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Understanding the interplay between systemic and mucosal anti-HIV antibodies can
provide important insights to develop new prevention strategies. We used passive
immunization via systemic and/or mucosal routes to establish cause-and-effect
between well-characterized monoclonal antibodies and protection against intrarectal
(i.r.) SHIV challenge. In a pilot study, for which we re-used animals previously exposed
to SHIV but completely protected from viremia by different classes of anti-HIV neutralizing
monoclonal antibodies (mAbs), we made a surprise finding: low-dose intravenous (i.v.)
HGN194-IgG1, a human neutralizing mAb against the conserved V3-loop crown, was
ineffective when given alone but protected 100% of animals when combined with i.r.
applied HGN194-dIgA2 that by itself had only protected 17% of the animals. Here we
sought to confirm the unexpected synergy between systemically administered IgG1 and
mucosally applied dIgA HGN194 forms using six groups of naïve macaques (n=6/group).
Animals received i.v. HGN194-IgG1 alone or combined with i.r.-administered dIgA forms;
controls remained untreated. HGN194-IgG1 i.v. doses were given 24 hours before – and
all i.r. dIgA doses 30 min before – i.r. exposure to a single high-dose of SHIV-1157ipEL-p.
All controls became viremic. Among passively immunized animals, the combination of
IgG1+dIgA2 again protected 100% of the animals. In contrast, single-agent i.v. IgG1
protected only one of six animals (17%) – consistent with our pilot data. IgG1 combined
with dIgA1 or dIgA1+dIgA2 protected 83% (5/6) of the animals. The dIgA1+dIgA2
combination without the systemically administered dose of IgG1 protected 67% (4/6) of
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the macaques. We conclude that combining suboptimal antibody defenses at systemic
and mucosal levels can yield synergy and completely prevent virus acquisition.
Keywords: dimeric IgA, IgG, passive mucosal and systemic immunization, rhesus macaque model, SHIV,
immune exclusion
INTRODUCTION

Worldwide, most new HIV-1 infections occur through mucosal
exposures, including sexual transmission as well as perinatally
acquired infections. The overwhelming majority of newly infected
individuals harbor initially CCR5-tropic (R5) strains. As such,
mucosal fluids and epithelial barriers represent portals of entry
for HIV-1 for more than 90% of newly acquired infections.
Mobilizing host immune defenses through vaccine strategies that
include induction of mucosal immunity is clearly important.

Mucosal fluids contain different classes of immunoglobulins:
IgM, IgG, and IgA. Depending on the mucosal fluid, either IgG
or IgA predominate [reviewed in (1)]. While IgG can be
synthesized by the subepithelial plasma cells, it also originates
from the systemic circulation after crossing blood vessels, tissue
dissemination, and transepithelial transport by the Fc neonatal
receptor (FcRn). IgM and IgA destined for mucosal fluids are
generated by subepithelial plasma cells as polymers. IgM is
predominantly a pentamer that binds to the polymeric Ig
receptor (pIgR) through the Joining (J) chain (2). IgA is
produced by subepithelial plasma cells as dimer - also
incorporating the J chain, which permits the transepithelial
transport of dimeric IgAs (dIgAs). At the luminal site, pIgR
undergoes proteolytic cleavage, leaving behind the secretory
component (SC) that remains with IgM and dIgA to form
secretory IgM (SIgM) and secretory IgA (SIgA), respectively
(3). The human body generates more IgA per day than all other
classes of immunoglobulins combined (4); most of this IgA is
destined for transepithelial transport and entry into mucosal
fluids. As such, SIgA needs to be replaced on an ongoing basis.

In humans, IgA exists as two isotypes, IgA1 and IgA2 (5). In
the systemic circulation, most IgA is present in monomeric form
(Figure 1). In mucosal fluids, dimers predominate as SIgAs. IgA1
and IgA2 differ mostly in the hinge region, which is significantly
longer and wide-open in IgA1 compared to that present in IgA2.
As a result, IgA1 is more like a T-shaped molecule (6), whereas
IgA2 resembles the classical Y-shape of IgG (7). The hinge of
IgA1 also contains multiple O-linked glycosylation sites that are
completely absent in the IgA2 hinge, which instead has a few
N-linked glycosylation sites (8–10). Overall, IgA1 molecules are
more flexible than IgA2.

