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Abstract

Candida albicans is among the most common causes of human fungal infections and is an

important source of mortality. C. albicans is able to diminish its detection by innate immune

cells through masking of β (1,3)-glucan in the inner cell wall with an outer layer of heavily gly-

cosylated mannoproteins (mannan). However, mutations or drugs that disrupt the cell wall

can lead to exposure of β (1,3)-glucan (unmasking) and enhanced detection by innate

immune cells through receptors like Dectin-1, the C-type signaling lectin. Previously, our lab

showed that the pathway for synthesizing the phospholipid phosphatidylserine (PS) plays a

role in β (1,3)-glucan masking. The homozygous PS synthase knockout mutant, cho1Δ/Δ,

exhibits increased exposure of β (1,3)-glucan. Several Mitogen Activated Protein Kinase

(MAPK) pathways and their upstream Rho-type small GTPases are important for regulating

cell wall biogenesis and remodeling. In the cho1Δ/Δ mutant, both the Cek1 and Mkc1

MAPKs are constitutively activated, and they act downstream of the small GTPases Cdc42

and Rho1, respectively. In addition, Cdc42 activity is up-regulated in cho1Δ/Δ. Thus, it was

hypothesized that activation of Cdc42 or Rho1 and their downstream kinases cause

unmasking. Disruption of MKC1 does not decrease unmasking in cho1Δ/Δ, and hyperacti-

vation of Rho1 in wild-type cells increases unmasking and activation of both Cek1 and

Mkc1. Moreover, independent hyperactivation of the MAP kinase kinase kinase Ste11 in

wild-type cells leads to Cek1 activation and increased β (1,3)-glucan exposure. Thus, upre-

gulation of the Cek1 MAPK pathway causes unmasking, and may be responsible for

unmasking in cho1Δ/Δ.

Author summary

Candida albicans causes fungal infections in the oral cavities and bloodstreams of patients

with weakened immune function, such as AIDS or cancer patients. The immune system

detects fungal infections, in part, by detecting the antigenic cell wall polysaccharide β
(1,3)-glucan. The ability to mask β (1,3)-glucan from immune detection is a virulence fac-

tor of C. albicans and a range of fungal pathogens. If synthesis of the phospholipid phos-

phatidylserine is disrupted in C. albicans (cho1Δ/Δmutation), then cho1Δ/Δ exhibits

significantly increased exposure of β (1,3)-glucan to immune detection compared to wild-
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type. Intracellular signaling cascades that regulate cell wall synthesis are upregulated in

the cho1Δ/Δmutant. It was hypothesized that upregulation of these pathways might be

responsible for unmasking in this mutant. Genetic approaches were used to activate these

pathways independently of the cho1Δ/Δmutation. It was discovered that activation of one

pathway, Cdc42-Cek1, leads to β (1,3)-glucan exposure. Thus, this pathway can cause β
(1,3)-glucan exposure, and its upregulation may be the cause of unmasking in the cho1Δ/
Δmutant.

Introduction

Candida albicans is a human commensal that is part of the natural flora of the oral, genital and

gastrointestinal tracts. Candida species are also the most common fungal pathogens of humans

and cause diseases ranging from superficial infections of mucosal surfaces to severe systemic

bloodstream infections in immune-compromised patients [1–4], with a mortality rate of

approximately 30% [2]. Three major classes of antifungals are used to treat systemic infections

including azoles, echinocandins, and polyenes [5–7]. However, drug resistance or toxicity has

put limits on these agents.

The C. albicans cell wall is considered a good therapeutic drug target due to its role in fungal

pathogenicity as it presents important virulence factors, antigenic cell wall proteins and poly-

saccharides, and serves as the intermediate for fungal-host interactions [3, 8, 9]. One potential

method for improving anti-fungal strategies could be to enhance the detection of fungal cell

wall antigens by host immune cells. A major innate immune receptor for fungi like C. albicans
is Dectin-1, a C-type signaling lectin that can recognize β (1,3)-glucan, which is an important

component of fungal cell walls [8, 10, 11]. This recognition can initiate protective antifungal

immune responses in innate immune cells like macrophages, dendritic cells and neutrophils.

The fungal cell wall consists of an inner layer that is enriched in β (1,3)-glucan and underlying

chitin, and an outer layer of mannosylated proteins [8]. Under normal conditions, C. albicans
masks β (1,3)-glucan from Dectin-1 detection via the outer layer of mannosylated proteins [12,

13]. However, unmasking of β (1,3)-glucan can be induced through treatments with drugs

such as echinocandins [12] or by certain genetic mutations that disrupt cell wall integrity[12–

15].

It has been previously reported that the phosphatidylserine (PS) synthase enzyme (Cho1)

controls cell wall β (1,3)-glucan exposure [13]. Phospholipids are crucial components of cellu-

lar membranes in eukaryotes. Cho1 synthesizes PS that can act as an end product, but also can

be further decarboxylated to form phosphatidylethanolamine (PE). PS and PE are both essen-

tial for C. albicans virulence [16]. We found that the homozygous CHO1mutant, cho1Δ/Δ,

exhibits greater β (1,3)-glucan exposure compared to wild-type [13, 14]. This exposure allows

increased recognition by Dectin-1 and elicits a stronger pro-inflammatory response [13, 14,

17]. However, the detailed mechanism by which β (1,3)-glucan exposure is caused by CHO1
disruption remains unknown.

