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Abstract: Oral cancer is one of the most common cancers worldwide. Despite easy access to the oral
cavity and significant advances in treatment, the morbidity and mortality rates for oral cancer patients
are still very high, mainly due to late-stage diagnosis when treatment is less successful. Oral cancer
has also been found to be the most expensive cancer to treat in the United States. Early diagnosis
of oral cancer can significantly improve patient survival rate and reduce medical costs. There is an
urgent unmet need for an accurate and sensitive molecular-based diagnostic tool for early oral cancer
detection. Fourier transform infrared spectroscopy has gained increasing attention in cancer research
due to its ability to elucidate qualitative and quantitative information of biochemical content and
molecular-level structural changes in complex biological systems. The diagnosis of a disease is based
on biochemical changes underlying the disease pathology rather than morphological changes of the
tissue. It is a versatile method that can work with tissues, cells, or body fluids. In this review article,
we aim to summarize the studies of infrared spectroscopy in oral cancer research and detection. It
provides early evidence to support the potential application of infrared spectroscopy as a diagnostic
tool for oral potentially malignant and malignant lesions. The challenges and opportunities in clinical
translation are also discussed.

Keywords: oral cancer diagnosis; oral squamous cell carcinoma; oral dysplasia; Fourier transform
infrared spectroscopy; FTIR; infrared imaging; spectral biomarkers; spectral cytopathology; multi-
variate analysis; machine learning

1. Introduction

Oral cancer is the eighth most common cancer worldwide with an estimated 657,000
new cases and 330,000 deaths annually in 2020, and these numbers are expected to double
by 2035 according to the World Health Organization (WHO) [1]. Despite easy access to the
oral cavity for examination and significant advances in treatment, oral cancer patients often
face very high morbidity and mortality rates due to late-stage diagnosis, which accounts
for approximately 70% of all new cases [2]. The 5-year survival rate for oral cancer patients
ranges from 20 to 90% depending on the stage of diagnosis [3]. Early-stage oral cancer
often manifests as subtle mucosal lesions classified as oral potentially malignant disorders
(OPMD) [4,5]. Early detection and effective management of these lesions are critical for
improving survival rates and preventing oral cancer progression.

The gold standard for oral cancer diagnosis is biopsy and subsequent histopathological
evaluation under a microscope. This process is invasive, time-consuming, and subject
to inter-observer variability [6]. Furthermore, histopathological assessment based on
tissue morphological alterations does not provide an accurate risk assessment for OPMDs
and tends to detect oral cancer at late stages [7]. Various adjunctive techniques have
been proposed to facilitate the screening and diagnosis of oral cancer such as exfoliative
cytology (cytobrush) [8], vital tissue staining [9], and the use of chemoluminescence or
autofluorescence [10–12]. However, despite the continuous effort of improvement, most
techniques still exhibit limited ability to provide accurate information and help clinicians
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detect oral cancer in early stage [13]. Recently, molecular markers and salivary tests have
been investigated for their potential in early oral cancer detection [14–16]. However, so
far, no single biomarker can reliably validate the presence or predict the prognosis of oral
cancer [17,18].

The search for a fast, simple, accurate, and cost-effective diagnostic method for early
oral cancer detection is still underway. One promising technique is Fourier transform
infrared (FTIR) spectroscopy, which provides molecular fingerprints of biological samples
based on vibrational transitions of chemical bonds in the samples upon interaction with
infrared light. FTIR is a non-invasive and label free method that can detect early bimolecular
changes associated with a neoplasm condition even before the emergence of morphological
abnormalities, which strongly supports its role in early cancer detection [19,20]. To date,
considerable research work has demonstrated the competitive to superior performance of
FTIR in comparison to conventional cancer screening and diagnostic techniques, making it
a potentially powerful clinical tool in modern medicine [21–24].

2. Oral Malignant and Potentially Malignant Disorders

Oral cancer is a malignant condition on the lips or in the oral cavity including the
tongue, gingiva, mouth floor, parotid, salivary glands, and throat. More than 90% of oral
cancer is oral squamous cell carcinoma (OSCC) [25,26]. Oral carcinogenesis is a highly
complex multifactorial process that arises when epithelial cells are affected by different
genetic changes. There are several well-known risk factors for oral cancer such as smoking
and alcohol consumption. Oral cancer is 2–3 times more prevalent in men than women [27].

The vast majority of oral cancer patients have pre-existing oral lesions called oral
potentially malignant disorders (OPMDs) that precede the development of OSCC. OPMDs
consist of a group of mucosal lesions associated with higher risk of malignant transfor-
mation. The worldwide prevalence rate of OPMDs is estimated to be 4.47% [28]. The
most common OPMDs encountered in clinical practice include leukoplakia (white patch),
erythroplakia (red patch), lichen planus, and oral submucous fibrosis. While the clinical
manifestations of OPMDs are common, it is very hard to predict the outcome for individual
cases following the detection of an OPMD [29,30]. The malignant transformation rate
for OPMDs was recently reported to be 0.13–34%, with the majority of cases remaining
unchanged, becoming enlarged or reduced in size or even resolving completely [31]. Fac-
tors associated with an increased malignant transformation risk include gender, lesion
site, lesion type, habits (such as alcohol consumption and smoking), and the histologic
diagnosis of epithelial dysplasia [5]. The human papillomavirus as a risk factor has also
been discussed, but its role remains controversial [32–34].

3. Current Diagnostic/Grading/Staging/Methods and Limitations

The clinical presentation of OPMDs is subject to further histological evaluation, which
results in the diagnosis of hyperplasia, hyperkeratosis, oral epithelial dysplasia (OED),
or OSCC [35]. OED is a range of cytological and architectural changes in oral epithelium
caused by an accumulation of genetic alterations that is associated with an increased risk of
progression to OSCC [36]. An OED can be graded as mild, moderate, or severe, based on
the WHO’s three-tier classification system. Grading of OED is used to assess the probability
of malignant transformation, with a higher grade indicating a larger chance of malignant
transformation [37,38]. There are no clear guidelines with regard to treatment or follow-up
for OED. Generally speaking, mild dysplasia is often conservatively managed through
watchful waiting, while severe dysplasia may require excision of the lesion and active
surveillance for recurrence [39].

