are exactly consecutive), their variance Vμ is given by

V�y
m
¼

1

N

XN

j¼1

m2

ðjÞ

 !

� M�y2

m

¼
1

N

XN� 1

j¼0

ðmð1Þ þ jDÞ
2

 !

� M�y2

m

¼
1

N

XN� 1

j¼0

m2

ð1Þ
þ 2jD mð1Þ þ j

2 D
2

� �
 !

� M�y2

m

¼ m2
ð1Þ
þ

2D mð1Þ

N

XN� 1

j¼1

j

 !

þ
D

2

N

XN� 1

j¼1

j2
 !

� M�y2

m

¼ m2
ð1Þ
þ D mð1Þ N � 1ð Þ þ

D
2
ðN � 1Þð2N � 1Þ

6
� M�y2

m

¼
D

2
ðN � 1Þð2N � 1Þ

6
�
D

2
ðN � 1Þ

2

4

¼
D

2
ðN � 1ÞðN þ 1Þ

12

�
D

2 N2

12
:

Hence, their standard deviation is Sm � DN
2
ffiffi
3
p and thus independent of �y.

Prepaid parameter estimation without likelihoods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007181 September 9, 2019 12 / 42

https://doi.org/10.1371/journal.pcbi.1007181


Using the N nearest neighbour pairs, we assume as a linear interpolator (see panel B2 of

Fig 1) in this example a linear regression model that links the simulated statistics to the true

underlying μ: �ysimj ¼ b0 þ b1mj þ �j, with �j � N 0; s2
Tsim

� �
. Obviously, β0 = 0 and β1 = 1.

Given �y, N selected prepaid points and the fitted linear regression model, we know from

linear regression theory that:

b̂0

b̂1

0

@

1

A � N2

0

1

 !

;
s2

0
s01

s01 s2
1

 ! !

;

where 0 and 1 are the true β0 and β1 and

s2
0
¼ Varðb̂0j�yÞ �

s2

Tsim

1

N
þ

12M�y2
m

D
2N3

� �

s2
1
¼ Varðb̂1j�yÞ �

s2

Tsim

12

D
2N3

s01 ¼ Covðb̂0; b̂1j�yÞ ¼ � Mms
2
1
� �

s2

Tsim

12M�y
m

D
2N3

:

The distribution is assumed to hold for repeated simulations of the replicated statistics in

the prepaid grid.

Because we work with linear regression, the optimization problem is simple. In this case,

the optimal value of μ for a given �y can be found by inverting the regression line:

m̂ ¼
�y � b̂0

b̂1

:

In this simple example, the method of predicted moments from Panel B3 in Fig 1 yields an

exact solution for the estimated mean, given the observed sample average.

Next, we can study the properties of m̂. We begin by calculating the conditional mean

Eðm̂j�yÞ and conditional variance Varðm̂j�yÞ. Hence, we treat the observed data (or sample aver-

age) as given and fixed. These expectations are taken over different simulations of �ysimj ’s in the

prepaid grid. Before giving the expressions, it is useful to note that

�y � b̂0

b̂1

0

@

1

A � N2

�y

1

 !

;
s2

0
� s01

� s01 s2
1

 ! !

:

Now, using the approximations given in [25] for ratios of random variables, we find that:

Eðm̂j�yÞ ¼ E
�y � b̂0

b̂1

j�y

 !

�
Eð�y � b̂0j�yÞ
Eðb̂1j�yÞ

�
1

Eðb̂1j�yÞ
2
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3
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�
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D
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D
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D
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and

Varðm̂j�yÞ ¼ Var
�y � b̂0

b̂1

j�y

 !
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:

Invoking the double expectation theorem to arrive at the unconditional expectations, we

have:

Eðm̂Þ ¼ E½Eðm̂j�yÞ�

� Eð�yÞ 1þ
s2

Tsim

12

D
2N3

� �

�
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Þ
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a
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12s2

D
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;

ð2Þ

where a ¼ EðM�y
m
Þ � m, that is, the difference between the expected value of the mean of the

selected nearest neighbors μ’s and the true μ. Likewise, we can derive the marginal variance

Varðm̂Þ. We will assume that the variance inM�y
m

is equal to Varð�yÞ ¼ s2
Tobs

. In addition, we

assume thatM�y
m

and �y correlate perfectly, such that CovðM�y
m
; �yÞ ¼ Varð�yÞ. For this particular

example, these assumptions make sense. Then we can derive that:

Varðm̂Þ ¼ E½Varðm̂j�yÞ� þ Var½Eðm̂j�yÞ�

�
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From Eq 2, we learn that if there is no systematic deviation in the selection of μ-grid points,

the prepaid estimator is unbiased. In the other case, the bias decreases with Tsim but is
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proportional to s2. In Eq 3, the leading term of the variance is s2
Tobs

, which is the same as in classi-

cal estimation theory. For the other terms, they all have Tsim (or a power of it) in the denomi-

nator. Because Tsim is usually quite large, these terms tend to be in general of lesser

importance. However, some terms also have both N (the number of selected nearest neighbor

grid points) and Δ (the gap size) in the denominator. It is worthwhile to note that increasing

the resolution (i.e., decreasing Δ), while keeping N constant, will increase the additional terms

and thus add to the error. The reason for this is that the interpolation is defined on a too small

grid, leading to uncertainty in the estimated regression. This effect is illustrated in the left

panel of Fig 5 in which the root mean square error (RMSE) is shown for the estimation of μ for

different values of N and Δ. The plot is constructed by means of a simulation study, but con-

firms our analytical results.

Situation 2: sobs ¼ �y2

In the second situation, we will again estimate μ (the unknown mean of a unit variance nor-

mal), but in this case sobs ¼ �y2 is used as a statistic. Thus, the relation between the simulated

statistics �ysim2

and μ is quadratic (and thus nonlinear). Again we use a local linear approxima-

tion. Clearly, this approximation will only be approximately valid if we do not choose the area

of approximation too large. However, unlike in the first situation, we do expect an additional

effect of the approximation error.

No analytical derivations were made for this case, but we conducted a similar simulation

study as in situation 1. The results (in terms of RMSE) are shown in the right panel of Fig 5. As

can be seen, there is a clear optimality trade-off visible between Δ and N. This can be explained

as follows: Fix N and then consider the gap size Δ. If Δ is too small, we get a similar phenome-

non as in the left panel, that is a large RMSE. However, if we take Δ too large, then the approxi-

mation error will dominate (because the linear interpolation misfits the quadratic relation).

The optimal point will be different for different N.

Fig 5. RMSE (based on a simulation study) of the toy example estimation as function of the gap size (Δ) and number of nearest neighbors selected

to carry out the interpolation (N). The left panel is called situation 1 in which sobs ¼ �y and the right panel is situation 2 (sobs ¼ �y2). For the second

situation, the trade-off between Δ and N is clearly visible.

https://doi.org/10.1371/journal.pcbi.1007181.g005
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This toy example demonstrates the sound theoretical foundations of the prepaid method in

well-behaved situations. However, the question is how well the method performs for real life

examples.

Application 1: The Ricker model

The basic model equations of the Ricker model is given in Eq 1.

Synthetic likelihood estimation. For the synthetic likelihood estimation (SLOrig), we

made use of the synlik package [26]. The synthetic likelihood ls for a data set with summary

statistics sobs and a certain parameter vector θ = (r, σ, ϕ) is given by

lsðyÞ ¼ �
1

2
ðsobs � μ̂θÞ

T
Ŝ � 1

θ sobs � μ̂θ

� �
�

1

2
log jŜθj; ð4Þ

where μ̂θ and Ŝθ are the estimated mean and covariance of the summary statistics when Eq 1

is simulated multiple times with parameter θ.

The statistics used by the synthetic likelihood function were the average population size, the

number of zeros, the autocovariances up to lag 5, the coefficients of the quadratic linear auto-

regression of y0:3
t and the coefficients of the cubic regression of the ordered differences yt − yt−1

on the observed values.

For each data set we used the synthetic likelihood Markov chain Monte Carlo (MCMC)

method with 30000 iterations, a burn in of 3 time steps and 500 simulations to compute each

μ̂θ and Ŝθ [26]. We used the following prior:

r � Uð1; 90Þ

s � Uð0:05; 0:7Þ

� � Uð0; 20Þ:

ð5Þ

The synlik package generates the MCMC chain on a logarithmic scale, we estimated the

parameters as the exponential of the posterior mean. To ensure convergence, only the last half

of the chain is used (the last 15000 iterations).