Are mucosal antibodies of the different Ig classes protective
against mucosal HIV transmission? To answer this question, we
have used simian-human immunodeficiency viruses (SHIVs),
chimeras that express HIV-1 envelope in an SIV backbone;
SHIVs have been adapted to be replication competent and
pathogenic in rhesus macaques (RMs). We have generated
recombinant monoclonal antibodies (mAbs) with identical
epitope specificity but different Ig backbones, including IgM,
dimeric IgA1 (dIgA1), dimeric IgA2 (dIgA2), and IgG1. To test
org 2
whether these recombinant mAbs could provide protection in
the mucosal lumina, we applied them topically 30 min before
mucosal SHIV challenge. Our passive mucosal immunization
showed significant protection for IgM (11), dIgA (12), and IgG
(13) mAbs. These studies gave proof-of-concept that mucosal
antibodies can prevent SHIV transmission.

Next, our group sought to examine the interaction between
monoclonal dIgA2 and IgG forms in the mucosal compartment.
We were prompted to do this based upon data from the RV144
Phase 3 vaccine efficacy study (14), where the protective principle
was non-neutralizing IgG with vector function predominantly
ADCC (15). Remarkably, IgA directed against HIV envelope
interfered with the protective role of systemic IgG. We wondered
whether this would be the case also in mucosal fluids. We
performed a pilot study in RMs that had a history of exposure
to live virus under the protective umbrella of passively
administered mAbs given either through the intravenous (i.v.)
or intrarectal (i.r.) routes. None of these animals had ever been
viremic, and they had no residual human mAbs or anti-human
antibody responses (16). To mimic the distribution of IgG in the
systemic compartment throughout body tissues as well as
mucosal fluids, we administered a suboptimal dose of a human
neutralizing anti-HIV Env IgG mAb, HGN194-IgG1 (17). This
mAb targets the conserved V3 loop crown. The intravenous
passive immunization was performed 24 hours before i.r. SHIV
challenge. The dIgA2 form of the same mAb was administered
i.r. 30 min before the SHIV challenge. By itself, the dIgA2 form
had only protected 17% of RMs given via passive mucosal
immunization (12). The pilot study performed in the SHIV-
exposed, aviremic RMs yielded a surprise finding (16): complete
protection of all animals given low-dose i.v. HGN194-IgG1
together with i.r. applied dIgA2. In contrast, HGN194-IgG1 as
single-agent at the low dose given protected none of the treated
animals (16). This finding was so unexpected and of such
potential importance that this current study’s aim was to
reproduce these findings in naïve animals.

Here we were able to achieve 100% protection of naïve RMs
given the suboptimal dose of i.v. HGN194-IgG1 combined with
the minimally protective i.r. HGN194-dIgA2. These data indicate
that our initial observation in SHIV-exposed RMs is reproducible.
MATERIALS AND METHODS

Virus
The SHIV-1157ipEL-p (18) stock was grown in RM peripheral
blood mononuclear cells (PBMC); it had a p27 concentration of
792 ng/ml and 7.8 x 105 50% tissue culture infectious doses
(TCID50)/ml as measured in TZM-bl cells.
August 2021 | Volume 12 | Article 705592
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Antibody Production, and Quality Control
The mAbs were produced from the same source materials and
had the same general properties as described (12). Briefly,
recombinant mAbs were expressed in Expi293 cells (Gibco)
cultured at 37°C and 8% CO2 in Expi293 expression medium
(Gibco). Cells were co-transfected with plasmids encoding
heavy (HGN194-IgG1, HGN194-IgA1, or HGN194-IgA2)
and light chains (HGN194-IgL). In addition, a J chain
expression plasmid was used to produce dimeric IgA forms.
Transfections were performed using PEI MAX 40 kDa
(Polysciences – Brunschwig) as a transfection agent at a PEI :
DNA ratio of 3:1 and 1 µg of total DNA/ml cell culture.
Transfected cells were supplemented three days after
transfection with Soy hydrolysate (Sigma) and glucose
(Sigma) and cultured for an additional four days. Cell culture
Frontiers in Immunology | www.frontiersin.org 3
supernatants were collected seven days after transfection and
pre-clarified by 20 min centrifugation at 6,000 rpm and
subsequently loaded with a peristaltic pump on a Pall
AcroPak 500 cm2 0.8/0.2 µm filter capsule (VWR) previously
equilibrated with phosphate-buffered saline (PBS).