Correct diagnosis and timely treatment of OPMDs play an essential role in early oral
cancer detection and prevention. However, the WHO’s gold standard grading system for
OED has many limitations. First of all, the efficacy and usefulness of histopathological
grading of precursor lesions for predicting malignant transformation have long been
debated in the literature as malignant transformation can also occur in the absence of OED
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and histopathologic grading alone is unable to provide a risk assessment for OED [7,40–44].
Secondly, this method is highly subjective, with wide intra- and inter-observer variability
in the grading outcomes and poor reproducibility [45,46]. Thirdly, the histopathological
evaluation process is time-consuming since every tissue biopsy needs to be manually
examined, resulting in delays in patient treatment and care [47].

If OSCC is diagnosed, effective cancer management requires accurate cancer grading
to establish suitable treatment plans, estimate the risk of recurrence, and predict patient
prognosis. The current grading of OSCC utilizes both the TNM (Tumour, Node, Metastasis)
system and histopathologic grading. The internationally accepted TNM system of cancer
staging assesses the extent of tumor growth in the whole body based on the size of the pri-
mary tumor (T), the involvement of regional lymph nodes (N) as well as distant metastases
(M). Meanwhile, the histopathologic grade (G1-G4) of OSCC is established according to
tumor histology and cytomorphology of tumor lesions [48]. This multifactorial diagnostic
system considers characteristics of the tumor (e.g., differentiation), the tumor–host inter-
face (invasion), and host reactions (inflammation). Unfortunately, the histopathological
grading of oral cancer is a subjective process and provides little or no value for predicting
prognosis [49].

Therefore, there is an urgent need for a modern diagnostic tool that provides rapid,
objective, and accurate diagnosis of OPMDs for early oral cancer detection and prevention,
as well as accurate OSCC grading for better oral cancer management

4. Fourier Transform Infrared Spectroscopy/Microspectroscopy
4.1. Fourier Transform Infrared (FTIR) Fundamentals

FTIR spectroscopy is an established analytical technique with diverse applications. It
was traditionally used by chemists to characterize the molecular structures of a material.
Molecules have discrete energy levels for electronic transitions, molecular vibrations,
and molecular rotations. When a molecule is irradiated by infrared light, it absorbs a
certain amount of the incident radiation at a specific energy/frequency and undergoes
vibrational excitation from the ground state to a higher vibrational energy state. The unique
pattern of infrared absorption by a particular molecule or functional group produces
characteristic bands in their FTIR spectra. The band position is affected by the mass
of vibration, the type of molecular bond (e.g., single or double bond), the intra- and
inter-molecular environment, and the coupling with other vibrations; the band height
is proportional to the concentration of corresponding chemical moieties; and the band
width provides an estimate of intermolecular interactions. FTIR spectroscopy provides
a biochemical profile of proteins, nucleic acids, lipids, and carbohydrates in a biological
sample, called “biomolecular fingerprinting” [50,51] and is sensitive enough to probe subtle
changes in the molecular structure and microenvironment such as the secondary structure
of proteins, the mutation of nucleic acids, and the peroxidation of phospholipids [52–56].

There are three regions for the infrared spectrum: near-infrared (NIR) in the 0.76–2.5 µm
(12,500–4000 cm−1) region, mid-infrared (MIR) in the 2.5–25 µm (4000–400 cm−1) region, and
far-infrared in the 25–1000 µm (400–10 cm−1). The most commonly used region for biological
applications is MIR, which consists of the fingerprint region of 1800–900 cm−1 for proteins
(amide I/II/III), lipids, carbohydrates, and nucleic acids. NIR spectroscopy may be used in
similar applications to MIR spectroscopy. NIR spectra are occupied by overtone (resonant
bands above the fundamental bands) and combinational bands with the typical absorption
coefficients two orders of magnitude lower than that of MIR fundamental bands. Therefore,
NIR light can penetrate much deeper into the sample surface than MIR light, which makes
NIR spectroscopy better suited for deep tissue sampling and the examination of highly moist
specimens. The disadvantages of NIR spectroscopy include a significantly lower chemical
specificity and difficulty in spectral interpretation [57]. Far infrared is considered a promising
treatment modality for certain medical conditions such as knee osteoarthritis [58].
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4.2. FTIR Sample Techniques

There are two major sample techniques for FTIR spectroscopy: transmission and
reflection. The transmission technique is a simple technique in which an infrared beam
directly passes through a sample, the transmitted energy is measured, and a spectrum
is generated. Careful sample preparation is required as the sample needs to be thin
enough (a few µm) to avoid absorption signal saturation; the sample has to be dried
before FTIR measurements due to strong infrared absorption of water; and special infrared
transparent sample holders such as BaF2 disks are also required for this technique. In the
reflection technique, the infrared beam is reflected from the interface between the sample
and another medium such as air and special substrates before detection. The reflection
technique is widely used to acquire infrared spectra in a non-destructive way with no
sample preparation (e.g., dissolution or thin-film). The reflection technique further consists
of internal and external reflections. The most used internal reflection is attenuated total
reflection (ATR). In ATR, the infrared beam passes through a crystal with a high refractive
index called internal reflection element (IRE) beneath the sample. The wave extends beyond
the surface of the crystal and penetrates a small distance (0.5–2 µm) into the sample in the
form of an evanescent wave before it returns to the crystal. The evanescent wave will be
attenuated due to infrared absorption of the sample and generate a FTIR spectrum. One
of the key advantages of ATR is that it requires minimal or no sample preparation before
spectral measurements due to the small penetration depth of infrared light into the sample
surface. This technique is particularly suitable for measuring samples with high water
content. External reflection techniques include specular reflection (smooth sample surface)
and diffuse reflection (rough sample surface). If the thickness and/or absorptivity of a
sample is not high enough to yield a spectrum with an adequate signal-to-noise ratio, the
transflectance technique may be used. In transflectance mode, the sample such as cells is
fixed on an infrared reflective element (e.g., low-e slide) and the infrared beam transmitted
through the sample is reflected to pass through the sample again before reaching the
detector. This technique effectively doubles the optical path for the sample and enhances
signal absorbance.