Creation of the prepaid grid. For the prepaid estimation, we used the same summary sta-

tistics as for the traditional synthetic likelihood, except for two differences. First, the coeffi-

cients of the cubic regression of the ordered differences yt − yt−1 on the observed values could

not be used, because the observed values are not available when creating the prepaid grid. Sec-

ond, we changed the number of zeros to the percentage of zeros to make this statistic indepen-

dent of Tobs (as this may change depending on the observation).

We filled the prepaid grid with 100000 parameter sets using the priors of Eq 5. To cover this

grid as evenly as possible (and avoiding too large gaps), the uniform distribution was approxi-

mated using Halton sequences [27, 28]. For each parameter set in the prepaid grid, we simu-

lated a time series of length 107 and used the summary statistics of this long time series as μ̂θ.

Each time series was then split into series of length Tprepaid = 100, 1000 and 10000 which

were used to compute the covariance Ŝθ;Tprepraid
for the statistics computed on data of these

lengths. This means, for example, that we had 100000 series of length 100 to compute the

covariance matrix for a certain parameter set for time series of length 100. If we need to esti-

mate parameters of a time series with Tobs not equal to one of the Tprepaid lengths, we use the

covariance matrix created with time series of length Tprepaid which is closest to Tobs in
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logarithmic scale and adapt the covariance matrix into

Ŝθ;Tobs
¼
Tprepaid
Tobs

Ŝθ;Tprepaid
ð6Þ

The creation of the prepaid grid took approximately one day on a 3.4GHz 20-core

processor.

To allow the estimation for a larger range of parameters for the online estimation at http://

www.prepaidestimation.org/ we created a new and bigger prepaid grid using the following pri-

ors:

logðrÞ � Uðlogð1Þ; logð200ÞÞ

s � Uð0:05; 0:7Þ

logð�Þ � Uð� 2; 7Þ:

ð7Þ

We filled to prepaid grid with 100000 parameter sets and used this prior for the real life

data set on the Chilo partellus.

Prepaid estimation. Four variants of prepaid estimation were implemented for this exam-

ple. All use the negative synthetic likelihood as distance (d(ssim, sobs) as defined in the main

text and Fig 1). First, we do a nearest neighbor estimation SLGRIDML , without using any interpola-

tion between the grid points of the prepaid data set. We compute the synthetic likelihood of all

the prepaid parameters for the summary statistics of the test data set. The parameter vector

with the highest likelihood, the so-called nearest neighbor may already be a good estimation.

For a low number of time points Tobs, it is to be expected that the error on the parameter esti-

mate is much larger than the gaps in the prepaid grid, and in such a case, the SLGRIDML estimation

approach suffices.

Second, a more accurate estimation can be acquired by interpolating between the parameter

values in the prepaid grid (SLSVMML ). Therefore, we learn the relation between the parameters

and the summary statistics: f̂ svm : θ 7!s. However, we only learn this relation in the region of

interest, that is the 100 nearest neighbors according to the synthetic likelihood. For each sum-

mary statistic, we create, on the fly, a separate least squares support vector machine (LS-SVM)

[12] using the 100 nearest neighbors. This machine learning technique is chosen as it is a

fast non-linear method which generalizes well. We limit the predictions to the possible range

of the summary statistics (e.g., to prevent a percentage of zeros, one of the statistics, larger

than 1).

We then use the differential evolution global optimizer [14] to find the maximum of:

lPPs ðyÞ ¼ �
1

2
ðsobs � f̂ svmðθÞÞ

T
Ŝ � 1

θ;Tobs
sobs � f̂ svm θð Þ
� �

�
1

2
log Ŝθ;Tobs

�
�
�

�
�
�; ð8Þ

where Ŝθ;Tobs
is the covariance matrix of the statistics of the nearest neighbor as defined in

Eq 6. The superscript “PP” is used to denote that we use the prepaid version of synthetic likeli-

hood, and not the traditional version as used by [2] (see Eq 4). The optimization process is

constrained and we use the minima and maxima for each parameter of the 100 nearest neigh-

bors as effective bounds.

The SLSVMML approach makes use of a non-linear black box interpolator. However, we may

also consider using a much faster linear regression (see also the toy example in Section). There-

fore, we will also compare the SLSVMML (and SLGridML ) approach to a third option where we predict

the summary statistics using a linear regression (called the SLLinML approach).
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Third, we can easily implement a prior for the likelihood in Eq 4. This leads to a posterior

given by

pðθjsobsÞ / pðθÞlsðθÞ: ð9Þ

The parameters will be estimated as the maximum a posteriori (MAP), as comparison to

maximum likelihood estimation which is a maximum a posteriori with a uniform prior. Here

we will apply this extension to the nearest neighbor estimation: SLGRIDMAP .

Lastly we will show that our prepaid method can also be used to cover an experimental set-

up. In such a set-up, we want to estimate the same model over several experimental conditions.

For example, we may be interested in the effect of light intensity on the population dynamics

of a certain type of bacteria. In such an example we would vary the light intensity over several

conditions and estimate the population dynamics again for each condition.

If, for this experimental set-up, the conditions c are independent, the likelihood of the

whole experiment is

ls;experimentðθ1; θ2; :::; θCÞ ¼
YC

c¼1

ls;cðθcÞ ð10Þ

where ls,c(θc) is the synthetic likelihood for condition c. This is equivalent to estimating each

parameter set θc individually for each condition c poses no problem for the previously pro-

posed prepaid method.

In many experimental set-ups, the conditions will however not be independent. In the case

of our example, we may only be interested in the effect of light intensity on the scaling parame-

ter ϕ, and expect the other parameters r and σ to be constant across conditions. Such a depen-

dence between conditions can be mimicked using priors. In case of the experiment example,

with two conditions, we propose the following prior:

pðθ1; θ2Þ ¼ N
r1 � �r
sprior

 !

N
r2 � �r
sprior

 !

N
s1 � �s

sprior

 !

N
s2 � �s

sprior

 !

ð11Þ

where N is the standard normal distribution and �r and �s1 are the averages of respectively r
and σ across conditions (�r ¼ r1þr2

2
and �s ¼

s1þs2

2
). Using such a prior we can force r1 and σ1 to

be similar to r2 and σ2 respectively. The smaller the tuning parameter σprior, the more all con-

strained parameters (r and σ) will be forced to be equal. If σprior is too large the estimation will

not take into account the interdependence between the conditions. So at first, it seems that

σprior needs to be as small as possible. However, if σprior is too small we run into trouble with

the sparsity of the prepaid grid. In the limit, where σprior goes to zero, the estimation process

will choose a parameter where r1 = r2 and σ1 = σ2 will hold exactly. Due to the nature of the pre-

paid grid, this will lead to the undesired result where exactly one prepaid point is chosen for

both conditions, meaning that also ϕ1 = ϕ2. Luckily, σprior can be easily tuned. Once the prepaid

grid is created, we can estimate many test parameters using the the experimental set-up in

combination with a certain tuning parameter. Subsequently, the tuning parameter which leads

to the best estimates of these test parameters is chosen.

In practice, when σprior is tuned, we will first create a pool of eligible parameters for each

condition individually using the nearest neighbor approach SLGRIDML . In a second step we fill

refine these pools by using the prior of Eq 11 and choose the best estimate for each condition.

In a last step we replace r1 and r2 by �r and σ1 and σ2 by �s to ensure that the constraints of the

experimental set up are exactly satisfied.
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More generally, for an experiment with several conditions where we want parameter θ to be

constant over the conditions we get the following prior:

pðy1; y2; :::; y3Þ ¼
YC

c¼1

N
yc �

�y

sprior

 !

ð12Þ

Test set. As a test set we first used 100 random parameters created with the prior of Eq 5.

To avoid problems with the borders we deleted parameters that where within 1% range of the

bounds. We simulated data sets for Tobs = {102, 5�102, 103, 104, 105}. For each data set we esti-

mated parameters using the nearest neighbor (SLGridML ) and the SLSVMML approach. For Tobs = 105,

we also estimated the parameters using the SLLinML approach. Due to time constraints, we only

estimated parameters for the data with Tobs� 103 using the traditional synthetic likelihood

approach.