The process of cell wall biogenesis and remodeling is governed through complex signaling

pathways, including several mitogen-activated protein kinase (MAPK) cascades and their

upstream Rho-type GTPases (Fig 1). MAPK pathways are conserved signaling cascades in

eukaryotes that are important for dealing with a wide range of stimuli, including osmotic

stress, oxidative stress, cell wall damage, and changes in glycosylation [9, 15, 17–19]. This sig-

naling cascade is composed of a conserved module of three kinases: the MAP kinase kinase

kinase (MAPKKK), the MAP kinase kinase (MAPKK) and the MAP kinase (MAPK). The

MAPK activates downstream transcription factors and effectors to initiate gene expression for
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better adaptation to the environment [19]. Among these MAPK pathways, Ste11-Hst7-Cek1

composes the Cek1 MAPK cascade, and is reported to control β (1,3)-glucan masking in C.

albicans [15, 20, 21]. CEK1 null mutants display unmasking of β (1,3)-glucan and hyper-sensi-

tivity to agents that disturb the cell wall such as Congo red [15]. The Mkc1 MAPK route, con-

sisting of Bck1-Mkk2-Mkc1, is primarily involved in cell wall construction, as well as

responding to exogenous cell wall stress, oxidative stimuli, antifungal drugs, and low-tempera-

ture shocks [22, 23]. Yet, this pathway does not appear to be required for masking in C. albi-
cans [24], although it is hypersensitive to specific cell wall insults such as echinocandins or

calcofluor white.

The upstream small GTPases Cdc42 and Rho1 transmit the signal toward Cek1- and Mkc1-

associated MAPK cascades, respectively (Fig 1) [18, 23]. They are also important in remodeling

the rigid structure of the cell wall during vegetative growth and morphogenesis [25]. Rho1 is a

well-known major regulator of the cell wall integrity signaling cascade through several down-

stream effectors [23, 25–30]. Rho1 is also the regulatory subunit of β (1,3)-glucan synthase,

and therefore directly controls cell wall biosynthesis via the binding and activation of its cata-

lytic subunits, such as Fks1 [26, 31]. Cdc42 is essential for cellular polarized growth, and it acts

on a variety of downstream effector proteins in C. albicans, including kinases such as PAK

kinase family members Cst20/Cla4 [32–37].

Fig 1. The Cek1 and Mkc1 MAP kinase signaling cascades in C. albicans are involved in cell wall biogenesis. The Cek1 and

Mkc1 MAP kinase cascades, and their respective upstream activator signaling proteins are shown. Rho1 activates protein kinase

C (Pkc1), which activates the Mkc1 MAP kinase cascade. Cdc42 activates the PAK kinase Cst20 which activates the Cek1 MAP

kinase cascade.

https://doi.org/10.1371/journal.pgen.1007892.g001
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Given the role of the GTPase-associated signaling pathways in cell wall remodeling and reg-

ulation, we studied the impact of these signaling routes in affecting β (1,3)-glucan masking in

the C. albicans cho1Δ/Δ PS synthase mutant. We found that in the cho1Δ/Δmutant there is

upregulation of the activity of both Cek1 and Mkc1 MAPKs. Furthermore, we present data

indicating that activation of the Cek1 pathway, in particular, is sufficient to cause β(1,3)-glucan

exposure in the cho1Δ/Δmutant.

Results

C. albicans cho1Δ/Δ exhibits activated MAPKs

Given the strong cell wall phenotypes seen in cho1Δ/Δ, we hypothesized that this mutant

might exhibit increased activation of cell wall signaling pathways such as Cek1 and Mkc1

MAP kinase cascades. As shown in Fig 2, Western blots with the Phospho-p42/44 antibody,

that labels the phosphorylated (activated) forms of both Cek1 and Mkc1, revealed that these

kinases were constitutively phosphorylated in cho1Δ/Δ compared to wild-type and other test

strains. No significant difference was found between the psd1Δ/Δpsd2Δ/Δmutant (synthesizes

PE from PS) and wild-type (Fig 2A). This indicates that disruption of the PS synthase specifi-

cally up-regulates the activity of both cell wall MAPK cascades. Similar trends were also seen

under hyphal induction conditions. When cells were sub-cultured in RPMI 1640 medium

(induces filamentation [38]), cho1Δ/Δ exhibited greater phosphorylation of Cek1 and Mkc1

than wild-type and other test strains (Fig 2B). Collectively, these results indicate that loss of

Cho1 activates the Cek1 and Mkc1 MAPK pathways.

Activation of the Cek1 pathway causes β (1,3)-glucan exposure

Galán-Dı́ez et al. observed that a cek1Δ/Δ homozygous deletion mutant exhibits β (1,3)-glucan

exposure in C. albicans [15]. In contrast, Li et al. reported that Cek1-inducing conditions, such

as incubation with N-acetylglucosamine (GlcNAc) in the media, causes increased β (1,3)-glu-

can exposure in C. albicans [39]. To further investigate if activation of the Cek1 pathway

increases exposure of β (1,3)-glucan in C. albicans yeast-form cells, we constructed a strain

that expresses a hyper-active allele of STE11 (STE11ΔN467) under the regulation of the maltose

promoter (PMAL2). Deletion of 467 N-terminal amino acids, including the inhibitory domain

of Ste11, hyper-activates this kinase [40]. Ste11 is upstream of Cek1, and activates it via sequen-

tial phosphorylation through Hst7 (Fig 1). Expression of the STE11ΔN467 allele in YP maltose

(YPM) media results in greater phosphorylation of Cek1 compared to growth of this strain in

YPD (represses STE11ΔN467 expression) (Fig 3A). The STE11ΔN467 expressing strain exhibited

greater β (1,3)-glucan exposure in YPM than YPD when stained with anti- β (1,3)-glucan anti-

body (S1 Fig).