Recombinant IgG1 antibodies were affinity purified on an
ÄKTAxpress FPLC device using 5 ml HiTrap Mab Select Xtra
columns followed by buffer exchange to PBS using HiPrep 26/10
desalting columns. Recombinant IgA forms were purified either
on 5 ml CaptureSelect™ IgA followed by buffer exchange to PBS
using HiPrep 26/10 desalting columns. The final products were
sterilized by filtration through 0.22 µm filters and supplemented
with 0.02% polysorbate 80.

The purified mAbs were quantified using the BCA method
according to the manufacturer’s instructions (Pierce). The
FIGURE 1 | Structure of IgA monomers and dimers. IgA1 and IgA2 differ significantly in the hinge region. For IgA1 forms, the hinge is wide open and contains
O-linked glycosylation sites. In contrast, the IgA2 molecule is more Y-shaped thus resembling the classical structure of IgG; the IgA2 hinge has some N-linked
glycosylation sites. IgA isotypes vary widely in different animal species; only humans and some of the great apes have IgA1 versions with the wide-open hinge.
Rhesus monkeys only have the IgA2-like form. Monomeric IgA molecules can be linked with the joining (J) chain to form dimers. Constant regions of the heavy chain
are designated Ca1, Ca2, or Ca3. The light chain carries one constant region, Ck or Cl, respectively. The heavy and light chains are linked through disulfide bonds
(ochre lines). The antigen combining site consists of the variable heavy (VH, red boxes) and the variable light (VL, turquois boxes) fragments.
August 2021 | Volume 12 | Article 705592
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binding of the recombinant mAbs to the HIV antigen
UG37gp140 was assessed by ELISA. To determine the
monomeric/multimeric state of the recombinant mAbs and to
confirm the correct formation of IgA dimer, the purified mAbs
were analyzed by SEC-UHPLC on an ACQUITY UPLC BEH200
SEC, 1.7 µm Column using a 1260 Infinity Quaternary Bio-inert
LC instrument (Agilent). Purity was assessed by separation of the
purified mAbs on SDS-PAGE under reducing as well as non-
reducing conditions. Endotoxin levels were assessed with the
Endosafe Nexgen-PTS/L.A.L. Endosafe-PTS cartridges method
(Charles River). The neutralization assays against the challenge
virus, SHIV-1157ipEL-p (18), were performed in TZM-bl cells as
described (19) (Figure S1). When mAb combinations were
tested, the concentration was the sum of the two mAbs mixed
at an equal molar ratio.
Animals
We enrolled 36 naïve, male, Indian-origin RMs (Macaca
mulatta) between 2-4 years of age for this study. The RMs
were bred and housed at the New Iberia Research Center
(NIRC, New Iberia, LA, USA), University of Louisiana at
Lafayet te (UL Lafayet te) , in accordance wi th the
recommendations in the Guide for the Care and Use of
Laboratory Animals of USA. NIRC is an Association for
Assessment and Accreditation of Laboratory Animal Care
International-accredited facility. All procedures were approved
by the Animal Care and Use Committee of the UL Lafayette.

All RMs were negative for Mamu B*08 and Mamu B*17
alleles. The PBMC of all RMs were isolated prior to the
experiments and tested for their ability to support the
replication of challenge virus, SHIV-1157ipEL-p (18). The p27
levels in the culture supernatants were measured using the SIV
p27 Antigen Capture Assay kit (ABL Inc.). The RMs were
randomized into six groups of six by age, bodyweight, Mamu
A*01 status, TRIM5a/CD16/CD64 genotypes, and peak p27
levels produced by in vitro infected PBMC (Table 1).
Passive Immunization and Mucosal
SHIV-1157ipEL-p Challenge
The 36 RMs were treated according to the experimental timeline
(Figure 2); IgG1 mAbs were administered i.v. at a dose of 1.45
mg/kg 24 h before viral challenge, and dIgA mAbs were given
intrarectally i.r. each at a dose of 1.25 mg/RM (in 2.1 ml PBS at a
final concentration of 0.595 mg/ml) 30 min before the viral
challenge, respectively. All animals were challenged i.r. with 31.5
50% animal infectious doses (AID50) (equivalent to 1.7 x 105