4.3. FTIR Microspectroscopy

With a microscope coupled to a FTIR spectrometer, a FTIR microspectroscopy (e.g.,
imaging) system provides spatially resolved information based on multiple infrared spectra
in an array format. In a FTIR image, each individual pixel comprises a full spectrum for
the particular sample location and therefore both spectral and spatial information of
the sample is integrated into a three-dimensional data hypercube [59]. A conventional
FTIR microspectroscopy system consists of a microscope with a focal plane array detector,
coupled to a Michelson interferometer-based spectrometer with a broadband globar thermal
source. A FTIR microspectroscopy system can be operated in either transmission mode or
reflectance/transflectance mode. A transmission FTIR microspectroscopy system requires
careful sample preparation: the sample needs to be thin (<10 µm) and flat with a smooth
surface to minimize unwanted optical effects such as scattering. On the other hand,
a reflectance FTIR microspectroscopy system such as ATR-FTIR has many advantages
over its transmission counterpart. In addition to minimal sample preparation, it can also
achieve significantly improved spatial resolution (3–4 µm) compared to transmission mode,
which allows the detection of the heterogeneous distribution of biomolecules in a biological
sample [60]. Detailed information about FTIR spectroscopy and microspectroscopy can be
found in a recently published review article by Bec et al. [59].

FTIR spectroscopy and microspectroscopy techniques have the potential to detect early
changes in the biochemical content and conformational structure during the carcinogenesis
progression. Since the middle of the 20th century, FTIR spectroscopy and microspectroscopy
have been studied as label-free, non-invasive, highly sensitive, and specific analytical tools
for the detection and characterization of malignancies in a wide variety of tissues including
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skin, brain, breast, colon, cervix, lung, stomach, ovary, prostate, leukemia, lymphoma, and
squamous epithelium [21,61].

4.4. Common FTIR Bands for Biomolecules

The FTIR spectrum for a biological sample is a combination of the characteristic absorp-
tion bands of all proteins, lipids, nucleic acids, and carbohydrates in the sample [62,63]. The
bands of proteins can be assigned to the amino acid side groups or the peptide backbone in
the range 1700–1500 cm−1. The vibrational modes of the peptide backbone generate amide
I and II bands. The amide I band (1700–1600 cm−1) is mainly associated with the C=O
stretching vibration and the amide II band (1600–1500 cm−1) is mainly associated with the
bending vibration of the N–H bond. Amides I and II bands are commonly used to investi-
gate the secondary structure of proteins [50]. The bands at 1450 and 1400 are attributable
to asymmetric and symmetric methyl bending modes [64]. The spectra of lipids consist of
absorption bands in several spectral regions: the region of 3050–2800 cm−1 for asymmetric
and symmetric stretching vibrations of –CH2 and –CH3, the region of 1500–1350 cm−1

for deformation vibrations of –CH2 and –CH3 from the lipid acyl chains, the region of
1745–1725 cm−1 for symmetric stretching vibration of the ester carbonyl bond (C=O), and
the region of 1270–1000 cm−1 for asymmetric (1240 cm−1) and symmetric (1080 cm−1)
vibrations of –PO2

− in phospholipid [65]. The spectra of nucleic acids are characterized in
four spectral regions: the region of 1780–1550 cm−1 for in-plane vibrations of double bonds
of the bases, the region of 1550–1270 cm−1 for the deformation vibrations of the bases cou-
pled with the sugar vibrations, the region of 1270–1000 cm−1 for vibrations of –PO2

−, and
the region of 1000–780 cm−1 for the vibrations of the sugar-phosphate backbone [66]. The
carbohydrate spectra include bands in the following regions: the region of 3600–3050 cm−1

is assigned to the stretching vibration of O–H, the region of 3050–2800 cm−1 is assigned
to the stretching vibrations of –CH3 and –CH2, the region of 1200–800 cm−1 is assigned
to the stretching vibrations of the C–O/C–C groups, and the region of 1500–1200 cm−1 is
dominated by deformational modes of the CH3/CH2 groups [67]. Figure 1 illustrates the
common FTIR bands for important biomolecules in oral epithelium.
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4.5. Comparison of FTIR with Other Spectroscopic Diagnostic Techniques

Two other commonly used spectroscopic diagnostic techniques are Raman spec-
troscopy and fluorescence spectroscopy. Similar to FTIR spectroscopy, Raman spectroscopy
also probes the vibrational states of molecules and also has high chemical specificity. How-
ever, it is based on the Raman Effect, an inelastic scattering of incident photons by the
vibrating molecules. Raman and FTIR spectroscopies are considered complementary. The
same vibrations may have different FTIR and Raman activities depending on the sym-
metry of molecules. For example, the asymmetrical water molecule has a strong infrared
absorption but a weak Raman scattering. Therefore, the Raman technique is very useful
for the examination of highly moist fresh biological samples. Raman spectroscopy and
microspectroscopy are also potent tools in biomedical applications including oral cancer
diagnosis [68–71]. Limitations of the technique include the presence of an intense fluores-
cence background noise in biological samples, weak signal, poor signal-to-noise ratio, and
long acquisition time [72]. As complementary techniques, FTIR and Raman spectroscopies
can be used together to provide additional chemical and structural insights.

Unlike FTIR and Raman, fluorescence spectroscopy is based on the spontaneous
emission of radiation by a fluorescent molecule (fluorophore) when interacting with the
exciting light. Naturally occurring fluorophores include collagen, tryptophan, elastin,
keratin, and hemoglobin, etc. Changes in the fluorescence spectra of oral mucosa can
be detected and used to help the screening of oral cancer/pre-cancer [73,74]. However,
tissue generally contains limited natural fluorophores and their spectroscopic bands are
broad and overlapping, which makes it very hard to distinguish them and reduces the
specificity of fluorescence spectroscopy for diagnostic applications [6]. Autofluorescence
techniques have been scrutinized as a diagnostic adjunct for OPMD and OSCC due to
poor study designs and inconclusive results [75,76]. The American Dental Association has
recommended against the use of autofluorescence imaging for the assessment of clinically
evident oral mucosal lesions [13].

5. Signal Preprocessing and Data Analysis
5.1. Signal Preprocessing

FTIR spectral/hyperspectral imaging data generally need to be preprocessed first
to remove or reduce biochemically irrelevant signal contributions from physical, macro-
structural, and environmental factors, in order to improve the accuracy of quantitative data
analysis toward disease detection applications. Typical spectral preprocessing includes
background subtraction, spectrum region selection, spectral smoothing, light scattering
correction, baseline adjustment, normalization, spectral differentiation, and outlier re-
moval [77].