The Cek1 pathway is involved in inducing the yeast-to-hyphae transition. A small subset of

cells form filaments in the hyper-activated STE11ΔN467 strain in YPM, and hyphae exhibit β
(1,3)-glucan unmasking more readily than yeast-form cells [12, 13]. To determine if the yeast-

form cells themselves exhibited greater unmasking, we used flow cytometry with a second

hyphal-specific probe to gate out hyphal cells while measuring β (1,3)-glucan exposure. In par-

ticular, we stained strains with soluble Dectin-1 (sDectin-1) protein which binds with exposed

β (1,3)-glucan and anti-Als3 antibody, which stains the hyphal-specific protein Als3. Thus,

Als3 staining was used as a marker to gate out hyphae by flow cytometry allowing us to focus

on yeast-form cells. This double staining revealed that wild-type yeast-form cells expressing

hyper-activated Ste11 (STE11ΔN467) in YPM have significantly increased unmasking compared

to yeast cells in YPD (Fig 3B); compare the 1st quadrants (Q1) of the plots of STE11ΔN467

grown in both YPM and YPD (bottom two plots).

ß(1,3)-glucan exposure is promoted by active Cek1

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007892 January 31, 2019 4 / 23

https://doi.org/10.1371/journal.pgen.1007892


Fig 2. Cek1 and Mkc1 MAPKs exhibit increased activation in cho1Δ/Δ cells compared to wild-type. (A) Proteins from yeast-form

cells growing in log phase in YPD media were extracted and Western blotting was performed with anti-phospho-p44/42 antibody to

detect Phospho-Mkc1 and Phospho-Cek1. Anti-Mkc1 was used for total Mkc1, anti-Cek1 for total Cek1, and anti-tubulin as a

loading control. Graphs of quantification by Image J of the phosphorylated forms of each kinase are expressed as a percent of the

wild-type control after being normalized to the total kinase blot for each respective MAP kinase and the tubulin loading controls for

each gel. Quantification is based on three biological replicates. The statistical analysis was performed by using One-way ANOVA �,

p = 0.0308. ���, p = 0.0005. (B) Western blotting was performed on extracts from cells grown as hyphae in RPMI media and probed

with antibodies detecting Phospho-Cek1 and Phospho-Mkc1 as well as the tubulin loading control.

https://doi.org/10.1371/journal.pgen.1007892.g002
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β-1,3-glucan exposure is more intense at bud scars, which presented the possibility that the

higher glucan exposure in STE11ΔN467-YPM is associated with more bud scars provided that

maltose increases growth rate. In fact, a growth curve demonstrated that both wild-type and

STE11ΔN467 cells cultured in YPM grew slightly better compared to corresponding strains in

YPD culture (S2 Fig). However, when we co-stained cells with β (1,3)-glucan antibody and cal-

cofluor white, a dye that stains the chitin that is normally concentrated at the bud scar [41], the

exposed β (1,3)-glucan in STE11ΔN467 is scattered along the cell periphery, whereas the calco-

fluor white staining is constricted to the division sites (e. g. bud scars), revealing little overlap

(S3 Fig). Furthermore, STE11ΔN467 and wild-type have similar growth rates in YPM (S2 Fig),

Fig 3. Hyperactive Ste11 (STE11ΔN467) causes significant increases in β (1,3)-glucan exposure and TNF-α secretion. (A) The Cek1 MAPK is hyper-activated by

transforming wild-type cells with a hyperactive allele of STE11 (PMAL-STE11ΔN467), which is induced by adding maltose as a carbon source. (B) Both wild-type and

STE11ΔN467 expressing cells were cultured overnight (16hrs) in YPD or YPM individually and then were doubly stained. The Y-axis represents staining with soluble

Dectin-1-Fc (sDectin-1-Fc) that binds to exposed β (1,3)-glucan, and the X-axis represents anti-Als3 antibody, which binds to the hyphal-specific protein Als3.

Secondary antibodies were used for fluorescence as described in the Methods. Flow cytometry was performed to quantify β (1,3)-glucan exposure from the yeast-form

population (Q1: sDectin-1 single positive staining; Q2: sDectin-1 & Als3 double positive staining; Q3: Als3 single positive staining; Q4: double negative staining). Gates

were established with an unstained control where 97% of unstained cells gated within Q4. Gating strategies are further described in the Methods. (C) Left graph:

Comparison of β (1,3)-glucan exposure from the yeast-form population of STE11ΔN467 versus that of wild-type, both of which are cultured in YPM. Data were

compared by unpaired t-test �, p = 0.0289. Right graph: β (1,3)-glucan exposure was compared between these two strains when grown in YPD medium. (D) Expression

of STE11ΔN467 significantly induces TNF-α secretion after growing in YPM overnight. RAW264.7 macrophages were challenged with various C. albicans stains. C.

albicans strains were grown in YPD or YPM, washed, UV-inactivated, and then add to the macrophages for 4hrs. The macrophage supernatant was collected and

assayed by ELISA to quantify TNF-α production. ��, P = 0.0030; ���, P = 0.0002; ����, p<0.0001.

https://doi.org/10.1371/journal.pgen.1007892.g003
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but STE11ΔN467 has significantly elevated β (1,3)-glucan unmasking in this medium (Fig 3B

and 3C). Conversely, the strains have similar rates of growth and β(1,3)-glucan exposure in

YPD (Fig 3B & 3C), a condition where Cek1 is not hyperactived (Fig 3A). Moreover, wild-type

replicates more rapidly in YPM than YPD, but β(1,3)-glucan exposure is comparable for wild-

type in both media (Fig 3B). Altogether, these data indicate that hyperactivation of the Cek1

pathway leads to increased β (1,3)-glucan exposure that is distinct from that seen at bud scars,

and is not based on increased numbers of bud scars.