TCID50) of the R5 clade C SHIV-1157ipEL-p (18).
Plasma Viral RNA Levels
Plasma samples were collected on the day of the challenge and
thereafter for 12 weeks. RNA was isolated from the plasma using
QIAamp Viral RNA Mini Kits (Qiagen), and viral RNA (vRNA)
levels were measured by quantitative reverse-transcriptase
polymerase chain reaction (qRT-PCR) for SIV gag sequences.
The sensitivity of the assay was 100 copies/ml.
Frontiers in Immunology | www.frontiersin.org 4
Statistical Analyses
Kaplan-Meier analyses and log-rank tests were performed using
GraphPad Prism version 9.1.0.221 for Windows (GraphPad
software LLC).
RESULTS

A Minimally Protective Dose of HGN194-
IgG1 Given i.v., Combined With Weakly
Protective HGN194-dIgA2, Prevented
Viremia After High-Dose SHIV-C Challenge
In SHIV-exposed but uninfected animals, we had observed a
strong synergy between two forms of HGN-194: IgG1 (given i.v.)
and dIgA2 (given i.r.) (16). We sought to replicate these findings
in naïve RMs. Group 1 RMs received i.v. HGN194-IgG1 only at a
low dose of 1.45 mg/kg. Five out of six RMs became viremic
within three weeks post-challenge (Figure 3A). All untreated
controls became viremic and had high peak viral RNA (vRNA)
loads (Figure 3F). This indicates that low-dose HGN194-IgG1
given systematically alone provided minimal protection against
the SHIV-C challenge.

However, when the suboptimal low-dose i.v. HGN194-IgG1
was combined with i.r. HGN194-dIgA2 (12) for the RMs in
Group 3, all animals resisted the challenge and remained
completely aviremic throughout (Figure 3C). The-time-to-
viremia was compared using the log-rank test. Clearly, the
combination of i.v. IgG1 and i.r. dIgA2 provided significant
protection against the single high-dose SHIV-C challenge
(Group 3 vs. Control Group 6, P = 0.0005), and the protection
provided by the combination was significantly better than i.v.
IgG1 alone (P =0.005) (Figure 4). Since passive immunization
with i.r. HGN194-dIgA2 alone had protected only one out of six
naïve RMs in the past (12), the strong protection of the
combination seen in the current study suggests synergy
between systemically applied HGN194-IgG1 and topically
administered HGN194-dIgA2. The combination of these two
antibodies given by different routes significantly improved the
protection provided by each individual treatment. This result in
naïve animals confirmed our earlier finding in the SHIV-exposed
but uninfected animals (16).

Adding HGN194-IgG1 at a Suboptimal i.v.
Dose to HGN194-dIgA1 Given i.r. Did Not
Provide More Protection
Next, we sought to examine whether the strong synergy observed
between i.v. HGN-194-IgG1 and i.r. HGN-194-dIgA2 would
boost the strong protection provided by HGN194-dIgA1 given
i.r as single agent. Earlier, i.r. HGN194-dIgA1 had protected five
out of six RMs (86%; Watkins 2013). Group 2 RMs received
HGN194-IgG1 i.v. at –24 h followed by HGN194-dIgA1 given
i.r. at –30 min before SHIV-C challenge. Five out of six RMs were
protected from viremia (Figure 3B). The combination of i.v.
IgG1 and i.r. dIgA1 afforded significant protection compared to
the controls (time-to-viremia, P = 0.0005). However, the degree
of protection against the same SHIV-C challenge was identical to
August 2021 | Volume 12 | Article 705592

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Gong et al. IgG1 and Mucosal dIgA2 Cooperate
that seen earlier with single-agent topical HGN194-dIgA1 (12),
suggesting that the addition of systemic low-dose HGN194-IgG1
did not provide additional benefit.

Combining i.r. HGN194-dIgA1 With i.r.
dIgA2 Yielded a Similar Level of Protection
Compared to HGN194-dIgA1 Given i.r. as
Single Agent
Next, we examined the interaction between HGN194-dIgA1 and
HGN194-dIgA2 – both given topically. We treated RMs in
Group 5 with a combination of full-dose HGN194-dIgA1
(1.25 mg/RM i.r.) and full-dose HGN194-dIgA2 (1.25 mg/RM
i.r.) in a total of 2.1 ml PBS. Upon high-dose SHIV-C challenge
by the rectal route, only two out of six RMs became viremic
(Figure 3E), indicating significant protection compared to
controls (time-to-viremia, P = 0.0046). However, the full-dose
HGN194-dIgA1 given i.r. by itself had protected five out of six
RMs against the same SHIV-C challenge (12), suggesting that
Frontiers in Immunology | www.frontiersin.org 5
adding full-dose HGN194-dIgA2 to dIgA1 did not provide
more protection.