5.2. Exploratory Analysis

After signal preprocessing, exploratory analysis is usually employed next to identify
biochemical patterns and trends of the data and help understand the nature of the samples,
outliers, and experimental errors. There are several ways to do exploratory analysis includ-
ing univariate analysis, bivariate analysis, and multivariate analysis. Univariate analysis
evaluates only a single property (variable) such as the intensity at a given wavenumber,
while bivariate analysis evaluates two properties (variables) at the same time. They are
commonly used to generate chemical maps of interested functional groups based on band
intensities or band ratios [78]. Although univariate and bivariate analyses are easy to use
and the resulting chemical maps are also easy to interpret, these techniques make use of
only a very small fraction of the available spectral information.

FTIR spectral data often contain thousands of variables (wavenumbers) and measure-
ments (objects/observations), which hold an enormous amount of biochemical information.
Particularly, hyperspectral image data are high-dimensional data with a full spectrum at
each pixel. In order to extract significant and meaningful information from them, it is
often necessary to apply an appropriate multivariate analysis for data interpretation [79].
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Multivariate analysis allows the evaluation of several properties (variables) of the spectra
or the entire spectra at the same time. The application of multivariate statistical methods
to chemistry or biology is also called Chemometrics [80]. Principal component analysis
(PCA) is the most widely used multivariate exploratory analysis method. It aims to reduce
the complexity of spectral datasets by linearly transforming the original coordinate system
into a new coordinate system defined by the principal components that best explain the
variance in the dataset. PCA is an unsupervised method frequently used for spectral data
dimensionality reduction, which helps extract useful signals from unwanted noise and
reduce computational complexity.

5.3. Classification Modeling Process

Following exploratory data analysis, a predictive model using experimental FTIR data
needs to be built for disease detection. For this purpose, the initial dataset is split into two or
three subsets: the training dataset, the validation dataset (optional), and the testing dataset.
During the training phase, a classification model is built using the pre-labelled training
dataset (e.g., FTIR spectra of normal and pathological cases), so that the different classes
are well separated. The model parameters learned during the training phase are stored for
further validation. During the testing phase, the unlabeled data (e.g., FTIR spectra from
new samples with unknown disease attributes) are classified or predicted using the model
built in the training phase. For small-sized datasets, cross-validation is employed using
samples from the training set to optimize the model parameters. The most commonly used
cross-validation methods include leave-one-out cross-validation (for sample size ≤20),
leave-p-out cross-validation, k-fold cross-validation, and continuous-block cross-validation
(for replicate spectra). For a large number of samples (>100), a separate validation subset is
used to optimize the model.

5.4. Clustering and Classification Methods

Unsupervised clustering and/or supervised classification analyses are further em-
ployed to separate (cluster) and group (classify) biological samples or FTIR image pixels
based on certain similarity measures of the corresponding spectra. These similarity mea-
sures are calculated using specific mathematical distance functions such as Euclidean
distance, Manhattan distance, and Minkowski distance. Commonly used clustering and
discriminant methods for FTIR spectroscopic data analysis include k-means, fuzzy c-means
(FCM), hierarchical cluster analysis (HCA), k-nearest neighbors (KNN), support vector
machines (SVM), soft independent modeling of class analogy (SIMCA), linear discriminant
analysis (LDA), partial least squares discriminant analysis (PLS-DA), artificial neural net-
works (ANN), and convolutional neural networks (CNN) [77]. Unsupervised clustering
analysis helps identify hidden structures in unlabeled datasets and is often used as a
precursor to supervised methods, whereas supervised methods build classification models
for predicting the disease attributes of new samples based on their spectral profiles.

K-means is the simplest unsupervised clustering method for splitting a spectral dataset
into a set of pre-determined k groups. K-means is a “hard” clustering in which each spec-
trum belongs to only one cluster, while in fuzzy c-means, each spectrum can belong to
multiple clusters with different membership grades. Hierarchical clustering is an unsuper-
vised method that generates a set of clusters in a tree-shaped dendrogram, which shows the
hierarchical relationship between the clusters. KNN is a local non-parametric supervised
method, which classifies a sample spectrum based on the most frequent disease attribute
label of the closest k neighboring spectra in a projected feature space. SVM aims to identify
a hyperplane in an N-dimensional space (N is the number of variables) that optimally
classifies the spectra in the training dataset so that the maximum margin from the bound-
aries of different classes is achieved. Then, the hyperplane is used as a decision boundary
to help classify new spectra; data points falling on either side of the hyperplane can be
assigned to different classes. SIMCA is based on PCA modeling performed for each class
in the training set. Unknown samples are compared to the PCA class models and assigned
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to the class according to their analogy with the training samples. LDA is one of the most
popular classification methods used for high-dimensional spectral data. LDA is similar to
PCA in the sense that both of them look for latent dimensions to explain variance in the
data. Unlike PCA, which is an unsupervised method aiming to find new dimensions with
the most variations, LDA is a supervised method aiming to maximize the between-class
variance and minimize the within-class variance through a linear discriminant function.
Other nonlinear variants of LDA include quadratic discriminant analysis, multiple discrim-
inant analysis, and canonical discriminant analysis, in which the same goal is achieved
using various non-linear discriminant algorithms. The unsupervised method is often used
in conjunction with supervised methods to analyze a very large spectral dataset. One of
the most powerful combinations is PCA-LDA, in which the training spectral dataset is first
reconstructed using PCA to reduce the number of variables (dimension reduction), and
then the reconstructed data are fed into the LDA classifier for performing classification.

Regression analysis is the statistical processes for estimating the relationship between
the observable variables (measured FTIR spectral data) and the predicted variables (cate-
gorical disease attributes). Two commonly used regression methods are partial least square
(PLS) regression and principal components regression (PCR). PLS aims to find a linear
regression model using a latent variable approach by projecting the predicted variables and
the observable variables to a new space, while PCR aims to find hyperplanes of maximum
variance between the two variables. When the predicted variables are categorical (e.g., 0
and 1 for normal case and cancer), PLS is called partial least square discriminant analysis
(PLS-DA). OPLS-DA is a modification of the classical PLS-DA, which usually performs
better than PLS-DA. Similar to PCA-LDA, a PLS-LDA is a combinational method that
first uses a PLS model to reduce the original spectral variables to a small number of latent
variables, and then applies the LDA to classify the samples [81].