The correlation between increased β (1,3)-glucan exposure and enhanced immune

responses such as upregulated tumor necrosis factor alpha (TNF-α) secretion has been studied

intensively [12–14, 17, 42, 43]. Exposed β (1,3)-glucan is recognized by the receptor Dectin-1

on the surface of immune cells including macrophages and neutrophils, and this recognition

activates the host immune response for fungal clearance including the secretion of TNF-α
[12]. To determine if the increased β (1,3)-glucan exposure in the STE11ΔN467 strain is immu-

nologically relevant, we performed an enzyme-linked immunosorbent assay (ELISA) to quan-

tify TNF- α secretion from RAW264.7 macrophages exposed to this strain. As seen in Fig 3D,

TNF-α secretion was significantly upregulated when the Cek1 MAPK pathway was hyper-acti-

vated (STE11ΔN467 in YPM). It should be considered when examining the data in Fig 3D that

production of TNF-α is reduced in all strains that were grown in YPM, including wild-type

and cho1ΔΔ. Thus, while the increase in TNF-α of cultures of STE11ΔN467 grown in YPM is

~35% greater than that in YPD, the increase of STE11ΔN467 over wild-type, both grown in

YPM, is 2-fold. Thus, increased β (1,3)-glucan exposure in the STE11ΔN467 strain increases

pro-inflammatory responses from macrophages.

CHO1 disruption upregulates Cdc42 activity in C. albicans
The above results indicate that hyper-activation of Ste11 can cause unmasking, and since the

Cek1 MAPK pathway, which acts downstream of Cdc42 [18], is constitutively activated in

cho1Δ/Δ, this suggests that Cdc42 activity might be upregulated in cho1Δ/Δ (Fig 1). To test this

possibility, Cdc42 activity was measured by monitoring the amount of active Cdc42 (GTP-

bound) in cells. GTP-bound Cdc42 was isolated using agarose beads coated with Cdc42/Rac1

interactive binding (CRIB) domain [44]. As seen in Fig 4A, the concentration of GTP-bound

Cdc42 in cho1Δ/Δ is higher than that in wild-type and cho1ΔΔ::CHO1 strains. This confirms

our hypothesis that cho1Δ/Δ has a higher concentration of active Cdc42 than wild-type. Thus,

Cho1 or its biochemical product PS may impact Cdc42 activity negatively in wild-type cells,

although this regulation may be indirect.

We then compared the localization of active Cdc42 in cho1Δ/Δ and wild-type by using a

CaCRIB-GFP probe [44]. This motif binds with both Cdc42 and Rac1 GTPases. As seen in Fig

4B, both wild-type and cho1Δ/Δ cells have similarly localized active Cdc42, with the CRIB-GFP

probe concentrated at the growth sites (buds). CRIB-GFP can bind both Rac1 and Cdc42, so

to measure Cdc42 localization alone, we disrupted RAC1 in both wild-type and cho1Δ/Δ by

using a C. albicans CRISPR-Cas9 system [45]. Both rac1Δ/Δ and cho1Δ/Δ rac1Δ/Δmutant cells

have a similar pattern of CRIB-GFP localization during budding growth compared to wild-

type and cho1Δ/Δ (Fig 4B and 4C). This suggests that active Cdc42 is found in its normal local-

ization in cho1Δ/Δ cells.

These results were in potential contrast to those for Cdc42 in a S. cerevisiae cho1Δmutant,

where PS disruption causes impaired Cdc42 polarization [46]. However, in this study, Fairn

et al. used a GFP-Cdc42 construct to examine localization, which should visualize total Cdc42

rather than just active Cdc42. Therefore, we examined localization of total GFP-Cdc42 in C.

albicans cho1Δ/Δ to determine how total Cdc42 responds to PS deficiency (Fig 5A). In the
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wild-type and reintegrated strains (cho1Δ/Δ::CHO1), Cdc42 is localized to the plasma mem-

brane and internal membranes, and accumulates in bud necks and bud tips. The cho1Δ/Δ
mutant has impaired polarization of GFP-Cdc42 to bud necks and tips. There is an overall

decrease in plasma membrane binding of GFP-Cdc42, and instead GFP-Cdc42 accumulates in

the cytoplasm. Approximately 80% of wild-type yeast cells have polarized Cdc42 localization,

while only 20% of cho1Δ/Δ cells show polarized localization (Fig 5B). This result indicates that

CHO1 is necessary for the proper localization of total GFP-Cdc42 in C. albicans.
We next examined the mechanism by which PS may impact GFP-Cdc42 localization to

buds and bud necks. PS is the most abundant anionic phospholipid of the plasma membrane,

and it is largely restricted to the inner leaflet [46, 47]. A C-terminal polybasic region in some