Low-Dose Systemic HGN194-IgG1,
Combined With Topical HGN194-dIgA1 +
dIgA2, Provided Incomplete Protection
Against High-Dose i.r. SHIV-C Challenge
Finally, we tested the triple combination of systemic low-dose
HGN194-IgG1 given at –24 h followed by HGN194-dIgA1 +
HGN194-dIgA2 given i.r. at –30 min before SHIV-C challenge.
When challenged with a single high-dose SHIV-C, five out of six
RMs never became viremic (Figure 3D), indicating significant
protection was provided by the combination compared to
controls (time-to-viremia, P = 0.0005). The RM with
breakthrough infection had a relatively low peak vRNA load
(682 copies/ml) compared to an average of 7.4 x 105 copies/ml in
the control group. Nevertheless, the triple mAb combination did
not provide complete sterile protection.
TABLE 1 | Group assignment of RMs.

Group Animal ID Age (year)
Prestudy

Body weight
(kg) Prestudy

Peak p27
(ng/ml)

MHC Typing TRIM5a CD16 CD64 alleles

A*01 B*08 B*17 Restriction 3A-1 3A-2 3A-3 1 2 3 4 6 7

1 A15X086 1.42 2.25 38 + – – High1 x x xx
A15X022 1.87 2.60 138 + – – Susceptible2 xx xx
A15X046 1.76 3.65 164 + – – Moderate3 xx xx
A15X033 1.82 2.95 168 – – – Moderate x x xx
A15T004 1.92 3.20 329 – – – High xx xx
A15T006 1.90 2.75 500 – – – High x x Data not available

2 A15X039 1.79 3.20 16 – – – High xx xx
A15X024 1.84 2.35 30 + – – Moderate x x xx
A15X012 1.89 3.15 348 – – – Moderate xx xx
A15X019 1.87 3.95 358 – – – High xx xx
A15T001 1.95 2.45 890 – – – Moderate x x xx
A15X053 1.71 2.55 912 + – – High x x x x

3 A15X085 1.44 2.85 24 – – – Moderate x x xx
A15X021 1.87 3.10 58 – – – High xx xx
A15X089 1.36 2.45 351 + – – High xx x x
A14T016 2.66 4.05 378 – – – High xx Data not available
A15X076 1.58 3.05 565 + – – Susceptible xx xx
A14T012 2.76 4.25 868 + – – Moderate x x xx

4 A15X088 1.38 2.70 46 – – – Moderate xx xx
A15T013 1.72 2.65 168 – – – Moderate xx xx
A15X017 1.87 2.85 268 + – – High x x xx
A15X040 1.79 4.15 293 – – – Moderate xx x x
A15T005 1.91 3.10 550 + – – High x x xx
A14T005 2.83 4.30 671 – – – High xx x x

5 A15X065 1.64 3.00 36 – – – High x x Data not available
A15X066 1.63 3.05 74 + – – High x x x x
A15X082 1.50 2.60 132 – – – High xx Data not available
A15X090 1.35 2.50 333 – – – Moderate x x x x
A15X020 1.87 3.10 521 + – – Moderate x x xx
A14T015 2.72 3.95 838 + – – High x x xx

6 A15X062 1.65 2.30 39 + – – High x x xx
A15X069 1.62 2.85 199 – – – Susceptible xx xx
A15X056 1.70 2.90 263 + – – Moderate xx x x
A15T002 1.93 2.60 295 – – – High x x xx
A15T003 1.93 3.45 395 – – – Moderate xx x x
A14T001 2.92 4.30 467 – – – High xx x x
August 2021
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1High = TFP and or CypA.
2Susceptible = Q allele.
3Moderate = heterozygous with one Q allele.
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DISCUSSION

Here we showed i) a striking 100% protection by combining a
minimally protective dose of i.v. HGN194-IgG1 with mucosally
applied, minimally protective HGN194-dIgA2 – this time in
naïve macaques. In other words, our data generated earlier (16)
in SHIV-exposed but aviremic RMs were reproducible in naïve
animals; and ii) virus-exposed but aviremic animals can be
enrolled in subsequent studies while yielding expected
outcomes. This aspect has importance for the current severe
Frontiers in Immunology | www.frontiersin.org 6
problems with enrolling RMs of Indian-origin given the
imbalance of supply and demand.

