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Abstract: Receptor-binding proteins (RBPs) of bacteriophages initiate the infection of their corre-
sponding bacterial host and act as the primary determinant for host specificity. The ever-increasing
amount of sequence data enables the development of predictive models for the automated identifica-
tion of RBP sequences. However, the development of such models is challenged by the inconsistent or
missing annotation of many phage proteins. Recently developed tools have started to bridge this gap
but are not specifically focused on RBP sequences, for which many different annotations are available.
We have developed two parallel approaches to alleviate the complex identification of RBP sequences
in phage genomic data. The first combines known RBP-related hidden Markov models (HMMs)
from the Pfam database with custom-built HMMs to identify phage RBPs based on protein domains.
The second approach consists of training an extreme gradient boosting classifier that can accurately
discriminate between RBPs and other phage proteins. We explained how these complementary
approaches can reinforce each other in identifying RBP sequences. In addition, we benchmarked
our methods against the recently developed PhANNs tool. Our best performing model reached a
precision-recall area-under-the-curve of 93.8% and outperformed PhANNs on an independent test
set, reaching an F1-score of 84.0% compared to 69.8%.

Keywords: phage; receptor-binding protein; hidden Markov models; machine learning; extreme
gradient boosting

1. Introduction

Antimicrobial resistance is increasingly becoming a threat to human health across the
world [1]. Bacteriophages (phages for short) are considered as an alternative treatment
against multidrug-resistant bacteria [2,3]. As natural predators of bacteria, they often have
a narrow host specificity at the strain level [4]. For various phage applications, this can
urge the discovery of new phages in nature (a so-called phage hunt), which is a labor- and
time-intensive endeavor [5,6]. However, recent progress in synthetic biology has enabled
the precise engineering of phages and their specificity towards bacterial hosts [7]. More
specifically, the modification or swapping of receptor-binding proteins (RBPs) between
phages allows to adjust the host specificity, avoiding the need to discover and cultivate
new phages [8–10]. RBPs are key determinants of host specificity and encompass tail fibers,
tailspikes, and tail tips [11]. Despite the enormous potential, it remains a challenging task
to modify RBPs without losing infectivity, because of their multiple interactions with both
host receptors and structural phage tail proteins [7].
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Today, ever-increasing quantities of omics data together with the computational
tools to analyze such data present various opportunities for novel insights in the phage
field [12,13]. More specifically, the widespread availability of publicly available phage
genome sequence data can further enhance our understanding of RBPs, which would,
in turn, translate to more successful phage engineering efforts. Tools for the automated
identification and annotation of phage proteins (including RBPs) using predictive models
are good examples of this. However, the construction of such models is hampered by
nonstandard or missing annotations for many phage proteins. Often, up to half of the genes
of publicly available phage genomes have no proper annotation [14,15].

To address this shortcoming, various research groups have developed approaches
to identify and annotate different phage proteins from sequence data. For example,
Cantu et al. (2020) developed a novel approach to classify ten major classes of structural
phage proteins using eleven 4-layer artificial neural networks [14]. Furthermore, Li et al.
(2020) employed machine-learning models to predict phage enzymes and hydrolases, while
Fernández-Ruiz et al. (2018) collected profile hidden Markov models (HMMs) to identify
novel endolysins in uncultured phage genomes [16,17]. Interestingly, Cantu et al. showed
that tail fiber sequences are particularly difficult to classify correctly [14]. Regrettably,
because tail fibers are among the most important proteins for the infection process and
are of interest for phage engineering purposes. For this reason, we aimed to improve
the complex identification and annotation of RBP sequences in publicly available phage
genome data using two parallel data-driven approaches.