Rho-family small GTPases is a crucial domain for lipid interaction, where several positively

charged amino acid residues promote plasma membrane localization, and have been suggested

to do so via electrostatic interactions with negatively charged phospholipids including PS [48,

Fig 4. Cdc42 activity is upregulated in cho1Δ/Δ compared to wild-type. (A) GTP-Cdc42 was pulled-down with beads conjugated with GST-CRIB, which specifically

binds with active GTP-Cdc42/Rac1. Cdc42 that was pulled down was then detected via Western blotting with anti-Cdc42 antibody. The amount of total Cdc42 in the

extract was also probed as a control. The GTP-Cdc42/Total-Cdc42 ratio is expressed as a percentage of wild-type. (B) CaCRIB-GFP localization is not altered upon

CHO1 deletion. The CaCRIB-GFP probe was transformed into Candida strains to investigate the active GTP-Cdc42 localization. The scale bar represents 10μm. (C)

Cells from Fig 4B were analyzed by microscopy for the number that exhibited CaCRIB-GFP localization to buds. Quantification is of three biological replicates, and each

replicate has at least 50 cells.

https://doi.org/10.1371/journal.pgen.1007892.g004
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49]. To elucidate if this domain is crucial for localization of Cdc42 in C. albicans, we con-

structed a GFP-Cdc42 mutant where the four C-terminal lysines were mutated to glutamines

(GFP-Cdc42K183-187Q), and observed its localization in C. albicans wild-type cells. As shown in

Fig 5A, most of the GFP-Cdc42K183-187Q was associated with endomembrane structures

instead of the plasma membrane. Of note, the preferential accumulation of GFP-Cdc42 seen in

the buds of normal wild-type yeast was absent in the mutated Cdc42K183-187Q protein. This

indicates that the C-terminal polybasic region of Cdc42p is important for association of total

GFP-Cdc42 with plasma membrane. However, this does not show if the C-terminal domain is

regulating localization by directly interacting with PS, although that is one possibility.

In contrast, as observed in Fig 4, GTP-bound unmodified Cdc42 is still able to associate

with the bud necks and tips in the absence of CHO1, indicating that active Cdc42 can still

localize to the appropriate places in the cell. The discrepancy we see between total GFP-Cdc42

localization and localization of GTP-bound native Cdc42 could be caused by the GFP or reflect

differences between total versus active Cdc42 populations.

Activation of Cdc42 contributes to ß(1,3)-glucan exposure

The above results indicate that the GTPase Cdc42 has increased activation in cho1Δ/Δ (Fig 4).

To further investigate if this up-regulated Cdc42 activity contributes to β (1,3)-glucan expo-

sure, we constructed a mutant strain that ectopically expresses a CDC42 hyperactive allele

(CDC42G12V) in wild-type. Introduction of CDC42G12V decreases the intrinsic GTPase activity,

therefore increasing the proportion of Cdc42 in an active GTP-bound state [18]. Cells

Fig 5. Cho1 is essential for GFP-Cdc42 polarization at the plasma membrane. (A) GFP-Cdc42 localization is examined for each strain by microscopy. The red arrows

indicate the fluorescence concentrated at the bud tips or bud necks. The scale bar represents 5μm. (B) Quantification of the degree of polarization of GFP-Cdc42 in

Candida cells. A minimum of 50 cells was counted for each strain and the imaging experiment was repeated three times. The statistical analysis was carried out by One-

way ANOVA. ����, p<0.0001.

https://doi.org/10.1371/journal.pgen.1007892.g005
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overexpressing CDC42G12V exhibited decreased proliferation in YPD liquid and poor growth

on YPD agar plates [32]. Similarly, a hyper-activated CDC42G12V mutant was dominant lethal

in S. cerevisiae [50]. Our strain is viable, but does exhibit growth defects, so we measured β
(1,3)-glucan exposure in the CDC42G12V mutant by staining with anti-β (1,3)-glucan antibody,

but also co-stained cells with propidium iodide to control for cell-viability. Propidium iodide

staining revealed that the overnight CDC42G12V culture contained fewer live cells compared to

wild-type (S4A Fig). However, within the live cell populations for both strains, there was a

much greater level of β (1,3)-glucan exposure in the CDC42G12V cells compared to wild-type

(S4B Fig). This suggests that increased Cdc42 activity causes β (1,3)-glucan exposure, with the

caveat that CDC42G12V is clearly having pleiotropic effects.

The Rho1-associated signaling pathway does not have a clear role in

causing β(1,3)-glucan exposure

Our data indicate that the Cek1 pathway can cause β(1,3)-glucan exposure when hyper-acti-

vated, and this may help explain the increased β(1,3)-glucan exposure seen in the cho1Δ/Δ
mutant. However, the Mkc1 pathway is also upregulated in cho1Δ/Δ (Fig 2), and we wanted to

determine if activation of this pathway plays a role in β(1,3)-glucan exposure as well. First,

bothMKC1 alleles were disrupted via the C. albicans CRISPR-cas9 system [45] in wild-type

and cho1Δ/Δ. Western blotting was performed to confirm that Mkc1 was not expressed in

the mutants with bothMKC1 alleles disrupted (S5 Fig). Immunostaining with anti-β (1,3)-glu-

can antibody on wild-type, cho1Δ/Δ,mkc1Δ/Δ and cho1Δ/Δmkc1Δ/Δ strains showed that dele-

tion ofMKC1 did not rescue the β(1,3)-glucan exposure phenotype in the cho1Δ/Δmutant

(Fig 6). In fact, flow cytometry demonstrated that themkc1Δ/Δ cho1Δ/Δ double mutant cells

exhibited increased levels β (1,3)-glucan exposure compared to cho1Δ/Δ (Fig 6B). This suggests

Fig 6. Deletion of MKC1 in cho1Δ/Δ did not diminish β (1,3)-glucan exposure. (A) Cells were stained with primary anti-β (1,3)-glucan antibody and Cy3-conjugated

secondary antibody, and imaged by epi-fluorescent microscopy. The scale bar indicates 10μm. (B) Flow cytometry was carried out to quantify β (1,3)-glucan exposure.