When data complexity increases, ‘black box’ algorithms (i.e., unknown classification
rules) can be applied such as artificial neural networks (ANN), random forests, and deep-
learning approaches. ANNs are computational models inspired by the functionality of the
central nervous system of the human brain, in which many nodes called artificial neurons
are arranged in layers and each node is connected to all other nodes in adjacent layers. A
typical ANN is made up of one input layer, one output layer, and several hidden layers.
The more hidden layers, the deeper the neural network. A random forest utilizes multiple
decision trees to provide a more accurate and stable prediction. Deep learning approaches
offer a great variety of opportunities for solving classical imaging tasks and also for state-
of-the-art problem-solving in the spatial–spectral domain. A CNN is a class of deep neural
networks with the ability to learn spatial characteristics of a FTIR image. Its ability to
process both spectral and spatial information significantly improves the classification
performance for FTIR hyperspectral image data [82]. These methods all have nonlinear
classification nature and can provide higher classification accuracy for highly complicated
spectral data. However, they also require more modeling parameters to be optimized and
higher computational power [81].

5.5. Model Performance Validation

To discriminate the diseased from the healthy cases is the ultimate goal of every
medical diagnostic procedure. An ideal diagnostic test has the ability to completely
discriminate subjects with and without diseases. Unfortunately, such a perfect test does
not exist in real life. A realistic test comprises true positive (TP), false positive (FP), true
negative (TN), and false negative (FN) cases. Diagnostic accuracy of a test is defined by its
ability to discriminate between the diseased and healthy cases and can be calculated by the
proportion of true positive and true negative in all evaluated cases

(
TP+TN

TP+FP+TN+FN

)
.

Diagnostic accuracy can also be quantified by other merit measures such as sensitivity
and specificity. Sensitivity is defined as the probability of getting a positive test result in
subjects with the disease ( TP

TP+FN ). Specificity is defined as the probability of getting a
negative test result in subjects without the disease ( TN

TN+FP ) [83]. The performance of any
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classification model must be evaluated with a validation dataset or a testing dataset using
quality merits such as accuracy, sensitivity, and specificity.

6. FTIR for Oral Cancer Diagnosis

FTIR spectroscopy has been shown by many studies to be a prospective novel di-
agnostic approach for various types of cancers due to its ability to distinguish cancer
samples from normal ones at high sensitivity, specificity, and accuracy [24]. In this section,
twenty-two studies on the applications of various FTIR techniques in oral cancer/precancer
research are reviewed. All results summarized in this section are human studies in the MIR
region unless otherwise noted.

6.1. Oral Tissue Studies

The fact that thin tissue samples as prepared for histological examination are readily
suitable for infrared spectroscopic analysis conveniently promotes the integration of FTIR
techniques into existing histopathological diagnostic routines. About two decades ago,
several groups applied FTIR spectroscopy and mapping to study biochemical differences be-
tween normal and malignant oral tissues. Schultz et al. revealed that poorly-differentiated
OSCC cells produce a relatively homogeneous and distinctly abnormal cell biochemistry,
whereas well-differentiated epithelial cells present a highly heterogeneous distribution
of cellular components and suggested that FTIR analysis of cell components (e.g., DNA
and keratin) could be used to distinguish cancerous tissues from normal epithelial struc-
tures [84,85]. Fukuyama et al. observed a series of FTIR spectral differences between
normal and malignant oral tissues including bands related to keratin, collagen, phosphate
of nucleic acids, and membrane phospholipids. Specifically, FTIR spectral differences
between OSCC and normal gingival epithelium were observed in the band regions of
1482–1431 cm−1 and 1274–1183 cm−1. The shoulder at 1368 cm−1 disappeared in OSCC,
and the bands at 1246 and 1083 cm−1 found in the normal gingival epithelium shifted to
1242 and 1086 cm−1 in OSCC, respectively [86]. Wu et al. used fiber-optic ATR spectroscopy
on freshly-cut human oral tissues and found that the 1745 cm−1 band for the ester group
(C=O) vibration of triglycerides, the C–H stretching bands between 3100 and 2800 cm−1,
and the amide I band at 1646 cm−1 were good markers for distinguishing normal oral
tissue from malignant ones [87].

From 2003 to 2013, one research group from Italy published a series of papers on their
studies of normal, pre-cancerous, and cancerous tissues of the oral cavity by collecting
reflectance FTIR spectra of thin tissue sections on a steel support. Bruni et al. observed
distinct FTIR chemical maps of vibrational bands at 970 cm−1 (DNA), 1026 cm−1 (collagen),
1550 cm−1 (proteins), and 1735 cm−1 (lipids) between normal and diseased oral tissues and
reported that proliferating and regressive states of the tumors could be identified via the
presence of a high content of DNA or collagen, respectively [88]. Conti et al. continued the
investigation using supervised and unsupervised multivariate analyses (HCA and PCA)
and showed that changes in vibrational frequency and intensity of proteins and nucleic
acids as well as the visualization of single wavenumber or band ratio images enabled a
qualitative and quantitative evaluation of the changes in the proliferating activity from
dysplastic to neoplastic states [89,90]. Sabbatini et al. further conducted vibrational analysis
of both epithelial and connective tissue sections of OSCC at various malignancy grades (G1–
G3) and identified a series of potential spectral markers for OSCC grading including the
increase in unsaturated lipid chains, evidencing the occurrence of acyl chain peroxidation
process changes in the protein structure with increased helical conformations and longer
side chains, a significant carbohydrate consumption due to enhanced cellular activity, an
elevated level of free glycogen associated with carcinogenesis, structural alterations in
nucleic acids with a higher degree of DNA methylation, and an increased amount of RNA
indicating more cellular transcriptional activity. They also suggested that spectroscopic
biochemical changes occurred in both cancerous epithelium and neighboring connective
structures [91]. The investigations by this group showed satisfactory agreement between
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the vibrational results and the histopathological results and contribute to biochemical
understandings of these lesions toward an early diagnosis.