Next we also created test data sets from different priors for Tobs = 102. Prior P1 from Eq 5

can also be written as

r � 1

90 � 1
� Betað1; 1Þ

s � 0:05

0:7 � 0:05
� Betað1; 1Þ

�

20
� Betað1; 1Þ:

ð13Þ

where Beta is a beta distribution with parameters α = 1 and β = 1. Similarly, we created a test

set from prior P2

r � 1

90 � 1
� Bð10; 10Þ

s � 0:05

0:7 � 0:05
� Bð10; 10Þ

�

20
� Bð10; 10Þ;

ð14Þ

and prior P3

r � 1

90 � 1
� Bð2; 10Þ

s � 0:05

0:7 � 0:05
� Bð10; 2Þ

�

20
� Bð2; 10Þ:

ð15Þ

We will test if SLGRIDMAP performs best when the correct prior is used in the estimation process.

Last we also created a test set for Tobs = 102 for an experimental set up with two conditions

where r and σ are equal over the conditions.

In the subsequent sections, we will evaluate the methods on the following criteria: accuracy,

speed and coverage.
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Results accuracy. To start off, we look at the recoveries for Tobs = 103 for all 100 simulated

data sets and the three methods (SLOrig,SLGridML and SLSVMML ). Scatter plots are shown in Fig 6. It

can seen that the synthetic likelihood estimation leads to some clear outliers. One possible rea-

son for the absence of outliers in the prepaid estimation is the fact that prepaid estimation

from the start examines the whole grid and therefore has less problems with getting stuck in

local optima.

More generally, we plotted the accuracy of each of the methods as a function of time series

length Tobs in Fig 7. The left panel shows the root mean square error (RMSE), while the right

Fig 6. Estimated versus true parameters of the Ricker model of 100 data sets with Tobs = 1000. The SLOrig estimation has some problems with

outliers.

https://doi.org/10.1371/journal.pcbi.1007181.g006

Fig 7. The accuracy of all estimation methods versus the number of time points Tobs. The left panel shows the mean squared error, while the right

panel shows the median absolute error. The three colors represent the three parameters. Blue lines refer to the parameter r, red lines to the parameter σ
and yellow lines to the parameter ϕ. The solid line represents the original synthetic likelihood approach SLOrig (stopping at Tobs = 103), the dashed line

the SLSVMML prepaid approach and the dotted line the SLSVMML prepaid approach.

https://doi.org/10.1371/journal.pcbi.1007181.g007
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panel shows the median absolute error (MAE). We decided to look at the MAE because the

few outliers for SLOrig (which were shown Fig 6) may inflate the RMSE of the synthetic likeli-

hood disproportionally, which happens to a certain extent. However, very similar conclusions

can be drawn for both performance measures. In general, accuracy increases when Tobs

increases (i.e., both RMSE and MAE decreases). For RMSE, our SVM prepaid method clearly

outperforms the traditional synthetic likelihood method SLOrig for every Tobs and every param-

eter. For Tobs = {5�102, 103}, also the SLGridML prepaid approach leads for every parameter to a

lower RMSE compared to the synthetic likelihood. For all Tobs, the SLSVMML prepaid leads to a

higher accuracy compared to the SLGridML prepaid and this difference becomes larger for a larger

Tobs. For MAE, the SLSVMML prepaid method and the original synthetic likelihood SLOrig show a

very similar accuracy (for Tobs� 103). Both outperform the SLGridML prepaid.

The largest attainable accuracy for the SLGridML prepaid approach is limited by the spacing of

the prepaid grid. If we had created an equally spaced grid of Tobs = 105 points using the prior

in Eq 5, we would have the following gaps in each of the three parameter dimensions:

Dr ¼
90 � 1

ð105Þ
1=3
¼ 1:9

Ds ¼
0:7 � 0:05

ð105Þ
1=3
¼ 0:01

D� ¼
20 � 0

ð105Þ
1=3
¼ 0:4:

ð16Þ

We do not have an equally spaced grid, but it is expected that the quasi Monte Carlo distri-

bution of points creates expected gaps close to the ones in Eq 16. Therefore, it is no coinci-

dence that the best possible RMSE using the SLGridML prepaid approach has the same order of

magnitude as the gap size Δ, as can be seen in Table 2 for the case of Tobs = 105. However,

Table 2 also show that the SLSVMML prepaid approach leads to a much lower RMSE. The differ-

ence between the SLGridML and the SLSVMML prepaid approach for Tobs = 105 is further visualized in

Fig 8.

The results in Table 2 also show the need for a non-linear interpolator for the prepaid

method. The RMSE of a linear regression interpolator (SLLinML) is much larger than that of the

SVM prepaid.

In sum, we can conclude that the prepaid estimation methods lead to better, or at least simi-

lar, results as the traditional synthetic likelihood.

Results speed. The largest improvement of the prepaid method over synthetic likelihood

is in computational speed: The prepaid method is many times faster than synthetic likelihood.

Consider Fig 2 in the main text where it is shown that the SLGridML prepaid method is finished

before a single iteration of the 30000 iterations are done by the SLOrig method. While the SLGridML

Table 2. RMSE for the estimation of the parameters of the Ricker model for T = 105 using the SLGrid
ML , SLSVM

ML and

SLLin
ML prepaid methods.

r σ ϕ

SLGridML
1.2 0.021 0.14

SLSVMML 0.43 0.0044 0.023

SLLinML 0.54 0.013 0.091

https://doi.org/10.1371/journal.pcbi.1007181.t002
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and the SLSVMML prepaid methods are finished in respectively 0.044 and 3.7 seconds, independent

of the time series length Tobs, the SLOrig method grows slower with an order of magnitude of

Tobs. In each SLOrig iteration one needs to simulate multiple time series with length Tobs. The

larger Tobs, the slower the estimation. While the synthetic likelihood needs approximately one

and a half hour to estimate the parameters for a time series with length Tobs = 103. The SLGridML

prepaid estimation still finishes in 0.044 s, which is more than 105 times faster. The speed up

factors are presented in Table 3 and as can be seen from Fig 7, there is not loss of accuracy.

The speed up would reach millions, if we had the time to run the synthetic likelihood method

for longer time series.

Results coverage. Next, we look at the coverage rates of the 95% confidence intervals as

obtained with the bootstrap in combination with the prepaid method. To estimate a 95% con-

fidence interval of the estimates for the prepaid method, a parametric bootstrap with B = 1000

bootstrap samples was used.

For the prepaid version the estimate for the observed data set was obtained using the SLSVMML

approach and the bootstrap estimates were commonly obtained using the SLGridML prepaid

method applied to the bootstrap data sets. However, if in the first 100 bootstraps only half of

the nearest neighbors where unique points, the bootstrap distribution could be considered

questionable. This behavior is to be expected for larger sample sizes Tobs, because the true

bootstrap distribution is very peaked so that every bootstrap sample will have the same nearest

neighbor grid point. When this occurs, we would estimate the parameters of each bootstrap

using differential evolution, using the SVM created by the original 100 nearest neighbors.

Alternatively, for the synthetic likelihood approach (using MCMC) we computed the 95%

confidence interval by calculating the 0.025 and 0.975 quantiles of the last half of the posterior

samples.

Fig 8. The estimation of the three parameters of the Ricker model of 100 data sets with Tobs = 105. The SLSVMML estimation clearly outperforms the

SLGridML estimation.

https://doi.org/10.1371/journal.pcbi.1007181.g008

Table 3. Average time in seconds needed for the SLOrig estimation for multiple Tobs and the speed up for the SLGrid
ML and SLSVM

ML methods. The time for Tobs = 104 and

Tobs = 105 was not measured, so these values are estimated and between brackets. (Fig 7 shows the corresponding accuracies).

Tobs 102 5 � 102 103 104 105

time SLOrig 716 s 3549 s 5841 s (50000 s) (500000 s)

SLGRIDML times faster 16273 80659 132750 (1000000) (10000000)

SLSVMML times faster 194 959 1578 (10000) (100000)

https://doi.org/10.1371/journal.pcbi.1007181.t003
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The coverage results for the test set of 100 parameters are shown for three different values

of Tobs in Table 4. It can be seen that for both methods, the coverage is close to the nominal

level of 95%, but the coverage of the prepaid method is slightly better.

Results prior. In this paragraph we show how we can benefit from using the correct prior.

We estimate the parameters of the three testsets for Tobs = 100, created with uniform prior P1

from Eq 9 and beta distribution priors P2 and P3 from Eqs 14 and 15. We estimated all three

data sets using maximum a posteriori estimation SLGRIDMAP using all three priors. The results are

shown in Table 5. Using the correct prior leads, as expected, to the best results.