We also sought to examine the interactions between different
classes/subtypes of mAb HGN194 beyond only i.v. IgG1 and i.r.
dIgA2. The extended data revealed no additional benefit by
adding a sub-protective dose of HGN194-IgG1 (given i.v.) or
HGN194-dIgA2 (applied topically) to the highly protective
HGN194-dIgA1 given by the i.r. route. In our earlier study
(12), dIgA1 topically administered as single agent had
protected 83% of the animals. In current study, no
FIGURE 2 | Study design and timeline for the passive immunizations with different forms of the human monoclonal antibody (mAb) HGN194 (17). This human mAb
recognizes the conserved crown of the V3 loop. HGN194-IgG1 (blue) was administered intravenously, whereas the dimeric IgA (dIgA) forms were given intrarectally (i.r.)
(dIgA1, green; dIgA2, red). At time 0, all animals were challenged with a single high dose of the tier 1, R5, clade C SHIV-1157ipEL-p (18) through the i.r. route. Viral
RNA (vRNA) loads were assessed prospectively for a period of 12 weeks. Control animals (Group 6) were left untreated and underwent SHIV challenge at time 0.
August 2021 | Volume 12 | Article 705592
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experimental group treated with topical dIgA1 in combination
with other forms of HGN194 exceeded this degree of protection.
Due to animal resource constraints, we could not repeat the
single-agent topical administration of dIgA1 or dIgA2 (12) in the
current study.

Of note, all different forms of HGN194 were built using
human mAb backbones. There is strong homology between IgG1
and dIgA2 with the corresponding rhesus monkey
immunoglobulins. However, RMs only have the Y-shaped IgA
version that resembles IgA2 of humans and produce only IgA2-
like antibodies [reviewed in (20)]. Only humans and some great
apes have evolved to have the IgA1 forms with their wide-open
hinges that contain a number of O-linked glycosylation sites.
Although rhesus CD89 has been shown to bind both human
IgA1 and IgA2 (21), how human IgAs interact with and activate
rhesus CD89, or other Fc receptors remains unclear. The human
dIgA2 may be able to activate certain immunological pathways
that human dIgA1 cannot and assist the low-dose systemic IgG1
to protect the RMs from SHIV challenge completely.
Nevertheless, our result showed that mucosal dIgA antibody
responses play an important role in protecting against HIV
infection. One potential mechanism is immune exclusion (22).
The dIgAs in the mucosal lumen reduce or block the virus from
Frontiers in Immunology | www.frontiersin.org 7
passing through the epithelial layer, effectively reducing the
challenge dose. Then, the IgG diffused from the circulation will
have a high chance of preventing the low-level residual virus that
crosses into the tissue from establishing infection or spreading
systemically. If a vaccine could induce even weakly protective
mucosal dIgA and systemic IgG responses together, there may be
a chance for such a vaccine to provide sufficient protection to
prevent HIV infection. In vitro neutralization assays with
combinations of IgG1 and dIgA1 or dIgA2 revealed no synergy
(Figure S1). Given that the HGN194 mAb isoforms have
identical epitope specificity, this result for the mAb
combinations tested was not surprising. Of note, it does not
explain the strong synergy we observed reproducibly in vivo. The
mucosal environment of live primates with its specialized
anatomical structures, epithelial barriers, mucus proteins, and
mucosal secretions will influence the interaction with incoming
virus in ways that the TZM-bl assay cannot predict. To study the
underlying mechanism(s) for the in-vivo mAb synergy, we are
collaborating with Taylor et al. (23) using non-invasive imaging
on live animals with positron emission tomography/
computerized tomography (PET/CT) scanning.