Meanwhile, Pallua et al. investigated microarrays of OSCC tissues using FTIR imaging
and found that the use of multivariate methods HCA and KMC (k-means clustering) in
spectral regions of 3650–3050 cm−1, 3000–2800 cm−1, and 1750–850 cm−1 considerably
increased the information content of the infrared datasets. Their results indicate that
intra-operative and surgical specimens of the oral cavity can be characterized by FTIR
microscopic imaging [92]. Banerjee et al. applied FTIR spectroscopy in the differentiation
of oral leukoplakia and OSCC histological tissues using linear and quadratic support
vector machine (SVM) at 10-fold cross-validation. Six spectral features (1782, 1713, 1665,
1545, 1409, and 1161 cm−1) were obtained through the Feature Forward Selection method,
achieving a classification between leukoplakia and OSCC with 81.3% sensitivity, 95.7%
specificity, and 89.7% overall accuracy. The biochemical assignments of these spectral
features revealed changes in glycogen and keratin content between leukoplakia and OSCC
histological sections. This study not only supports the development of FTIR spectral
markers in cancer research, but also reveals its clinical promise for disease classification
and risk assessments of oral lesions [93]. Naurecka et al. investigated the differences of
FTIR-ATR and FT-Raman spectroscopy among leukoplakia, oral cancer, and normal tissues.
FTIR spectral differences were observed at 1238 cm−1 (related to phosphate stretching in
nucleic acids) between normal and cancer tissues and at 1030 cm−1 (related to –CH2OH
vibration in glycogen) among normal, leucoplakia, and cancer tissues [94].

6.2. Oral Cell Studies (FTIR Cytopathology)

FTIR cytopathology is a novel approach for cancer/pre-cancer screening by studying
the biochemical composition of exfoliated cells using FTIR. FTIR cytopathology provides
rapid measurement of cellular biochemistry and identifies reproducible spectral patterns
that exist in disease states. One research group from the United States conducted a series of
investigations on the application of FTIR cytopathology to cancer screening using exfoliated
cells from the oral cavity. Papamarkakis et al. demonstrated that FTIR spectra of squamous
cells from the tongues of healthy people could be differentiated from those collected from
patients with oral diseases (e.g., dysplastic and cancer cases) by using the unsupervised
PCA method. The spectra of normal, dysplastic, and cancerous cells demonstrated a
gradual change that allowed reliable detection of oral cancer. These spectral changes
can be attributed to the variations in the chemical composition of their corresponding
cells [20]. Miljković et al. from the same group further trained an ANN to automatically
distinguish the clinical oral disease cases from the normal cases, achieving sensitivity
and specificity values of 96% and 94.3%, respectively [95]. Similar results (sensitivity of
95.5% and specificity of 94.7%) were achieved for exfoliated esophageal cells [96]. The
authors concluded that infrared cytopathology of exfoliated cells from the oral cavity is a
method of superior sensitivity for detecting oral diseases. Notably, the findings from this
group indicate that FTIR cytopathology can detect biochemical changes in morphologically
normal cells from patients with pre-cancerous oral diseases, providing strong support for
the use of FTIR in early oral cancer detection [97].

Recently, Ghosh et al. investigated the integration of FTIR and Raman spectroscopy
in the discrimination of exfoliated oral cells from oral cancer and pre-cancer (leukoplakia)
patients as well as healthy volunteers with and without smoking habit. The PCA-LDA
model of the dual spectra yielded a classification accuracy of 98% compared to the accuracy
of 85% and 82% from FTIR or Raman alone, respectively, in a spectrum-wise comparison.
When the mean of all spectra from a patient was used, the overall classification efficiency
was 73%, 80%, and 87% for FTIR, Raman, and combined approaches, respectively. Their
study demonstrates the capability of FTIR and Raman spectroscopy of oral exfoliated
cells individually and jointly, together with chemometric analysis for the screening and
prediction of oral cancer among the susceptible population [98].
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FTIR spectroscopy has also been used for drug–cell interaction studies. Giorgini
et al. conducted in vitro FTIR microspectroscopy analysis of primary OSCC cells under
controlled hydrated conditions treated with two chemotherapy drugs cisplatin and 5-
fluorouracil. The data evidenced meaningful spectroscopic differences due to alterations in
cellular proteins, lipids, and nucleic acids and revealed the different drug pathways and
extents of cellular damage that were not provided by traditional cell-based assays [99].

Chiu et al. demonstrated a wax-physisorption-based kinetic analysis method for the
detection of oral precancer and cancer using synchrotron-based infrared microspectroscopy.
Linear discriminant analysis (LDA) of oral cell FTIR spectra produced an accuracy rate
of up to 89.6% for discriminating normal cells from cancer cells using methylene (CH2)
and methyl group (CH3) stretching vibrations in the range of 3000–2800 cm−1. A lower
absorbance ratio of νas CH2/νas CH3 was found in more advanced cancerous samples
than that of normal ones. Their findings suggest that cancerous oral samples can be
differentiated from normal ones based on different wax physisorption properties caused
by the polarity and structure of molecules on the cell surface [100].

6.3. Biofluid Studies

Biofluids (e.g., blood including plasma and serum, saliva, sputum, urine, and tears)
can provide a systemic snapshot of the human body. As a diagnostic medium, they
offer considerable advantages due to their non-/minimally invasive collection at a low
cost. Vibrational spectroscopic analysis of biofluids offers effective diagnosis via specific
spectral markers and has been reported in the detection of a variety of cancers including
ovarian [101], colorectal [102], lung [103], brain [104], and breast cancer [105].

Menzies et al. demonstrated that ATR-FTIR can be used to discriminate sputum samples
of oral cancer patients from the control. A feature selection method based on partial least
squares (SlimPLS) was used to determine significant wavenumbers (1650 cm−1, 1550 cm−1,
and 1042 cm−1) for cancer and normal sputum discrimination, and those spectral features
suggested changes to protein and glycoprotein structures within sputa cells [106].

Oral submucous fibrosis (OSF) is found to have the highest malignant potential among
all pre-cancerous oral lesions. Rai et al. used FTIR spectroscopy together with chemometric
techniques to differentiate the serum metabolic signatures of OSF patients from healthy
controls. Multivariate statistical techniques (PCA, HCA, PLS-DA) achieved excellent
separation of OSF spectra from normal ones using nineteen significant wavenumbers
(p ≤ 0.001) between 1725 cm−1 and 1020 cm−1, representing alterations in lipids, proteins,
carbohydrates, and nucleic acids. These findings suggest that FTIR spectroscopy combined
with chemometric analysis can be potentially employed for rapid and accurate preoperative
screening and diagnosis of OSF [107].

Adeeba et al. profiled plasma samples from oral cancer patients and “niswar” (a dip-
ping tobacco product) users using ATR-FTIR. Chemometric analysis of the data revealed a
clear separation among the groups. PLS-DA and OPLS-DA models provided a classifica-
tion rate of 87.7% and 89.5%, respectively. Their results indicate that FTIR spectroscopy
coupled with chemometric analysis can be used for the preliminary discrimination of
plasma samples of oral cancer patients, “niswar” users, and healthy individuals [108].