Both strategies involve a shared, comprehensive processing pipeline to identify an-
notated RBP sequences in phage genomic data based on the variety of keywords that are
typically used to refer to RBPs. Our first approach was inspired by the strong evolutionary
pressure on RBPs and the horizontal gene transfer events occurring across RBPs [18]. As
a result, RBPs are typically modular proteins consisting of a combination of N-terminal
(structural) domains and C-terminal (cleaving, binding, or chaperone) domains. We,
therefore, detected RBP sequences based on protein domains represented as HMMs. We
manually collected HMMs that represent RBP-related protein domains from the Pfam
database [19]. Subsequently, we detected RBP sequences with these domains and then
built additional HMMs for the parts of detected sequences that did not correspond with
a known RBP-related HMM in Pfam to further increase the potential for the discovery
of RBP sequences. Our second approach involved a machine-learning-based classifier
that uses state-of-the-art protein language embeddings to accurately discriminate between
phage RBPs and other phage proteins [20]. In this paper, we show that both methods are
complementary to some extent and explain how they can reinforce each other in identifying
RBP sequences. In addition, we benchmarked our methods against the recently developed
PhANNs tool [14]. Our best-performing model reached a precision-recall area-under-the-
curve of 93.8% and outperformed PhANNs in terms of RBP prediction on an independent
test set, reaching an F1-score of 84.0% compared to 69.8%. We released our code on GitHub
(https://github.com/dimiboeckaerts/PhageRBPdetection, accessed on 10 June 2022) and
Zenodo (https://doi.org/10.5281/zenodo.6491321, accessed on 10 June 2022) for the re-
search community to use freely and expand on. In this way, we contributed to the current
progress in RBP engineering efforts to adjust host specificity.

2. Materials and Methods
2.1. Phage Genome Sequence Data

A schematic overview of all consecutive data processing steps is given in Figure 1. We
downloaded a total of 28,060 phage genomes via the INPHARED collection on 1 December
2021 [12]. Of those, 21,047 genomes were indicated as complete (in INPHARED) and were
subjected to further processing.

https://github.com/dimiboeckaerts/PhageRBPdetection
https://doi.org/10.5281/zenodo.6491321
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Figure 1. A schematic overview of data processing steps. Collected phage genomes from INPHARED
were processed and coding sequences were extracted from each genome. Coding sequences were
divided into two groups based on a regular expression that covered the various annotations of RBPs.
Both groups were further processed to exclude sequences that had unknown amino acids, unwanted
keywords, or extreme lengths.

We processed these phage genomes further in two steps. In the first step, we used
Biopython [21] to loop over every genome record to collect all corresponding coding DNA
sequences (CDSs). Each CDS of each genome (Genbank) record in the INPHARED database
was checked for its annotation and assigned to one of two groups based on our collection
of annotation keywords related to RBPs. These keywords included tail fiber, tail spike,
receptor-binding protein, receptor-recognizing protein, and variations of these (e.g., tail
fibre). A regular expression was used to detect all keywords and variations simultaneously
(Figure 1, Table 1a). In the second step, sequences in both groups (denoted as RBPs and
Others) were further filtered to ensure a high quality of the final datasets. Three filters
were applied to the RBP group. First, we discarded sequences containing unknown amino
acids (AAs). Second, sequences containing additional keywords not related to RBPs were
discarded as well. For example, these keywords included ‘assembly’ and ‘hinge’ (among
others), denoting phage proteins that are related to RBPs, but are not RBPs themselves.
A full list of all discarded annotations is presented in Table 1b. Third, RBP sequences
shorter than 200 AAs or longer than 1500 AAs were discarded, which reflects the range in
length in which we expect RBPs based on Latka et al. (2019) [22]. The Others group was also
filtered in three steps. Here, as well, sequences containing unknown AAs were discarded.
Second, sequences annotated as hypothetical, putative, or uncharacterized were discarded,
as well, because these sequences might be RBPs without a proper annotation. Third, Other
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sequences shorter than 30 AAs were removed. Furthermore, duplicate sequences were
identified both within each group and across both groups and subsequently discarded.
Finally, a subset of the Others group was randomly sampled with a size of 10 times the
number of RBP sequences (6176 RBP sequences and 61,760 Other sequences in total).

Table 1. Annotation keywords for filtering RBPs.