Cells were incubated with primary anti-β (1,3)-glucan antibody and PE-conjugated secondary antibody. The statistical analysis was carried out by doing One-way

ANOVA analysis. �, P = 0.0485; ��, P = 0.0024.

https://doi.org/10.1371/journal.pgen.1007892.g006
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that Mkc1 MAPK probably plays a role in sustaining cell wall organization when CHO1 is

disrupted.

Pkc1 acts as a signaling module to connect Rho1 to the Mkc1 MAPK cascade [25–27]. We

deleted one PKC1 allele in cho1Δ/Δ, and this did not suppress the β(1,3)-glucan exposure phe-

notype (S6 Fig). Attempts to make a complete cho1Δ/Δ pkc1Δ/Δ double mutant failed. This

does not completely test for a role for Pkc1 in unmasking, but is consistent with those above

indicating that increased activation of the Mkc1 pathway does not cause β(1,3)-glucan

exposure.

We then examined if Rho1 might play a role in increased β(1,3)-glucan exposure in cho1Δ/
Δ. Total, but not active, Cdc42 is mislocalized in cho1Δ/Δ (Figs 4 and 5), therefore, we mea-

sured the distribution of active GTP-Rho1. This was achieved using a probe for active Rho1,

that consists of a GFP tagged C. albicans Pkc1 Rho Interactive Domain (GFP-RID) [44]. In

wild-type and cho1Δ/Δ::CHO1, GFP-RID is localized to the growth sites (i.e. buds and sites of

cell division) (Fig 7), however the signal in cho1Δ/Δ is delocalized. This suggests that the Rho1

cell wall remodeling system might be re-localized when Cho1 is disrupted. Rho1 also has mul-

tiple lysines on its extreme C-terminus, similar to Cdc42, thus its mislocalization in cho1Δ/Δ
could be affected for similar reasons as observed for total GFP-Cdc42 (Fig 5). Due to the lack

of GFP-Rho1, we have not examined GFP-Rho1 to find the exact localization of total Rho1 in

cho1Δ/Δ. The increased activation of Mkc1 in cho1Δ/Δ suggests that its upstream regulator,

Rho1, might exhibit a similar increase in activation. To test if up-regulated Rho1 can cause β
(1,3)-glucan exposure, we constructed a strain that ectopically expresses a hyperactive allele of

RHO1Q67L in wild-type. Introduction of the RHO1Q67L allele decreases the ability of Rho1 to

cleave GTP to GDP, therefore increasing the level of GTP-Rho1[25]. As shown in Fig 8A and

8B, hyper-activated RHO1Q67L did cause a significant increase in cell wall unmasking com-

pared to wild-type, but not as great as that seen with STE11ΔN467. However, examination of

MAPK phosphorylation revealed that active Cek1 was unexpectedly upregulated along with

active Mkc1 (Fig 8C). Thus, the β(1,3)-glucan exposure in the RHO1Q67L strain could be due at

least in part to Cek1 activation rather than Mkc1 (Fig 8C).

Discussion

Previously, our lab showed that the enzyme for synthesizing PS, Cho1, plays a role in control-

ling β (1,3)-glucan exposure [13]. The homozygous PS synthase knockout mutant, cho1Δ/Δ,

exhibits increased β (1,3)-glucan exposure compared to wild-type [13]. However, the mecha-

nism by which cho1Δ/Δ displays the β (1,3)-glucan exposure phenotype was unclear.

In this report, we identify two MAPK signaling pathways (Cek1 and Mkc1) that are acti-

vated in the cho1Δ/Δmutant (Fig 2), and we hypothesized that one or both may contribute to

increased β(1,3)-glucan exposure in cho1Δ/Δ. MAPK signal transduction cascades are essential

pathways for C. albicans’ adaptation to the host environment [35, 51]. Cek1 and Mkc1 are

major MAPK pathways in this organism that play roles in cell wall regulation. The Mkc1-asso-

ciated pathway is primarily responsible for cell wall integrity, while the Cek1-mediated signal-

ing cascade is important for cell wall construction and hyphal formation [19, 52–54].

Cdc42-Cek1 MAPK pathway activation can increase β(1,3)-glucan

exposure

We tested the hypothesis that one or both of these pathways can cause β (1,3)-glucan exposure

in cho1Δ/Δ by determining if they could contribute to this phenotype independently of loss of

PS. We found confirming evidence for the Cek1 pathway. In particular, a hyperactive form of

Ste11 (STE11ΔN467), the MAPKKK that activates Cek1 (Fig 1), stimulates significant β (1,3)-
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glucan exposure in yeast-form cells compared to wild-type cells (Fig 3). This confirms an asser-

tion that β (1,3)-glucan can be unmasked in Cek1 inducing conditions [39]. The cells with

STE11ΔN467-induced unmasking also exhibit more TNF-α secretion from macrophages

(Fig 3D).