Parameter constraints across conditions. We estimated the parameters for a two condi-

tion experimental set up with equal r and σ, with and without the prior from Eq 11 (parameter

σprior was tuned on 100 similar simulated data sets). The results are shown in Table 6. Using

the prior from Eq 11, which implements the parameter constraints of the experimental set up,

leads, as expected, to better results for each parameter. Even for ϕ, which is absent in the prior,

we find better results.

Results real life data set. The results for the estimation of the population dynamics of the

Chilo partellus [16, 15], using the prior from Eq 7 can be found in Table 7. For the prepaid, we

estimated the parameters using the methods online at http://www.prepaidestimation.org/. All

estimations are similar and have overlapping confidence intervals. The prepaid estimation is

however significantly faster.

Table 4. The effective coverages of the test set for different Tobs.

Tobs r σ ϕ
SLOrig 102 0.9 0.89 0.93

5 � 102 0.94 0.92 0.94

103 0.92 0.91 0.92

prepaid 102 0.95 0.84 0.97

5 � 102 0.96 0.94 0.96

103 0.97 0.95 0.97

https://doi.org/10.1371/journal.pcbi.1007181.t004

Table 5. RMSE of SLGRID
MAP estimation of test sets with Tobs = 100 created with priors P1, P2 and P3 and estimated by using priors P1, P2 and P3. For each test set and

parameter the best result is shown in bold.

estimated with P1 estimated with P2 estimated with P3

parameter r σ ϕ r σ ϕ r σ ϕ
test set created with P1 8.2 0.13 0.53 10 0.12 0.82 16 0.17 0.94

test set created with P1 10 0.13 0.55 6.5 0.072 0.43 11 0.12 0.60

test set created with P1 4.4 0.15 0.33 6.9 0.19 0.51 3.5 0.065 0.28

https://doi.org/10.1371/journal.pcbi.1007181.t005

Table 6. RMSE for Ricker model data where Tobs = 100 for an experimental set up with two conditions where r
and σ are equal over the conditions. Parameters are estimated by using SLGRIDMAP with a flat prior (same as SLGRIDML )and

with a prior from Eq 11.

prior r σ ϕ
flat prior 88 0.17 0.42

prior Eq 11 61 0.11 0.36

https://doi.org/10.1371/journal.pcbi.1007181.t006
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Application 2: A stochastic model of community dynamics

A second model we will apply our prepaid modeling technique to, is a stochastic dispersal-lim-

ited trait-based model of community dynamics [17]. The data that will be modeled, are the

abundances of species (hence a vector of frequencies, in which each component is a different

species). Each species in the local environment is assumed to have a competitive value depen-

dent on its trait u, given by the filtering function

FðuÞ ¼ 1þ Ae�
ðu� hÞ2

2s2 : ð17Þ

Here A is the maximal competitive advantage, h is the optimal trait value in the local envi-

ronment and σ describes the width of the filtering function. At each time step, one individual

from the local community dies. It is then replaced with a probability 1 � I
IþJþ1

by a random

descendant from the local pool. Here, J is the size of the local community and I is the fourth

parameter to estimate, related to the amount of immigration from the regional pool into the

local community. The probability that this descendant comes from a certain individual in the

local community, is proportional to the competitiveness of this individual. With a probability

of I
IþJþ1

, the dead individual is replaced by an immigrant from the regional pool. The distribu-

tion of traits u of the individuals in the regional pool is assumed to be uniform over u. It is

noteworthy that Jabot saw the necessity of reusing ABC simulations to reduce computation

time in his recovery study [17].

The model was simulated using the C++ code from the Easy ABC package [22] where a

regional pool of S = 1000 species was defined evenly spaced on the trait axis (i.e., the resolu-

tion) and J = 500 was the size of the local community.

ABC estimation. We compare our prepaid method estimation with the Easy ABC pack-

age (ABCOrig) [29, 22]. Because we work in a Bayesian framework, we first have to specify pri-

ors. As in Jabot et al. we use the following priors [22]:

log ðIÞ � Uð3; 5Þ

log ðAÞ � Uð log ð0:1Þ; log ð5ÞÞ

h � Uð� 25; 125Þ

log ðsÞ � Uð log ð0:5Þ; log ð25ÞÞ:

ð18Þ

In this application, the parameter vector θ is defined as follows: θ = (log(I), log(A), h, log

(σ)). To get the ABC algorithm to work, we compute four summary statistics: the richness of

the community (number of living species), Shannon’s index which measures the entropy of

the community, and the mean and the skewness of the trait distribution of the community.

The ABC algorithm we use applies a sequential parameter sampling scheme [30]. The

sequence of tolerance bounds is given by ρ = {8, 5, 3, 1, 0.5, 0.2, 0.1} and the algorithm proceeds

to the next tolerance after 200 simulations which lead to summary statistics within the bounds.

Table 7. Population dynamics of the Chilo partellus [16, 15]. We show the estimates, the 95% confidence intervals and computation time of the prepaid and synthetic

likelihood estimation techniques.

r σ ϕ Time (in seconds)

SLOrig 1.05 (1.01– 1.1) 0.41 (0.31–0.51) 248.17 (139.53–493.2) 830

SLGRIDML 1.10 (1.06– 1.34) 0.43 (0.30–0.54) 140.60 (43.94–208.19) 0.2

SLSVMML 1.06 (1.01– 1.24) 0.41 (0.21–0.56) 176.15 (19.27–427.65) 4

https://doi.org/10.1371/journal.pcbi.1007181.t007
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The last 200 simulations within the bounds represent the posterior, and the estimate of the

parameter is given by the posterior mean.

Creation of the prepaid grid. For the prepaid estimation, we used exactly the same sum-

mary statistics as the Easy ABC package. We filled the prepaid grid with 500, 000 parameter

vectors using the priors of Eq 18, but for most examples we will use a grid with only 100, 000

parameter vectors. To cover this grid as evenly as possible, the uniform distribution was

approximated using Halton sequences [27, 28] (in order to avoid gaps that may appear when

Monte Carlo samples are used). The creation of the prepaid grid with 100, 000 parameter vec-

tors took approximately 3 days on a 3.4GHz 20-core processor.

For the community dynamics models from Eqs 17 and 18, there are several ways to simulate

an almost infinitely large data set to achieve stable summary statistics. The first way is to

increase the number of species S and the size of the local pool J. Unfortunately some summary

statistics (the richness and the entropy) are in some unknown way dependent on these param-

eters. As a result, the summary statistics of a simulation with J = 5000 cannot be used to esti-

mate the parameters for a setting where J = 500. Therefore, we chose to fix the size of the local

pool J and the number of species S. It is very well possible that there are summary statistics

which do not have this problem, making the prepaid grid much more universal. We chose

however, for the sake of comparison with the easy ABC package to keep using these

parameters.

A second way to simulate data with a very large sample size is by increasing the number of

time steps. By estimating the summary statistics after each time step, when one individual

from the local community dies and is replaced by another individual, we create a time series of

summary statistics. Averaging the summary statistics over a sufficient large number of time

points will lead to stable average values of these summary statistics. In our simulations, we

applied some tinning by calculating the summary statistics every time after 500 species have

died (the size of the community). The reasons is that there is not enough of variation in the

summary statistics computed after the death of a single species. Next, we created time series of

length T = 100, 000 (5 � 107 species will have been replaced) for the prepaid grid and used the

average of these summary statistics as μ̂θ. Using this time series we also computed Ŝθ;Tprepaid
for

Tprepaid = {1, 10, 1000, 10000}. Tprepaid = 1 is of course the setting for which the original trait

model is described and for which the Easy ABC algorithm is tested. Additionally we also saved

1000 samples of time series of length Tprepaid = {1, 10, 1000, 10000}.

Prepaid estimation. Contrary to the first application (the Ricker model), where we used a

frequentist approach, for this community dynamics model we will follow a Bayesian approach.

In Bayesian statistics, the focus is on the posterior distribution of the parameters p(θ|data),

which is defined as follows:

pðθjdataÞ / pðdatajθÞ � pðθÞ; ð19Þ

where p(data|θ) is the likelihood and p(θ) the prior. As the likelihood, we will use the synthetic

likelihood p(data|θ)� Ls(θ) = exp(ls(θ)), where ls(θ) is the synthetic log-likelihood as defined

in Eq 4 (based on the vector of summary statistics sobs). Because we compress the data into

summary statistics, the posterior we work with is actually an approximation to the true poste-

rior: p(θ|sobs)� p(θ|data) (in case the summary statistics are sufficient statistics for θ, the

approximation sign becomes an equality sign). The distributions from Eq 18 are the priors for

the parameters.