Regarding result ii), the remarkable synergy between
systemically administered IgG1 and topically applied dIgA2
A B

D

E F

C

FIGURE 3 | Viral RNA (vRNA) loads of experimental Groups 1 through 6 following a single high-dose intrarectal (i.r.) challenge with the tier 1, R5 clade C SHIV-
1157ipEL-p (18). (A–E), Groups 1 through 5 were passively immunized with different classes of the human mAb HGN194. The IgG1 form was given i.v., whereas the
dIgA1 and/or dIgA2 forms were administered i.r. The untreated Group 6 (F) served as control. For details, please see the timeline in Figure 2.
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forms of the same mAb we have discovered in SHIV-exposed
RMs was confirmed in naïve animals. This suggests that virus-
exposed but persistently aviremic and seronegative RMs could be
recycled and used for new passive immunization studies in the
future. Of note, we had ruled out anti-drug antibody (ADA)
responses in the “recycled” RMs used in our earlier study (16)
before re-enrollment for an additional passive immunization
study. Reusing precious primates is especially important during
the recent shortage of naïve RMs due to the COVID-19
pandemic. In fact, we argue that active vaccine studies can also
be considered in “recycled” RMs with a history of prior SHIV
exposure. To do this, it will be important to examine cell-
mediated immunity (CMI) against viral antigens. We have
done this before using the animals described in the study by
Sholukh et al. (16). All of them had proliferative responses
against SIV Gag in the CD4+, CD8+, or both CD4+ and CD8+

T-cell populations after in vitro stimulation with SIV Gag. We
found that this assay was the most sensitive to reveal antigen-
specific T-cell responses after exposure to live virus (16). In fact,
the argument can be made that using RMs with a history of live-
virus exposure in vaccine efficacy study is biologically relevant.
Frontiers in Immunology | www.frontiersin.org 8
Most individuals at risk for HIV acquisition through sexual
interaction may have had prior exposure to live HIV without
becoming infected. The estimated per-sexual intercourse
probability of acquiring HIV from an infected source person
ranges from 4 for insertive penile-vaginal intercourse to 138 for
receptive anal intercourse per 10,000 exposures (24). Using
consistently aviremic RMs with a history of exposure to live
virus and Gag-specific CMI responses is reminiscent of the
highly exposed, persistently seronegative sex workers who also
had T-cell reactivity to HIV (25). Thus, one could argue
that using virus-exposed but uninfected RMs may be
more biologically relevant to real-life situations than using
naïve RMs.

In summary, we demonstrated that the remarkable synergy
between systemic IgG and mucosal IgA is real, using passive
immunization as a rigorous test to show cause-and-effect for the
protective role of mucosal antibodies in combination with IgG –
data that have significance for active vaccine strategies. To date,
mucosal/systemic IgG and mucosal IgA have been generated
by HIV gp41 virosomal vaccines given by intramuscular
priming followed intranasal boosting (26). As such, our
A B

DC

FIGURE 4 | Complete protection by the combination of IgG1 + dimeric IgA2 (dIgA2) forms of the human mAb HGN194 seen in SHIV-exposed animals is
reproducible in naïve macaques. Data performed earlier in SHIV-exposed, but never viremic rhesus macaques are shown in panels (A, B); *the data have been
published in Sholukh et al., 2015 (16). Indian-origin rhesus macaques (RMs) in Group B were given the IgG1 form of HGN194 (IgG1; blue symbols) at the low dose
of 1.45 mg/kg 24 h before the single high dose intrarectal (i.r.) SHIV challenge. Control animals (Group C) were left untreated (black symbols). All animals of Groups
B and C became highly viremic. In contrast, none of the animals in Group A given the same low dose IgG1 as the animals in Group B together with dIgA2
administered topically had become viremic in the study by Sholukh et al. (16). (C) vRNA loads of Groups 3, 1, and 6 of the current study treated identically as those
in panel (A). Animals depicted in panel (C) were naïve at enrollment. vRNA loads are almost identical to those in panel (A), with the exception that one of the six
animals given i.v. IgG1 remained aviremic (blue symbol RM A15T006). Panels (B, D), Kaplan-Meier analysis of the vRNA load data presented in (A) or (C),
respectively. Both experiments showed 100% protection against viremia throughout the 12 weeks of follow up [red line, (B, D)]. Panels (A, B), adapted from Sholukh
et al. (16) with permission.
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passive immunization data provide a blueprint to develop
HIV/AIDS vaccines that mobilize mucosal as well as systemic
immune defenses.
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