(a) Examples of Variations of Keywords That Pass or Fail the Constructed Regular
Expression

Pass tailspike, tail spike, tail-fiber, receptor-binding protein
Fail spike, tail protein, binding protein

(b) Additional Filtered Keywords after Applying the Regular Expression

RBPs adaptor, wedge, baseplate, hinge, connector, structural, component, assembly,
chaperone, attachment, capsid, proximal, measure

Others probable, probably, uncharacterized, uncharacterised, putative, hypothetical,
unknown, predicted

As a final processing step, both datasets were split into portions for training (construct-
ing HMMs and machine-learning models) and testing (benchmarking against PhANNs)
based on their submission date. More specifically, all sequences of genome records added
up until September 2021 were used for training (4189 RBP sequences and 37,022 Other
sequences in total), while sequences of records that were added from October until De-
cember 2021 were kept apart for the benchmark against PhANNs (1987 RBP sequences
and 24,738 Other sequences in total). This ensured that both PhANNs (trained before 2021)
and our approaches had not seen any of the test sequences yet in the benchmark. Pairwise
alignments of RBP sequences between the training set and test set show that the similarity
within the training set is not different from the similarity between the training and the test
set (Figure S1).

2.2. Collecting and Constructing Profile HMMs Related to RBPs

To identify RBPs based on protein domains, profile HMMs related to RBPs were
collected from the Pfam database. More specifically, an iterative procedure was performed
to discover domains related to RBPs, starting from the Phage_T7_tail domain, a well-known
structural phage domain in the T7 phage [23]. Inspired by modularity and horizontal
gene transfer events, this iterative procedure involved alternately identifying domains at
either the N- or C-terminus that were linked to other RBP-related domains (at the C- or
N-terminus, respectively) retrieved in the previous iteration (Figure 2). This list was further
manually curated to exclude domains that were too broad (not uniquely related to RBPs)
or related to other phage proteins (e.g., lysins). Reflecting the underlying biology, domains
were grouped into N-terminal (structural) domains and C-terminal (cleaving, binding, or
chaperone) domains. Based on previous work by Latka et al. (2019), we chose the first
200 amino acids as the cutoff for the division between N-terminus and C-terminus [22].

Subsequently, these HMMs were used to scan all the annotated RBP sequences. Se-
quences containing either a domain at the N-terminus or C-terminus, without any cor-
responding domain at the opposite end, were identified and grouped together. These
sequences were used to construct new HMMs in three consecutive steps using the HM-
MER software [24]. First, the N-terminal parts (up until 200 amino acids) of sequences
with an unknown N-terminal domain and the C-terminal parts (starting from the last
known N-terminal domain) of sequences with an unknown C-terminal domain were sep-
arately clustered using CD-HIT with standard settings [25]. Second, multiple sequence
alignments were constructed for each cluster containing five or more sequences using
Clustal Omega with the standard settings [26]. Third, these multiple sequence alignments
served as input for the hmmbuild functionality in HMMER to construct new HMMs from
(http://hmmer.org, accessed on 10 June 2022). These custom-built HMMs were added to

http://hmmer.org
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our set of Pfam domains as a final set of RBP-related HMMs to make detections with. This
final set of collected and custom-built HMMs was made available in our GitHub repository.
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Figure 2. Visualization of the iterative manual search of RBP-related protein domains in the Pfam
database, starting from the Phage_T7_tail domain. The iterative procedure entailed alternately
identifying domains at the N- or C-terminus that were linked to the domains identified in the
previous iteration of the manual search.

2.3. Training an Extreme Gradient Boosting Classifier to Discriminate Phage RBPs from Other
Phage Proteins

The training data of RBPs and Others were used to construct a feature representation
as input to train an extreme gradient boosting (XGBoost) classifier [27]. XGBoost is a
widely popular nonlinear machine-learning method that fits a collection of decision trees
sequentially in which each new tree improves the performance of the current ensemble.
It was chosen for its broad and off-the-shelf applicability on unstructured data. The
feature representation consisted of the ProtBert-BFD protein language embeddings. Such
embeddings are typically the outputs of the last hidden layer of a large deep learning
language model specifically trained on an immense amount of protein sequence data [28].
The pre-trained ProtBert model used to compute embeddings was borrowed from the
bio_embeddings package provided by Dallago et al. (2021) [20] and was computed using
NVIDIA P100 GPUs.