We have studied three variants of a Bayesian version of the prepaid method. These three

versions will be discussed here in increasing order of complexity. We will denote the three var-

iants as follows: SLGridPM , ABCGridPM , and ABCSVMPM .
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First we will discuss SLGridPM variant. Because the priors are all uniform (and our prepaid grid

is distributed following this prior), the posterior for a data set with summary statistic s at

parameter θp of the prepaid grid is proportional to

pðθjsobsÞ / LPPs ðθÞ; ð20Þ

where LPPs ðθÞ is the prepaid synthetic likelihood (i.e., with the mean statistics computed for a

very large sample and a approximate covariance matrix given by Eq 6). The posterior mean

(PM), used in this variant, using prepaid synthetic likelihood can be estimated as:

θ̂jsobs ¼
P

pL
PP
s ðθpÞ � θp

P
pLPPs ðθpÞ

: ð21Þ

Second we will discuss the ABCGridPM variant. The prepaid synthetic likelihood approach

works best if the assumption of normally distributed summary statistics is not too far off. How-

ever, as can be seen in Fig 9, this is not always the case for the trait model defined in Eq 17.

Therefore, as an alternative procedure, we propose an Approximate Bayesian Computation

(ABC) approach in this variant. First, we select a subset of nearest neighbors S from the pre-

paid set, such that for every θq 2 S, the synthetic likelihood value Ls(θq) is highest and so that

P
qL
PP
s ðθqÞ

P
pLPPs ðθpÞ

< 0:999; ð22Þ

where the sum in the denominator runs across all grid points. In a sense, these are all the pre-

paid points in the 99.9% expected coverage according to the posterior of Eq 20. We denote the

cardinality of S as Q.

In a next step, we basically perform ABC with all the grid points belonging to the selected

subset S. However, there is an important issue we cannot overlook. When doing ABC, for a

given parameter vector new data are simulated of the same size as the observed data. Unfortu-

nately, our prepaid grid has correspondingly only very large data sets. To rectify this problem,

so that ABC can applied without problems, we simulated during the construction of the pre-

paid grid, a set ofM = 1000 prepaid samples for several designated sample sizes (i.e., Tprepaid =

{1, 10, 1000, 10000}). Let us denote with sq;i;Tprepaid the vector of statistics for prepaid grid point

q, the ith simulation (with i = 1, . . ., M) and sample size Tprepaid.

Now, we can apply ABC to arrive at the posterior for θ; the method will be denoted as

ABCGridPM . For now we will assume that Tobs is equal to one of the Tprepaid lenghts. We select the

1000 samples from this Q × 1000 samples set that have the smallest Mahalonobis distance to

the observed set of statistics sobs:

�q;i;Tprepaid ¼ ðsq;i;TABC � sobsÞW � 1

Q ðsq;i;TABC � sobsÞ ð23Þ

here WQ is given by the covariance over all grid points in S and over all 1000 replications

(thus, Q × 1000). The finally selected 1000 samples are then considered as a sample from the

posterior. Note that the ABCGridPM method does not require us to progressively strengthen the

tolerances, as in traditional ABCOrig (governed by the tolerance parameter ρ). If the observed

sample size Tobs is not equal to one of the Tprepaid lengths, then one can use the samples for

length Tprepaid which is closest to Tobs in logaritmic scale and later adjust the posterior samples
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such that the posterior mean stays the same, but the posterior covariance matrix changes to

Ŝposterior;Tobs
¼
Tprepaid
Tobs

Ŝposterior;Tprepaid
ð24Þ

We advise to save samples for enough different Tprepaid such that this correction is only

marginal.

Fig 9. Samples for Tobs = 1 of the summary statistics of the trait model for parameter set log(I) = 3.0621, log(A) = 0.8302, h = 86.8924 and

log(σ) = −0.6899.

https://doi.org/10.1371/journal.pcbi.1007181.g009
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Lastly, we will discuss the ABCSVMPM variant. The ABCGridPM is only based on the raw prepaid

grid points. But again, a more accurate estimation can be found by interpolating between the

parameters in the prepaid grid. Therefore, in this ABCSVMPM variant, we learn the relation

between the parameters and the summary statistics using LS-SVM: f̂ svm : θ 7!s. We only learn

this relation in the region of interest, that is, only the 100 nearest neighbors according to the

ABCGridPM approach or more specifically, the 100 prepaid points for which the most samples lead

to a small enough �q;i;TABC .

Before we use machine learning to infer the relation f̂ svm : θ 7!s we cluster these 100 nearest

neighbors using hierarchical clustering such that no cluster has more than 50 prepaid points.

This is necessary as these 100 nearest neighbors may come from totally different areas in the

prepaid grid. This is illustrated in Fig 10.

For each cluster, we first make sure that at least 20 points are included (if not, we add points

from the prepaid grid which are closest). Then we estimate the f̂ svm : θ 7!s using LS-SVM for

each cluster c separately, giving rise to f̂ svm;c. Next, we find the minimum volume ellipse

encompassing all the points in each cluster. These ellipses inform us about the areas for which

the relation holds. Subsequently we resample parameters in each ellipse to zoom in more and

more to the regions of interests. In detail, we do the following in every cluster c:

1. Uniformly sample 1000 points θj,c in the minimum volume ellipse for cluster c. We create a

finer grid for each elipse.

2. Find the summary statistics based on the LS-SVM in cluster c: ŝ j;c ¼ f̂ svm;cðθj;cÞ

3. Find for each point θj,c the nearest point θp from the prepaid points with which this particu-

lar cluster was created

4. Translate the 1000 samples from the nearest point θp to the newly sampled point θj,c and

add to each sample the difference in summary statistics: d ¼ ŝ j;c � sp. In this step we aproxi-

mate a distribution of statistics for θj,c around ŝ j;c.

5. Keep the points θj for which �j,i from Eq 23 is among the 5000 smallest distances and

remove all others.

6. Recalculate the minimum volume ellipse with the new points.

7. Go back to step 1, until the worst �j,i does not decrease any more.

Broadly speaking, in step 1, we sample parameters θj,c, in step 2 to 4 we approximate the

summary statistics distribution for each θj,c using LS-SVM and in step 5 to 7 we trim this set of

parameters to only keep the parameters with a high posterior probability.

In the end we combine all the samples, we build the posterior with the parameters from the

1000 best samples over all clusters according to Eq 23. Note that some parameters may show

up several times in this posterior sample. To compute the posterior mean, we use a weighted

version of these samples. The weights are given by the volume of the ellipse from the cluster

where they were created. This is necessary to ensure the correct use of the equal prior for all

clusters.

Test set. To generate the test set, we follow the same logic as in [17]. We use the prior in

Eq 18 to generate 1000 random parameter sets, except for h, where we changed the prior with

the following generating distribution:

h � Uð0; 100Þ; ð25Þ
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such that 0 and 100 are the true minimum and maximum optimal trait values for communi-

ties. By taking the prior for h as in Eq 18, we avoid boundary effects. To exclude other prob-

lems at the borders of the parameter space, we deleted parameters which where within 1%

range of the bounds. We simulated data sets for both Tobs = 1 and Tobs = 1000.

Fig 10. Scatter plot matrix of the clustering that occurs for the 100 nearest neighbors for the summary statistics for Tobs = 1000 of parameter

log(I) = 3.9081, log(A) = −2.0343, h = 36.4150 and log(σ) = 2.9762. The red cross shows the true value of this parameter.

https://doi.org/10.1371/journal.pcbi.1007181.g010
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Results accuracy. Let us first look at the results for Tobs = 1. We have used traditional

ABC (ABCOrig), prepaid Bayes approach based on the synthetic likelihood (SLGridPM ) and prepaid

ABC based on separately generated samples at the grid points (ABCGridPM and ABCSVMPM ). We have

used 105 and 5 � 105 prepaid grid points. The RMSE and MAE can be found in Tables 1 and 8.

All methods result in accuracies that are equally large. For 3 out of 4 parameters (except for h),

the prepaid method outperforms ABCOrig with respect to RMSE. For MAE, the prepaid

method uniformly outperforms the Easy ABC package (ABCOrig). Overal, the difference

between O = 105 and O = 5 � 105 prepaid grid point is very small for the prepaid methods.

We have refrained from interpolating with the LS-SVM because the 99.9% coverage

includes on average more than 1000 points. This is perfectly logical because Tobs = 1 does not

provide a lot of information, and, as a consequence, there is a lot of uncertainty (which trans-

lates itself into a large number of parameter points that have a reasonable large synthetic likeli-

hood value). As a result, creating a posterior based on only 100 nearest neighbors (even after

interpolation) would not suffice because too many parameter points with high posterior den-

sity would be missed.