Recently, extracellular vesicles (EVs) have attracted considerable interest in cancer
research. EVs are small membrane-bound vesicles naturally released from cells including
tumor cells and immune cells into plasma, urine, saliva, and other biofluids. EVs have been
shown to function in almost every step of cancer progression. Cancer EVs contain a unique
biomolecular cargo consisting of proteins, nucleic acids, and lipids. Through the analysis
of this specific cargo, biomarkers have been identified and developed for cancer diagnosis
and prognosis [109]. EVs offer an exciting opportunity to improve our understanding of
oral cancer biology that may translate to improved clinical practice [110].

Zlotogorski-Hurvits et al. assessed the diagnostic potential of FTIR spectra of salivary
exosomes (a type of EV) and showed that a specific IR spectral signature for oral cancer salivary
exosomes could be accurately differentiated from that for healthy individuals, based on small
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changes in the conformations of proteins, lipids, and nucleic acids with optimized artificial
neural networks. Specifically, IR spectra of oral cancer were consistently different from healthy
ones at 2924 cm−1 and 2854 cm−1 (membrane lipids), 1543 cm−1 (transmembrane proteins),
and 1072 cm−1 (nucleic acids). The PCA-LDA model successfully classified the samples with
a sensitivity of 100%, a specificity of 89%, and an accuracy of 95%. The SVM model showed a
training accuracy of 100% and a cross-validation accuracy of 89% [111].

6.4. Tumor Microenvironment Study

The application of FTIR in oral cancer diagnosis has generally focused on spectral
changes in the epithelium. However, recent studies have demonstrated that the biochemical
changes in the extracellular matrix may also have the potential to be biomarkers for
cancer [112–114]. Ukkonen et al. employed FTIR imaging to study the biological changes
of the tumor microenvironment caused by the human tongue SCC and melanoma cells
using a 3D organotypic myoma model. Their results suggest that the features present in
the amide and collagen triplet region (1700–1600 cm−1) could serve as spectral markers for
cancer-induced modifications in the tumor microenvironment [115].

A summary of all the reviewed studies in this section can be found in Table 1.

Table 1. A summary of the oral cancer studies using Fourier transform infrared (FTIR) spectroscopy discussed in this review.

Type of Study Title of Study References

Biochemical imaging and 2D classification of keratin pearl structures in oral squamous
cell carcinoma [84]

In situ infrared histopathology of keratinization in human oral/oropharyngeal squamous
cell carcinoma [85]

A study on the differences between oral squamous cell carcinomas and normal oral mucosas
measured by Fourier transform infrared spectroscopy [86]

Distinguishing malignant from normal oral tissues using FTIR fiber-optic techniques [87]

Oral tissue

Histological and microscopy FT-IR imaging study on the proliferative activity and angiogenesis
in head and neck tumors [88]

studies FT-IR microscopy imaging on oral cavity tumors, II. [89]

Microimaging FT-IR of oral cavity tumors. Part III: Cells, inoculated tissues and human tissues. [90]

Infrared microspectroscopy of Oral Squamous Cell Carcinoma: Spectral signatures of
cancer grading [91]

Fourier transform infrared imaging analysis in discrimination studies of squamous cell carcinoma [92]

Fourier-transform-infrared-spectroscopy based spectral-biomarker selection towards optimum
diagnostic differentiation of oral leukoplakia and cancer [93]

FTIR-ATR and FT-Raman Spectroscopy for Biochemical Changes in Oral Tissue [94]

Spectral cytopathology: new aspects of data collection, manipulation and confounding effects [95]

Infrared micro-spectroscopy for cyto-pathological classification of esophageal cells [96]

Oral cell studies

Cancer Screening via Infrared Spectral Cytopathology (SCP): Results for the Upper Respiratory
and Digestive Tracts [97]

Chemometric analysis of integrated FTIR and Raman spectra obtained by non-invasive
exfoliative cytology for the screening of oral cancer [98]

In vitro FTIR microspectroscopy analysis of primary oral squamous carcinoma cells treated with
cisplatin and 5-fluorouracil: a new spectroscopic approach for studying the drug-cell interaction [99]

Oral cancer diagnostics based on infrared spectral markers and wax physisorption kinetics [100]
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Table 1. Cont.

Type of Study Title of Study References

Fourier transform infrared for noninvasive optical diagnosis of oral, oropharyngeal, and
laryngeal cancer [106]

Serum-based diagnostic prediction of oral submucous fibrosis using FTIR spectrometry [107]

Biofluid studies A comparative profiling of oral cancer patients and high risk niswar users using FT-IR and
chemometric analysis [108]

Extracellular vesicles in head and neck cancer: A potential new trend in diagnosis, prognosis,
and treatment [110]

FTIR-based spectrum of salivary exosomes coupled with computational-aided discriminating
analysis in the diagnosis of oral cancer [111]

Tumor microen-
vironment

study

Changes in the microenvironment of invading melanoma and carcinoma cells identified by
FTIR imaging [112]

7. Clinical Translation of FTIR

FTIR is a versatile analytical tool that works with tissues, cells, or body fluids. The
FTIR imaging technique in transmission mode can be readily implemented to comple-
ment conventional histopathological biopsy diagnosis. The FTIR cytopathology technique
in reflection/transflection mode proves to be a valuable tool in exfoliated cell analysis.
Additionally, the ATR-FTIR technique is very useful in non-invasive biofluid analysis.
Compared to the century-old pathological diagnostic method, FTIR diagnosis is based on
biochemical changes underlying the disease pathology rather than morphological changes
of tissue, and offers high sensitivity, specificity, and accuracy in cancer detection. FTIR
combined with big data technologies such as multivariate statistical analyses and machine
learning offer tremendous potential for the prevention, early detection, and management
of oral cancer. A comparison between the traditional pathological diagnosis and the novel
FTIR diagnosis for oral cancer is illustrated in Figure 2.

Various sample techniques face their own challenges such as beam scattering arti-
facts (Mie scattering) for the transmission mode of tissue sampling, the coffee-ring effect
for ATR mode of biofluid sampling, and the electric-field standing wave effect for re-
flection/transflection mode of cell or tissue sampling [116–118]. Most of the challenges
have been addressed by optimal sample preparation and the use of advanced spectral
preprocessing techniques like extended multiplicative signal correction [119,120].