The computed embeddings were used as input to train an XGBoost classifier to dis-
criminate between phage RBP sequences and phage Other sequences in binary classification.
We optimized two hyperparameters using the F1-score: the maximum depth of each tree
and the number of estimators. Increasing the maximum depth increases the complexity
of the model but makes it more likely to overfit. The number of estimators refers to the
number of boosting rounds that are done. A nested 4-fold cross-validation scheme was
implemented to simultaneously tune the hyperparameters (inner loop) and measure perfor-
mance (outer loop). Both the F1-score and precision-recall area-under-the-curve (PR-AUC)
were computed as performance metrics to evaluate the XGBoost classifier. Every step of
this training and evaluation pipeline was implemented with Scikit-learn [29].

Lastly, a final XGBoost model was trained on all data with optimized hyperparameters
and saved for further use during the benchmark against PhANNs.

2.4. Benchmarking Our Parallel Approaches against PhANNs

Both our domain-based and machine-learning-based approaches were benchmarked
against the recently developed tool PhANNs, which allows predicting 10 different classes
of phage proteins, including tail fiber proteins [14]. The PhANNs code and trained model
were downloaded from their GitHub repository.

Each of the protein sequences (RBPs and Others) in the held-out test set was subjected
to the domain-based approach, the XGBoost classifier, and the PhANNs model to classify
it as either an RBP or an Other sequence. For the domain-based approach, any sequence
in which a protein domain belonging to our assembled set of HMMs was recognized was
designated an RBP. For the machine-learning approach, the output of the classifier was one
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or zero, indicating that the protein was predicted as an RBP (1) or Other (0). For PhANNs,
scores were given for each of its ten protein classes, and the highest score was chosen as the
final prediction for each protein sequence. Predictions were made for each of the sequences
in the held-out test set by each of the methods. All methods were compared by computing
the F1-score on the test set predictions. Finally, a Venn diagram was constructed for the
RBP sequences in the test set to illustrate the concordances and discordances among the
different methods.

3. Results
3.1. Phage Genome Sequence Data

Phage genome sequences were downloaded via the INPHARED collection on 1 De-
cember 2021 [12]. The CDSs of each complete genome record were collected and checked
for RBP-related annotation (Figure 1). In total, 16,496 CDSs were identified as RBP, while
1,811,032 CDSs were classified into the Others group. After filtering for hypothetical
proteins, undetermined amino acids, protein length, and various related but unwanted
annotation keywords, 6176 RBPs and 228,315 Other sequences remained in the database.

Both datasets were split up into a part for training (constructing HMMs and machine-
learning models) and testing (benchmarking against PhANNs). Entries added up until
September 2021 were used for training, while entries added from October until December
2021 were kept for testing. A total of 4189 RBP sequences and 37,022 Other sequences were
designated for training, while 1987 RBP sequences and 24,738 Other sequences were kept
aside for testing.