Ste11 is downstream of the small GTPase Cdc42 (Fig 1), which has been well-studied in C.

albicans [18, 32, 44, 55]. Cdc42 is involved in cellular proliferation and bud emergence and

activates the downstream protein kinase Cst20, which also controls the activation of the Cek1

MAPK cascade including Ste11 [15, 18, 19, 52]. To control accurate cellular function, Cdc42

cycles between an active GTP-bound and inactive GDP-bound state [55]. By performing pull-

downs of GTP-Cdc42 with CaCRIB-GST and Western blotting, we have evidence that the

level of active GTP-Cdc42 is higher in cho1Δ/Δ compared to wild-type (Fig 4A). This might be

responsible for the increased activation of the downstream Ste11-associated cascade. We did

Fig 7. Active GTP-Rho1 is de-localized in cho1Δ/Δ. (A-C) GFP-RID localization was used as proxy for active (GTP-bound) Rho1 in cells, and was analyzed by

epifluorescent microscopy. (D) Quantification of the degree of polarization of GTP-Rho1 in Candida cells. A minimum of 50 cells were counted for each strain and this

repeated three times. The statistical analysis was done by One-way ANOVA. �, p<0.019.

https://doi.org/10.1371/journal.pgen.1007892.g007
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not test to see if disruption of CEK1 in the cho1Δ/Δ strain would decrease β (1,3)-glucan expo-

sure because cek1Δ/Δ also exhibits more exposed β(1,3)-glucan than wild-type [15], and this

would be uninterpretable.

Possible roles of PS in regulating Cdc42 activity and localization

The impact of PS on β (1,3)-glucan exposure is likely indirect, but may be occurring through

its role in regulating Cdc42. The loss of PS correlates with increased Cdc42 activity, which in

Fig 8. Hyper-activated Rho1 causes β (1,3)-glucan exposure. (A-B) Candida cells were stained for β (1,3)-glucan exposure as described in Fig 6. The scale bar

represents 10μm. ���, p = 0.0003. (C) Western blotting was performed to examine the effect of expressing hyperactive RHO1Q67L on the regulation of downstream

MAPK activities. Phospho-p44/42 antibody was used to detect Phospho-Cek1 and Phospho-Mkc1 and anti-tubulin, anti-Mkc1, and anti-Cek1 antibodies were used as

controls.

https://doi.org/10.1371/journal.pgen.1007892.g008
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turn can lead to activation of the Cek1 pathway, which does cause β (1,3)-glucan exposure

when activated (Fig 3). However, the mechanism by which loss of PS causes Cdc42 activation

is currently unclear, but possibilities are discussed below.

PS may impact Cdc42 activity indirectly by regulating the GTPase activating proteins

(GAPs) for Cdc42. These GAPs act as repressors of Cdc42 activity. Previous investigations

identified that PS stimulates the GAP activity of Rga1 and Rga2 toward Cdc42 in S. cerevisiae
[56]. Given that C. albicans cho1Δ/Δ lacks PS [16], this may result in less inhibition of the GAP

activity, and in turn results in less inhibition of Cdc42 activity.

In addition, there are data indicating that PS can control the localization of a subpopulation

of Cdc42. For example, we found that GFP-tagged Cdc42 is mislocalized in C. albicans cho1Δ/
Δ. Moreover, mutating the C-terminal lysines to glutamine in GFP-Cdc42 led to mislocaliza-

tion of GFP-Cdc42K183-187Q in wild-type cells (Fig 5). This is similar to what has been observed

in S. cerevisiae, where Cdc42 localization is affected by both PS and the basic lysine residues at

the C-terminal domain of Cdc42 [46, 49]. However, in contrast to this, the localization of

active GTP-Cdc42 in C. albicans, as measured by CaCRIB-GFP (binds to GTP-Cdc42/Rac1)

appears to be focused in the bud necks and tips like wild-type (Fig 4B). Therefore, PS might

control only a subpopulation of Cdc42 localization. It is also possible that GFP-Cdc42 does not

fully represent endogenous Cdc42 in its activated state.

The mechanism by which PS controls Cdc42 localization in C. albicans remains to be fully

elucidated. One model suggests that Cdc42 localization is controlled in part through the inter-

action between the negatively charged PS head group and the lysines at the C-terminus of

Cdc42 (Fig 5). However, this is only a model at this point and remains to be tested, as the

impact of PS on GFP-Cdc42 may be indirect. These lysines may interact with another protein

that is required to localize Cdc42 that itself is impacted by PS. In addition, the correct localiza-

tion of active Cdc42 in cho1Δ/Δ indicates that other factors, perhaps GEFs or GAPs, play an

important role in Cdc42 localization, independently of PS (Fig 4).

Activation of the Mkc1 MAPK pathway does not appear to be sufficient to

cause unmasking

The other MAPK pathway upregulated in cho1Δ/Δ is the Mkc1 pathway (Figs 1 and 2). We

tested for its role in cho1Δ/Δ-dependent β (1,3)-glucan exposure by generating a cho1Δ/Δ
mkc1Δ/Δ double mutant, and this did not diminish β(1,3)-glucan exposure (Fig 6). Moreover,

we disrupted one allele of the upstream kinase Pkc1, and this also did not diminish β (1,3)-glu-

can exposure (S6 Fig). Finally, a hyperactive GTP-bound form of Rho1 (RHO1Q67L) was gener-

ated, and it did lead to modest β (1,3)-glucan exposure compared to wild-type, however

surprisingly it also led to increased phosphorylation of Cek1 as well as Mkc1 (Fig 8), thus the

increase may be caused by Cek1 upregulation.