For Tobs = 1000 (see again Tables 1 and 8), the accuracy increases, as is expected (this can

be seen both in the RMSE as in the MAE). In this case, both increasing the number of grid

pointsO and using LS-SVM interpolation increases accuracy. No results are given for ABCOrig,

because it is impossible to fit the model with this sample size in acceptable time.

Results speed. For Tobs = 1, the estimation time of ABCOrig is 3865 s. In contrast, the esti-

mation time of ABCGridPM is 0.167 s. This means that the prepaid ABC method is approximately

23000 times faster than traditional ABC.

Results coverage. For both the ABCOrig as well as the prepaid versions we end up with a

posterior sample. We computed the coverage by calculating the 0.025 and 0.975 quantiles of

the posterior samples. Next, we checked whether the true parameter was in this interval or not.

Note that when we use clustering during ABCSVMPM , we weigh each point proportional to the vol-

ume of its originating cluster. For the SLGridPM approach we use the whole prepaid set as posterior

and us weights according to Eq 20.

For Tobs = 1 and Tobs = 1000, coverage results can be found in Table 9. For Tobs = 1, ABCOrig

leads to better coverages than SLGridPM . Also the ABCGridPM method gives good coverages (around

the nominal level of 0.95) for Tobs = 1, but these coverages deteriorate for Tobs = 1000 if no

interpolation is used (coverage is a bit better for 5 � 105 grid points). When the LS-SVM inter-

polation is applied (i.e., ABCSVMPM ), coverages become very good again, certainly for the largest

number of grid points.

Table 8. The MAE of the estimations of the test set of the trait model.

Tobs version O log(I) log(A) h log(σ)

1 ABCOrig / 0.11 0.45 1.4 0.45

1 SLGridPM
100000 0.1 0.39 0.96 0.38

1 ABCGridPM
100000 0.1 0.4 1 0.4

1 ABCGridPM
500000 0.1 0.38 1 0.39

1000 ABCGridPM
100000 0.03 0.14 0.39 0.32

1000 ABCGridPM
500000 0.02 0.09 0.27 0.22

1000 ABCSVMPM 100000 0.02 0.07 0.18 0.14

1000 ABCSVMPM 500000 0.01 0.07 0.17 0.15

https://doi.org/10.1371/journal.pcbi.1007181.t008
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Application 3: The Leaky Competing Accumulator

Elementary decision making has been studied intensively in humans and animals [31]. A com-

mon example of an experimental paradigm is the random-motion dot task: the participant has

to decide whether a collection of dots (of which only a fraction moves coherently; the others

move randomly) is moving to the left or to the right. The stimuli typically have varying levels

of difficulty, determined by the fraction of dots moving coherently.

Assuming there are two response options (e.g., left and right), the Leaky Competing Accu-

mulator consists of two evidence accumulators, x1(t) and x2(t) (where t denotes the time), each

associated with one response option. The evolution of evidence across time for a single trial is

then described by the following system of two stochastic differential equations:

dx1 ¼ ðvþ Dvi � gx1 � kx2Þ � dt þ c � dW1

dx2 ¼ ðv � Dvi � gx2 � kx1Þ � dt þ c � dW2;
ð26Þ

where dW1 and dW2 are uncorrelated white noise processes. To avoid negative values, the evi-

dence is set to 0 whenever it becomes negative: x1 = max(x1, 0) and x2 = max(x2, 0). The initial

values (at t = 0) are (x1, x2) = (0, 0).

The evidence accumulation process continues until one of the accumulators crosses a

boundary a (with a> 0). The coordinate that crosses its decision boundary first, determines

the choice that is made and the time of crossing is seen as the decision time. The observed

choice response time is seen as the sum of the decision time and a non-decision time Ter, to

account for the time needed to encode the stimulus and emit the response.

Eq 26 describes the evolution of information accumulation for a two-option choice RT

task, given the presentation of a single stimulus. For all stimuli, the total evidence is equal to v,
but the differential evidence for option 1 compared to 2 is 2Δvi, which is stimulus dependent

and reflects the stimulus difficulty. In this example, we assume the stimuli can be categorized

into four levels of difficulty, hence i = 1, . . ., 4.

The model gives rise to two separate choice response time probability densities, p1i(t) and

p2i(t), each representing the response time conditional on the choice that was made. Integrat-

ing the densities over time will result in the probability of choosing the response options:
Z 1

0

p1iðtÞdt ¼ Prðoption 1 for stimulus iÞ and

Z 1

0

p2iðtÞdt ¼ Prðoption 2 for stimulus iÞ.

Obviously, when taken together, p1i and p2i sum to one.

All parameters in the parameter vector θ = (v, Δv1, . . ., Δv4, κ, γ, a, Ter) can take values from

0 to1. This parametrization is known to have one redundant parameter [24], so we choose to

fix c = 0.1.

Table 9. The effective 95% coverage of the estimations of the test set of the trait model.

Tobs version O log(I) log(A) h log(σ)

1 ABCOrig / 0.97 0.97 0.99 0.96

1 ABCOrig 100000 0.84 0.87 0.86 0.86

1 ABCGridPM
100000 0.94 0.95 0.95 0.94

1 ABCGridPM
500000 0.94 0.95 0.94 0.94

1000 ABCGridPM
100000 0.27 0.3 0.29 0.27

1000 ABCGridPM
500000 0.47 0.5 0.48 0.48

1000 ABCSVMPM 100000 0.93 0.94 0.96 0.93

1000 ABCSVMPM 500000 0.96 0.95 0.96 0.95

https://doi.org/10.1371/journal.pcbi.1007181.t009
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The re-parametrization. The prepaid method will not be applied to the model as pre-

sented in Eq 26, but rather on a re-parametrized formulation:

dx1it ¼ D � ðv0ð1þ CiÞ � g0 � x1it � k
0 � x2itÞ � dt þ

ffiffiffiffi
D
p
� dW1it

dx2it ¼ D � ðv0ð1 � CiÞ � g0 � x2it � k
0 � x1itÞ � dt þ

ffiffiffiffi
D
p
� dW2it;

ð27Þ

again with the additional restriction that x1it = max(x1it, 0) and x2it = max(x2it, 0). The new

parameters are defined as follows in terms of the original ones:

D ¼ c2

v0 ¼
v
D

Ci ¼
Dvi
v

g0 ¼
g

D

k0 ¼
k

D
:

This new parametrization has the advantage that D can be interpreted as an inverse time

scalar because doubling Dmakes all choice response times twice as fast. This property will

allow us to reduce the dimensionality of the prepaid grid (see below). The parameter v0 > 0

denotes general stimulus strength scaled according to D, while parameter Ci (for coherence)

denotes the amount of relative evidence encoded in the stimulus i: −1< Ci< 1. It is commonly

assumed for these evidence accumulator models that different stimuli should lead to different

coherences Ci, but without affecting the other parameters. The nondecision time Ter is not

transformed.

Creation of the prepaid grid. For the delineation of the parameter space, we will follow

the specifications of [24]. Because this parameter space is rather restrictive (a consequence of

the recommendation of [24] to improve parameter recovery), we will extend it through the use

of a time scale parameter. This extension will be further discussed when introducing the test

set.

First, we create a prepaid grid on a four-dimensional space in the original parametrization

by drawing from the following distribution:

a � Uð0:05; 0:25Þ

v � Uð0:8; 1:5Þ

g � Uð1; 8Þ

k � Uð1; 8Þ:

ð28Þ

We select 10000 grid points from this distribution using Halton sequences [27, 28]. When

working in the reparametrized version, as defined in Eq 27, this space can be transformed to a

four dimensional space of v0, γ0, κ0 and D.

However, because D acts an inverse time scalar on the response time distributions, we may

also consider the three dimensional space formed by v0, γ0, and κ0 and for each grid point,

choose the parameter D in such a way that the RT distributions for options 1 and 2 are scaled

to fit nicely between 0 and 3 seconds (with a resolution of 1ms and 3000 time points so that

about 0.0001 of the tail mass is allowed to be clipped at 3 seconds when C = 0). Effectively, this

brings all RT distributions to the same scale (denoted as s = 1). This process of scaling is
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illustrated in Fig 11. It reduces both the number of simulations and the storage load (without it

we would have to simulate and store a separate set of distributions for each value of D). Note

that the scaling is done jointly for all RT distributions associated with a particular g. The result-

ing diffusion constant corresponding to the rescaled distribution is denoted as Dg
0. In addition,

the construction effectively removes one parameter from the prepaid grid, which is illustrated

in Fig 12.