3.2. Collecting and Constructing Profile HMMs Related to RBPs

Profile HMMs related to RBPs were manually collected from the Pfam database,
iteratively starting from the well-known Phage_T7_tail domain (Figure 2). Thirty domains
were collected and grouped into N-terminal (structural) domains and C-terminal (cleaving,
binding, or chaperone) domains, reflecting their underlying biology (Table 2). These HMMs
were used to scan all the annotated RBP sequences and to identify N- or C-terminal sequence
parts that did not correspond to any known HMM. In total, 1786 of the 4189 annotated
RBP sequences were identified as containing an RBP-related Pfam domain. Within this
group of sequences, the Phage_T7_tail, Tail_spike_N and DUF3751 domains were identified
most often at the N-terminus, while the Peptidase_S74, Collar and DUF1983 domains were
most often occurring at the C-terminus (Figure 3). Furthermore, of those 1,786 sequences, a
subset of 646 contained an identified N-terminal domain without an identified C-terminal
domain. A subset of 874 sequences contained a known C-terminal domain without a
known N-terminal domain. Of the sequences with a known N-terminal and/or C-terminal
domain, 37 different architectures occurred more than five times (Figure 4). Interestingly,
the five most occurring architectures were single-domain architectures, indicating that
many RBP-related domains are not present in the Pfam database. For this reason, custom
HMMs were constructed to increase the number of RBP detections. The N-terminal parts
(up to 200 amino acids) of the 874 sequences without a known N-terminal domain were
grouped into 226 clusters using CD-HIT [25]. The C-terminal parts (starting from the last
known N-terminal domain) of the 646 sequences without a known C-terminal domain
were grouped into 301 clusters using CD-HIT. Twenty-five clusters contained five or more
C-terminal parts and 38 clusters contained five or more N-terminal parts. Each of these
clusters was subsequently used to construct a multiple sequence alignment with Clustal
Omega [26] and a new HMM using HMMER (http://hmmer.org, accessed on 10 June 2022).
Thus, in total, 63 new HMMs were constructed that were added to our set of Pfam domains
to make final detections with. These new HMMs resulted in 601 additional detections
(corresponding to an increase of 33.7% compared to the original number of detections).

http://hmmer.org
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Table 2. RBP-related protein domains collected as HMMs from the Pfam database.

N-Terminal Domain C-Terminal Domain

Phage_T7_tail Lipase_GDSL_2
Tail_spike_N Pectate_lyase_3
Prophage_tail gp37_C

BppU_N Beta_helix
Mtd_N End_beta_propel

Head_binding End_tail_spike
DUF3751 End_beta_barrel

End_N_terminal PhageP22-tail
phage_tail_N Phage_spike_2

Prophage_tailD1 gp12-short_mid
DUF2163 Collar

Phage_fiber_2 Peptidase_S74
Phage_fiber_C

S_tail_recep_bd
CBM_4_9
DUF1983
DUF3672
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Figure 3. Count plot of the identified RBP-related HMMs from the Pfam database, grouped into
N-terminal domains (top) and C-terminal domains (bottom). At the N-terminus, two domains occur
substantially more than all the others (namely Phage_T7_tail and Tail_spike_N). At the C-terminus,
Peptidase_S74 is the most occurring domain.
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Figure 4. Architectures of the RBPs detected with RBP-related HMMs from the Pfam database,
together with their number of occurrences and divided into three categories (N-terminal domains,
cleaving domains, and C-terminal binding domain or chaperone). Examples of N-terminal do-
mains are Phage_T7_tail and Tail_spike_N. Examples of cleaving domains are Lipase_GDSL_2 and
Pectate_lyase_3. Examples of binding domains and chaperones are Phage_fiber_C and CBM_4_9. Only
the architectures that occurred more than five times were visualized. The top-five occurring architec-
tures are single-domain architectures, indicating that there are many unknown RBP-related protein
domains in the Pfam database.

3.3. Training an Extreme Gradient Boosting Classifier to Discriminate Phage RBPs from Other
Phage Proteins

RBP and Other sequences of the training data were transformed into a feature rep-
resentation using the ProtBert-BFD protein language model [28] and subsequently used
to train a binary XGBoost classifier [27] to discriminate between both classes. Nested
4-fold cross-validation was used to both tune the hyperparameters in the inner loop and
measure performance in the outer loop. The two hyperparameters that were tested were
the maximum depth of each tree and the number of estimators. The optimal value for the
maximum depth was three, while the optimal value for the number of boosting rounds
turned out to be 500. The cross-validated classifier achieved an F1-score of 88.6% and a
PR-AUC of 93.8%.
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3.4. Benchmarking Our Parallel Approaches against PhANNs

Our domain-based and machine-learning-based approaches were benchmarked against
the recently developed tool PhANNs [14] by making predictions for each of the protein
sequences (RBPs and Others) in the held-out test set. Each method classified every test
sequence either as an RBP or an Other sequence. All methods were compared by computing
the F1-score, Matthews correlation coefficient, sensitivity, and specificity on the test set
predictions (Table 3). Our XGBoost classifier resulted in the overall best performance,
surpassing both PhANNs and the domain-based approach on almost all metrics (except for
specificity that is the highest for the domain-based approach).