Clinical implementation has been impeded by practical hurdles like the low speed
of data acquisition, low sample throughput, unsatisfactory spatial resolution, issue of
clinical integration process, and lack of optimized computational procedures for rapid
extraction of clinically useful information [121]. There have been some latest technological
developments to reduce these barriers.

The demand for high throughput and speed has led to the development of discrete
frequency imaging systems using high brightness quantum cascade laser (QCL) technology,
capable of producing high-resolution images in a fraction of the time of the traditional FTIR
system [122,123]. For example, an advanced confocal FTIR instrument was recently devel-
oped by S. Mittal et al. using refractive infrared optics and a QCL source. This instrument
provides simultaneously high resolution (2-µm pixel size) and high signal-to-noise ratio
(>1300) as well as a speed increase of ~50-fold for obtaining classified results compared
with the present FTIR imaging technique. It was demonstrated that clinical biopsies of a
typical patient can be analyzed in 1 h and about 100 tissues can be analyzed in a day with
this newly developed FTIR instrument [124]. Another type of high-throughput ATR-FTIR
technology has been developed using patented silicon internal reflection elements (Si IREs)
along with machine learning technology for the analysis of serum and demonstrated a
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sensitivity of 93.2% and a specificity of 92.8% for differentiating brain cancer patients and
control [125].
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The spatial resolution of a traditional bench-top FTIR imaging system with a conven-
tional globar source is about 20 µm × 20 µm. The use of a highly brilliant synchrotron
light source can improve the spatial resolution to a few µm [79]. However, a synchrotron
source has limited availability and accessibility. Recent developments in high-resolution
infrared microscope optics have led to even better spectral quality and spatial resolution
with a conventional source [126]. Superior spatial resolution can also be achieved with
near-field IR techniques, which have the potential to break the diffraction limit constraints
for a 100-fold improvement in spatial resolution [127].

Another practical barrier to be addressed in order to employ FTIR in clinical practice is
concerning the sample substrate. FTIR microspectroscopy in transmission mode is performed
using thin tissue sections on a special substrate highly transparent in the mid-infrared region
such as barium fluoride (BaF2) or calcium fluoride (CaF2) substrates, which are expensive to
use and fragile to handle. The transflection sampling modality utilizes a transparent glass
slide with an infrared reflective layer. Although they are cheap and robust, concerns have been
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expressed for distortions arising from the electric-field standing wave effect. Efforts have been
made to address the substrate issues. Bassan et al. proposed the use of standard glass slides
for FTIR imaging in transmission mode. Although they are mostly opaque in the mid-infrared
region, there is a narrow spectral region of 3800–2500 cm−1 with sufficient transmission to
enable accurate analysis of N–H, O–H, and C–H stretching bands. Excellent classification
accuracies (98.25% for epithelium, 99.94% for stroma, 100.00% for blood, and 97.22% for
necrosis) have been achievable between malignant and non-malignant epithelium using
standard glass slides [128]. To address the mentioned issues and to better incorporate FTIR to
the existing histopathological workflow, one study applied FTIR to coverslip-covered stained
histological tissues received from the pathologist on standard glass slides and demonstrated
classification accuracies over 95% among normal epithelium, malignant epithelium, normal
stroma, and cancer associated stroma using a random forest classification model [129].

Other advancements in technologies are further accelerating the adoption of FTIR in
oral cancer and other biomedical areas. For example, three-dimensional FTIR imaging has
been developed to meet the needs of modern pathology. Ogunleke et al. demonstrated a
high-throughput infrared microscopy method that utilized automated image correction
followed by spectral analysis for 3D FTIR image reconstruction. The new approach enabled
quantitative metabolic parameter extraction from the FTIR spectra for the characterization
of the brain tumor metabolism [130]. Metasurface-enhanced infrared reflection spectro-
scopic cytopathology has been developed that utilizes plasmonic metasurfaces to localize
and intensify the evanescent field near the cell’s membrane, and to conduct spectroscopic
interrogations of the cells attached to the metasurface using reflected infrared light. This
approach has a super high sensitivity that a very small part (~50 nm deep) of the cell can
generate valuable diagnostic information. Early findings indicate that this approach can
effectively differentiate cancerous human colon cells from normal ones [131]. Large-scale
clinical translation of FTIR could be expedited by the availability of economic miniaturized
instrumentation. Single-chip in-silicon spectrometers enabled by fundamental technologi-
cal breakthroughs have already been reported [132]. On-chip FTIR spectroscopy employing
complementary metal-oxide semiconductor compatible thin-film waveguides and microflu-
idics has shown good promise as highly integrated, compact, and robust tools for biofluid
analysis [133].

Before widespread clinical adoption happens, protocol standardization and extensive
clinical trials need to be carried out. Standardization of sample collection, handling, and
storage is critical for achieving experimental reproducibility within and among laboratories.
Large patient cohorts with different grades of various oral cavity cancers will help validate
the technique.

In a recent review, Rai et al. suggested that modern “Omics” strategies (genomics,
transcriptomics, proteomics, and metabolomics) can make a significant influence on the
identification of molecular biomarkers for early oral cancer detection [134]. As an additional
“Omics”, FTIR spectromics should be integrated with other patient information to achieve
early oral cancer detection and provide a potential pathway to precision medicine and
personalized care in oral cancer treatment and management.

8. Conclusions

The studies reviewed in the current paper strongly support the great promise of FTIR
as a novel diagnostic tool for early oral cancer detection and management. FTIR spec-
troscopy has been investigated in the analysis of a variety of oral cancer related biological
samples including oral tissues, oral cells, and biofluids. It has also been used to study the
oral tumor microenvironment as well as the effects of anti-cancer drugs. The biochemi-
cally based FTIR diagnostic approach offers several advantages over the morphologically
based gold standard histopathology, among which the most notable benefit is its ability
to detect pre-cancerous changes at early stages. The wealth of biochemical and structural
information contained in FTIR spectra and images can be fully extracted using various mul-
tivariate analysis and machine learning techniques. FTIR in conjunction with chemometric
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data analysis has demonstrated high sensitivity, specificity, and accuracy in differentiat-
ing pathological oral cases from normal ones. Recent technological breakthroughs and
advancements in infrared sources, waveguides, detectors, chip integrations, and software
development further expedite the clinical translation of FTIR as a fast, economic, accurate,
and automated diagnostic system. Integrated with other modern biomedical technologies,
FTIR is expected to play a significant role in the early detection of oral cancers in the
near future.
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