To include the coherence parameter, we extend each grid point with a set of predefined

coherences. For each point g = (v0, γ0, κ0) in the grid, we take 50 equally spaced coherences Cg
k

(with k = 1, . . ., 50) from 0 to the maximum coherence that still has some non-zero chance of

choice option 2 to be selected (we take 0.001). Finally, we simulate for each combination of g =

(v0, γ0, κ0) and Cg
k a large number of choice response time data (choices and response times).

This is illustrated in Fig 11.

In a last step, grid points are eliminated from the prepaid grid, if the simulations result in

too many simultaneous arrivals (i.e., trajectories that end at or very close to the intersection

point of the two absorbing boundaries at the upper right corner, located at (a, a)). More specif-

ically, we drop grid points with more than 0.1 percent simultaneous arrivals. Creating the pre-

paid database took less then a day on a NVIDIA GeForce GTX 780 GPU.

Prepaid estimation. To explain how the prepaid estimation of the LCA works, let us start

with a prototypical experimental design. Assume a choice RT experiment with four stimulus

difficulty levels (e.g., four coherences in the random dot motion task). Each difficulty level

is administered N times to a single participant. A particular trial in this experiment results in

(cij, tij), where i is the stimulus difficulty level (i = 1, . . ., 4) and j is the sequence number within

Fig 11. Illustration of how different coherences are incorporated. The gray plane is a simplified representation of the three dimensional (v0, γ0, κ0)-
space. For each point g, 50 coherences are chosen. Corresponding to each coherence, there is a pair of RT distributions (which each integrate to the

probability of selecting the corresponding option).

https://doi.org/10.1371/journal.pcbi.1007181.g011
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its difficulty level (j = 1, . . ., N). The data resulting from this experiment are responses cij
(referring to choice 1 or choice 2) and response times tij. Each pair (cij, tij) is considered to orig-

inate from an unknown parameter set (v0, γ0, κ0, D, Ter) and coherences Ci (i = 1, . . ., 4).

Our first aim is to is to establish a local net of prepaid points that lead to data that are close

to the observed dataset. If necessary, we can further zoom in with the help of support vector

machines. Conditional on each prepaid parameter set g in the basic grid, a number of the

remaining parameters can be integrated out beforehand. First, conditional on grid point g, we

have for 50 predetermined coherences Cg
k simulated accuracies and response time distributions

(see Fig 11). The coherences of the observed data can be estimated solely using the observed

accuracies using simple linear interpolation. The estimated coherence for stimulus (or condi-

tion) i is denoted as Ĉi. Corresponding to each of the 50 coherences Cg
k for grid point g, there

is a pair of corresponding simulated RT densities pgicðtÞ (with c = 1, 2). As before, pgicðtÞ is scaled

to the [0, 3] seconds window, and we can use a combination of translating (estimating T̂ er),

scaling (estimating D̂) and interpolating. Specifically, we first calculate ŝ as the optimal time

scalar to match data with the model on grid point g:

ŝ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ð4N � 1Þ

X

ij
ðtij � m̂tÞ

2

1

4

X

ic

Z

pgicðtÞðt � mg
t Þ

2dt

v
u
u
u
u
u
t

;

Fig 12. Illustration of the transformation of the original parameter space (called A) to a new one (called B) in

which D is one of the parameters. The projections of the three parameter points on the red axis governing the width

of the B area are denoted with open circle and these are the parameter points g. For each of these open circle points, the

RT distribution scales are set to 1 (i.e., s = 1) by choosing an appropriate diffusion coefficient (denoted asDg
0) and any

parameter point in B can be reached by selecting an appropriate g and then adjusting the scale up- or downwards (this

is indicated by the dotted lines in the length direction of the new parameter space B.

https://doi.org/10.1371/journal.pcbi.1007181.g012
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in which

m̂t ¼
1

4N

X

ij

tij

m
g
t ¼

1

4

X

ic

Z

pgicðtÞtdt:

This formula capitalizes on the fact that the variance of a distribution does not change

when it is simply shifted to the right by a constant. Hence, the ratio of the model’s decision

time variance (without Ter) and the observed total response time variance (presumably shifted

with some Ter) is still an estimator of the squared scale factor between them. Using this infor-

mation, we can estimate the optimal D̂ and T̂ er for grid point g as follows:

D̂ ¼
Dg

0

ŝ
T̂ er ¼ m̂t � ŝm

g
t ;

with Dg
0 being the optimal scaling diffusion constant used for optimal storage in the database.

This gives us a final effective parameter vector of ðv0; g0; k0; Ĉ1; Ĉ2; Ĉ3; Ĉ4; D̂; T̂ erÞ. Note that

the last 6 elements of this vector are estimates conditional on the grid point g = (v0, γ0, κ0).
Next, we have to determine the single optimal parameter set (and thus also the optimal v0,

γ0, and κ0). For this we need an objective function that compares the model based PDFs with

those of the data. For this purpose, we use a (symmetrized) chi-square distance based on a set

of bin statistics. For each stimulus’ observed set of choice RTs, ti = (ti1, ti2) (with ti1 the RTs for

option 1 and ti2 for option 2), we calculate 20 data quantiles qu (with u = 1, . . ., 20) at probabil-

ity massesmi = 0.05 � i. The set of quantiles is appended with one extra quantile q0 atm0 = 0.01

to have a more detailed representation of the leading edge of the distribution. Based on bin-

ning edges (0, q0, q1, . . ., q20, +1), we create 4 × 2 × 22 bin frequencies b̂icw with w = 1, . . ., 22.

The corresponding probability massesmg
icw can be easily extracted from the prepaid PDFs

pgicðtÞ as well. Observed and theoretical quantities can then be combined in the a symmetrized

chi-square distance:

dðg; fcij; tijgÞ ¼
X

icw

ðb̂icw � m
g
icwÞ

2

b̂icw þm
g
icw

ð29Þ

This defines a distance between all grid points g in the database and any data set.

In the following paragraphs we will present three ways of using this distance to calculate

LCA estimates, each a bit more complicated than the previous one (but also more accurate):

CHISQGrid
NN , CHISQGrid

BS , CHISQSVM
BS .

First we will discuss the CHISQGrid
NN variant. Here, the grid point closest to the data set (as

measured by the symmetrized chi-square distance function) can be used as a first nearest

neighbor estimate.

Second we discuss the CHISQGrid
BS variant. Not all parameters are treated equally in the esti-

mation procedure. The parameters Ci, D and Ter are estimated conditionally on all grid points

g and then the other parameters are estimated conditionally on Ĉi, D̂ and T̂ er. Moreover, these

parameters are chosen in such a way that a specific aspect of the data (e.g., proportion of

choices for option 1) is fitted perfectly (i.e., the coherence is chosen to result in probabilities

perfectly equal to the proportions observed in the data). This would be no problem for an infi-

nite amount of data. However, for finite data, the major disadvantage of this way of working is
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that any errors induced in the precursor step are propagated through the estimation process

for v0, γ0 and κ0. This is because for finite data, the observed accuracies will typically not exactly

coincide with the accuracies provided by the best model estimates. As the estimates Ĉi are (on

each grid point) exactly fit to the observed accuracy and consequently, the effective grid points

will all have this exact accuracy. In this variant, we tackle this estimator bias by non-parametri-

cally bootstrapping the data and repeating the nearest neighbor estimate for every boot-

strapped dataset. Taking the mean of this set of estimates (a method known as bagging; [32]),

gives us a more accurate estimate. Additionally, we now have a standard error of the estimate

(and confidence interval).

Lastly, we discuss the CHISQSVM
BS variant. If we apply the bootstrap procedure, it may turn

out that the selected grid points as nearest neighbor are not very diverse (this may happen with

large sample sizes). In such a situation, it can be worthwhile to use an interpolator. So we may

learn a support vector machine based on the bin statistics of the few unique bootstraps grid

points available, together with the best overall unique grid points. In this variant, we propose

Fig 13. Recovery for the original parameters of the LCA model with Tobs = 1000 observation per stimulus. See

Fig 4 for detailed information.

https://doi.org/10.1371/journal.pcbi.1007181.g013

Prepaid parameter estimation without likelihoods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007181 September 9, 2019 36 / 42

https://doi.org/10.1371/journal.pcbi.1007181.g013
https://doi.org/10.1371/journal.pcbi.1007181


to use a training set of 100 grid points in total. The SVM can then be used as an approximation

for the bin statistics in the space between the grid points and hence for the objective function.