Table 3. Benchmarked F1-scores, Matthews correlation coefficient (MCC) scores, sensitivity, and
specificity for our domain-based approach, our XGBoost classifier, PhANNs, and an XGBoost with
HMM scores combination on the held-out test data.

Method F1-Score MCC Sensitivity Specificity

Domain-based 72.0% 70.2% 66.4% 98.5%
PhANNs 69.8% 67.9% 81.6% 95.8%
XGBoost 84.0% 82.3% 91.6% 97.9%

XGBoost + HMM scores 84.8% 83.8% 92.2% 98.0%

Finally, we constructed a Venn diagram for the RBP sequences in the test set, to illus-
trate the concordance and discordance among the different methods (Figure 5). The counts
of the correct positive (RBP) predictions were visualized for each of the methods. Over-
all, the Venn diagram visually shows the superior performance of our XGBoost classifier,
which was able to identify 1820 (1119 + 146 + 397 + 158) RBP sequences correctly (out of
1987). A total of 629 sequences were missed by the domain-based approach, indicating
that many domains remain undetected even with our custom-developed set of HMMs. It
also indicates the potential of machine-learning approaches to detect protein sequences
with higher sensitivity compared to more traditional alignment-based approaches. In
contrast, a total of 129 or 327 RBPs were missed by the XGBoost classifier and PhANNs,
respectively, and 23 RBPs were missed by both methods (thus only detected with HMMs).
This signals a (slight) gap in the knowledge of both models, leaving some room for further
improvement of the models. Combining the protein embeddings with the scores of our
HMM collection only resulted in a slight increase in performance across metrics on the
held-out test set (Table 3), indicating that the protein embeddings by themselves already
capture the information captured by the HMMs as well. Finally, 38 RBP sequences were
missed by all three approaches.
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4. Discussion

Although phage genome sequence data are becoming increasingly abundant, proper
functional annotation remains scarce, is inconsistent, or even completely missing. Moreover,
RBPs, despite having a conserved biological function, are specifically featured by a strong
evolutionary diversification in response to the high diversity of host receptors, hampering
traditional homology-based functional annotation. To alleviate this problem, we developed
two parallel approaches to identify RBPs at the protein sequence level.

Our first approach consisted of collecting and constructing HMMs that represent pro-
tein domains strictly related to phage RBPs. This approach was inspired by the modularity
of phage RBPs (typically consisting of an N-terminal structural domain combined with
a C-terminal enzymatically active domain and/or binding domain) and the horizontal
gene transfer events occurring across RBPs that result in this high modularity and diver-
sity [18]. HMMs use a position-specific scoring system to capture information about the
conservation and consensus of multiple sequence alignments, making them much more
sensitive than typical pairwise methods such as BLAST [30]. A first drawback, however, is
that RBP sequences cannot always clearly be divided into a structural (N-terminal) domain
and receptor-binding or -cleaving (C-terminal) domain with the domains present in Pfam.
Some Pfam domains cover only a portion of the N- or C-terminus, while in other cases
multiple Pfam domains together constitute either the full structural or receptor-binding
or -cleaving domain. There is currently no way around this drawback, although we can
envision that structure predictions can be used to facilitate proper domain delineation
and to construct HMMs corresponding to these domains in the future. The presence of
additional chaperone, multimerization, or assembly domains at the C-terminus [31] further
complicates the analysis. A second drawback is that few RBP-related protein domains
are known in the Pfam database, necessitating the construction of custom HMMs from
multiple sequence alignments to further increase the sensitivity of detections.