We subsequently minimize the approximative SVM based objective function for every boot-

strap, using differential evolution (as has been outlined above for the other applications).

Obviously, the quality of the SVM based estimate is limited by the quality of the SVMs that

are trained to learn the relation between parameters and statistics. In addition, the same SVMs

are used for all bootstrap samples, which may introduce an unwanted distortion in the uncer-

tainty assessment. To account for the systemic bias that might have been introduced by the

SVMs, we will add some random noise to each bootstrap estimate. The amount of random

deviation that is added equals the size of the prediction error of the SVM. In this way, low qual-

ity SVMs are prohibited of biasing all bootstraps in the same way. The uncertainty of the

SVMs is now incorporated in the final bootstrapped results.

Fig 14. Recovery for the original parameters of the LCA model with Tobs = 10000 observation per stimulus. See

Fig 4 for detailed information.

https://doi.org/10.1371/journal.pcbi.1007181.g014
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Test set. The test set is created by uniformly sampling parameters according to Eq 28.

Input differences
v1 � v2

2
are chosen to produce typical accuracies of 0.6, 0.7, 0.8, and 0.9. As is

done in [24], excessively long PDFs (with a maximum RT larger than 5000ms) and excessively

short PDFs (with a range below 400ms) are removed from the test set. Apart from the fact that

these PDFs are deemed unrealistic [24] for typical choice RT data, this part of the parameter

space suffers from inherent poor parameter identifiability, with very large confidence intervals

and less meaningful estimates as a consequence. Because the new parametrization analytically

integrates out scale (i.e., D) (and also shift Ter), and is positively unbounded in these dimen-

sions, we can expand the test set to cover a broader range of distributions than the ones cov-

ered in [24]. To broaden the range of the test, the distributions are scaled with a random factor

ranging from 0.2 to 5. We will use this broadened test set to determine the method’s accuracy

and coverage.

Fig 15. The MAE of the estimates of the parameters of the LCA as a function of sample size (abscissa) and for

different methods. More details can be found in the caption of Fig 3.

https://doi.org/10.1371/journal.pcbi.1007181.g015
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Results accuracy. The recoveries of the original LCA parameters are displayed in Figs 4,

13 and 14. It can be concluded that for all sample sizes, recovery is acceptable, but it improves

a lot for larger sample sizes. In all cases, the recovery is dramatically better than that reported

in [24]. Figs 15 and 16 shows RMSE and MAE, respectively, as a function of sample size for

three methods (for all parameters). It can be seen that accuracy improves for all parameters for

the single best nearest neighbor and for the bootstrap method, until some point, after which it

stabilizes or deteriorates. However, for the SVM based estimation, there is still considerable

improvement for higher sample sizes.

Results coverage. Fig 17 shows the coverages for different numbers of observations. Near-

est neighbor bootstrap coverage seems to be adequate for sample sizes up to 10000; for higher

sample sizes SVMs are needed to ensure good coverage.

Fig 16. The RMSE of the estimates of the parameters of the LCA as a function of sample size (abscissa) and for

different methods. More details can be found in the caption of Fig 3.

https://doi.org/10.1371/journal.pcbi.1007181.g016
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18. Csilléry K, Blum MGB, Gaggiotti OE, François O. Approximate Bayesian Computation (ABC) in prac-

tice. Trends in Ecology & Evolution. 2010; 25(7):410–418. https://doi.org/10.1016/j.tree.2010.04.001

19. Voight BF, Wijmenga C, Wegmann D, Consortium DGRaMa, Stahl EA, Kurreeman FAS, et al. Bayes-

ian inference analyses of the polygenic architecture of rheumatoid arthritis. Nature Genetics. 2012;

44(5):483. https://doi.org/10.1038/ng.2232 PMID: 22446960

20. Siepel A, Gulko B, Danko CG, Gronau I, Hubisz MJ. Bayesian inference of ancient human demography

from individual genome sequences. Nature Genetics. 2011; 43(10):1031. https://doi.org/10.1038/ng.

937 PMID: 21926973

21. Beaumont MA. Approximate Bayesian Computation in Evolution and Ecology. Annual Review of Ecol-

ogy, Evolution, and Systematics. 2010; 41(1):379–406. https://doi.org/10.1146/annurev-ecolsys-

102209-144621

22. Jabot F, Faure T, Dumoulin N, Albert C. EasyABC: Efficient Approximate Bayesian Computation Sam-

pling Schemes; 2015.

23. Usher M, McClelland JL. The time course of perceptual choice: The leaky, competing accumulator

model. Psychological Review. 2001; 108(3):550–592. https://doi.org/10.1037/0033-295X.108.3.550

PMID: 11488378

24. Miletić S, Turner BM, Forstmann BU, van Maanen L. Parameter recovery for the Leaky Competing

Accumulator model. Journal of Mathematical Psychology. 2017; 76:25–50. https://doi.org/10.1016/j.

jmp.2016.12.001

25. Mood AM, Graybill FA, Boes DC. Introduction to the theory of statistics ( 3rd ed). Signapore: McGraw-

Hill; 1974.

26. Fasiolo M, Wood S. An introduction to synlik (2014). R package version 0.1.1.; 2014.

27. MATLAB. version 9.1.0.441655 (R2016b). Natick, Massachusetts: The MathWorks Inc.; 2016.

Prepaid parameter estimation without likelihoods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007181 September 9, 2019 41 / 42

https://doi.org/10.1038/nature09319
http://www.ncbi.nlm.nih.gov/pubmed/20703226
https://doi.org/10.1214/15-STS534
https://doi.org/10.1214/15-STS534
https://doi.org/10.2307/1913621
https://doi.org/10.1017/S0266466604204054
https://doi.org/10.1016/j.jmp.2014.10.001
https://doi.org/10.1146/annurev-statistics-010814-020218
https://doi.org/10.1146/annurev-statistics-010814-020218
https://doi.org/10.1038/srep16970
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1007/s10340-016-0801-4
http://www.ncbi.nlm.nih.gov/pubmed/28275325
https://doi.org/10.1016/j.jtbi.2009.11.004
http://www.ncbi.nlm.nih.gov/pubmed/19913559
https://doi.org/10.1016/j.tree.2010.04.001
https://doi.org/10.1038/ng.2232
http://www.ncbi.nlm.nih.gov/pubmed/22446960
https://doi.org/10.1038/ng.937
https://doi.org/10.1038/ng.937
http://www.ncbi.nlm.nih.gov/pubmed/21926973
https://doi.org/10.1146/annurev-ecolsys-102209-144621
https://doi.org/10.1146/annurev-ecolsys-102209-144621
https://doi.org/10.1037/0033-295X.108.3.550
http://www.ncbi.nlm.nih.gov/pubmed/11488378
https://doi.org/10.1016/j.jmp.2016.12.001
https://doi.org/10.1016/j.jmp.2016.12.001
https://doi.org/10.1371/journal.pcbi.1007181


28. Kocis L, Whiten WJ. Computational Investigations of Low-discrepancy Sequences. ACM Trans Math

Softw. 1997; 23(2):266–294. https://doi.org/10.1145/264029.264064

29. Jabot F, Faure T, Dumoulin N. EasyABC: performing efficient approximate Bayesian computation sam-

pling schemes using R. Methods in Ecology and Evolution. 2013; 4(7):684–687. https://doi.org/10.

1111/2041-210X.12050

30. BEAUMONT MA, CORNUET JM, MARIN JM, ROBERT CP. Adaptive approximate Bayesian computa-

tion. Biometrika. 2009; 96(4):983–990. https://doi.org/10.1093/biomet/asp052

31. Huk AC, Katz LN, Yates JL. The role of the lateral intraparietal area in (the study of) decision making.

Annual review of neuroscience. 2017; 40. https://doi.org/10.1146/annurev-neuro-072116-031508

PMID: 28772104

32. Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and

Prediction, Second Edition. Springer Science & Business Media; 2009.

Prepaid parameter estimation without likelihoods

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007181 September 9, 2019 42 / 42

https://doi.org/10.1145/264029.264064
https://doi.org/10.1111/2041-210X.12050
https://doi.org/10.1111/2041-210X.12050
https://doi.org/10.1093/biomet/asp052
https://doi.org/10.1146/annurev-neuro-072116-031508
http://www.ncbi.nlm.nih.gov/pubmed/28772104
https://doi.org/10.1371/journal.pcbi.1007181