Our second approach focused on machine-learning models which can learn to detect
complex patterns in data. We hypothesized that a machine-learning model, specifically
trained to distinguish phage RBPs from other phage proteins, would also be able to detect
RBPs at a higher sensitivity compared to traditional alignment-based methods. One draw-
back here is that both the language-based feature engineering and the gradient boosting
modeling method result in a machine-learning approach that is not very interpretable. It
is more straightforward to get a sense of why an RBP is detected based on a significant
hit with a particular HMM than why an RBP is detected based on its particular protein
language embedding that the XGBoost classifier recognizes as an RBP. However, both ap-
proaches could be combined to benefit from one another. Predictions made by the XGBoost
model could be examined by our collection of HMMs. For those without a significant
hit, new HMMs could be built and examined (e.g., by comparing to existing HMMs with
HHsearch) [32]. This could not only validate the machine-learning predictions and make
them more interpretable but, in turn, also lead to a more comprehensive collection of
HMMs to make detections with. Indeed, various RBPs were correctly predicted by both
PhANNs and our XGBoost model but were missed by the domain-based approach. This
indicates that a (large) variety of annotated RBPs still consist of domains that were neither
included in the manually collected HMMs from Pfam, nor were detected by the 63 HMMs
that were custom-built afterwards. In that way, both approaches are complementary to
one another.

Both approaches start from a comprehensive set of annotated RBP sequences that
was carefully constructed based on the variety of keywords that are used to describe
RBP sequences in public databases. This is a crucial first step in both building custom
HMMs and machine-learning models that predict and generalize well. We showed that by
focusing on a single class of proteins, we could implement a more indepth data collection
approach, leading to superior model performance. As RBPs represent a crucially important
class for practical applications, a tradeoff of having models predicting this single class of
proteins versus predicting multiple classes is justified. Even though we attempted to make
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our data collection procedure as comprehensive as possible, we potentially still included
sequences annotated as RBP while they are not. Sequences might be annotated with the
wrong keyword and automatic annotation may cause new homologous sequences to be
annotated wrongly as well. To avoid this bias as much as possible, our data processing
included filtering steps for sequences with keywords such as ‘assembly’ and ‘hinge’ (among
others) and deleted identical sequences across the RBP and Other classes. Overall, this
bias is hard to overcome without sacrificing many likely correctly annotated sequences.
One potential alternative solution would be to only consider experimentally determined
sequences in UniProt, which would reduce the number of RBP sequences significantly,
avoiding potential false positives, but likely also many true positives.

More generally, phage engineering efforts are becoming increasingly common. As
phages often have a narrow host specificity, an alternative to performing a phage hunt is to
change the host specificity of the phages that are already available. The underlying idea is
that changing the host specificity by engineering phages may become faster compared to
exhaustively looking for suitable phages. As the primary determinant of host specificity,
RBPs are an important target to adjust the host specificity by modifying or swapping RBPs
between phages [8–10]. In essence, the problem of finding suitable phages is then reduced to
making suitable adjustments in their RBPs, given that no secondary specificity determinants
(e.g., CRISPR immunity) interfere. However, modifying RBPs still often results in a loss
of infectivity due to the complex positioning of the RBPs or loss of signal transmission [7].
The more RBP sequences we have available to analyze, the more we can learn from nature
and understand the subtle differences that influence the host specificity. We strongly agree
with the views of Lenneman et al. (2021), who claimed that high-throughput tools to
identify phage RBPs, combined with structural information, can enable rapid engineering
of phages at a sufficient scale for therapy [7]. More specifically, tools like AlphaFold and
RoseTTAFold now allow for accurate predictions of three-dimensional protein structures
of RBPs [33,34]. These structures will guide RBP engineering efforts in new ways.

The two approaches we have developed can serve as tools that tackle the first step
towards realizing more effective RBP engineering efforts. By accurately identifying RBPs
in phage genomes, we increase the pool of sequences that researchers can collect and
investigate to guide host range adjustments. We provided open-source access to our
code on GitHub (https://github.com/dimiboeckaerts/PhageRBPdetection, accessed on
10 June 2022) and Zenodo (https://doi.org/10.5281/zenodo.6491321, accessed on 10 June
2022) for researchers to replicate our analyses, construct their own RBP database based on
the INPHARED phage genome collection, and identify new RBP sequences in genomic
datasets. Jupyter notebooks (in Python) are available for researchers to use our HMMs to
detect domains in protein sequences or compute embeddings for their sequences and pass
them to our XGBoost models to make predictions.
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