An alternative role for Mkc1 may be to diminish β (1,3)-glucan exposure in stress condi-

tions. For example, themkc1Δ/Δmutant did not exhibit enhanced β (1,3)-glucan exposure

compared to wild-type, but the cho1Δ/Δmkc1Δ/Δ double mutant exhibited greater β (1,3)-glu-

can exposure than cho1Δ/Δ alone. This, coupled with the mislocalization of active Rho1 in

cho1Δ/Δ (Fig 7), may indicate that Mkc1 is activated to compensate for cell wall disfunction

that is caused by the cho1Δ/Δmutation, perhaps even due to upregulated Cek1.

Surprisingly, our results with the Mkc1 pathway’s relationship to PS contrast with what is

observed for the orthologous pathway in S. cerevisiae. In baker’s yeast, PS has been shown to

be necessary for the activation of the S. cerevisiaeMkc1 homolog Slt2 [22, 57]. However, we

observed that loss of PS synthase in C. albicans causes increased Mkc1 activity (Fig 2), suggest-

ing that there are fundamental differences in the manner through which the Mkc1-associated
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cascade is regulated in pathogenic versus non-pathogenic yeasts. This report also sets the stage

for better understanding how the phospholipid PS synthase influences GTPase activity and

localization in this pathogenic organism.

Conclusions

Candida albicans is able to diminish its detection by innate immune cells through masking of

β (1,3)-glucan in the inner cell wall with an outer layer of heavily glycosylated mannoproteins

(mannan)[12, 58, 59]. Once exposed, this glucose polymer antigen can be detected by Dectin-

1, a C-type signaling lectin found on host immune cells [10, 11]. However, it usually takes sev-

eral days after infection before β (1,3)-glucan is exposed to the immune system [58]. Therefore,

if the β (1,3)-glucan exposure process could be induced more rapidly, the immune responses

would be expected to improve and clear fungal pathogens more effectively [12, 58, 60, 61].

Identification of specific pathways that contribute to β (1,3)-glucan exposure when acti-

vated could help elucidate future drug targets that can induce β (1,3)-glucan exposure to

improve immune response. Thus, compounds that specifically activate Cek1 may be useful in

this regard. If such compounds were combined with the current azole class of antifungals,

which act statically, and immune detection were simultaneously enhanced, this could poten-

tially enhance the clearance of fungi.

Methods

Strains and growth media

All of the strains and plasmids used for these experiments are described in S1 and S2 Tables.

The medium used to culture strains was yeast extract-peptone-dextrose (YPD) medium (1%

yeast extract, 2% peptone, and 2% dextrose (Thermo Fisher Scientific) (unless otherwise

stated) [62]. To express the gene from the promoter of ATP sulfurylase (MET3), SD minimal

medium (2% dextrose, 0.67% Yeast nitrogen base without amino acids) with 1mM ethanol-

amine (to support cho1Δ/Δ) was used[63]. For the induction of genes under the control of the

MAL2maltase promoter, YPM (1% yeast extract, 2% peptone, and 2% maltose, Thermo Fisher

Scientific)[64] was used. To induce hyphal formation, cells were sub-cultured in Gibco RPMI

1640 medium (Thermo Fisher Scientific).

Strain construction

Plasmid construction is described in S1 Text and plasmids used in this report are listed in S2

Table. Primers used in this study are listed in S3 Table.

Western blotting

Cells were grown overnight in liquid YPD at 30˚C, diluted to an OD600 of 0.2 in fresh YPD

medium and allowed to grow for 3 hours. For the STE11ΔN467 strain under theMAL2 pro-

moter, cells were grown overnight in liquid YPM at 30˚C, and diluted back to OD600 of 0.1

into fresh YPM medium and grown to log phase. Cells were pelleted by centrifugation, and

resuspended in 250μl phosphate buffered saline (PBS) supplemented with protease inhibitor

cocktail (PMSF, leupeptin, and pepstatin (RPI, Corp., Mount Prospect), complete Protease

Inhibitor tablet and PhosStop Phosphatase Inhibitor tablet (Roche Diagnostics GmbH, Mann-

heim, Germany). An equal volume of 150–212μm acid-washed beads (Sigma Aldrich, MO,

USA) was added to each tube. Cells were mechanically disrupted in a Biospec Mini-BeadBeater

(Bio Spec Product Inc., USA) with 6 rounds of 1min homogenization at 4˚C and 1min inter-

vals for each cycle. Samples were centrifuged at 5,000×rpm for 10 min at 4˚C, the supernatant
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was collected, and the protein concentration was quantified using the Bradford protein assay

(Bio-Rad Laboratories Inc., USA). Extracts were heated for 3 min at 95˚C, and equal amounts

of protein from each sample were separated on an SDS-12% polyacrylamide gel. Separated

proteins were transferred onto a polyvinylidene difluoride (PVDF) membrane with a Hoefer

MiniVE vertical electrophoresis unit (Amersham Biosciences Inc., USA). Membranes were

blocked in blocking buffer (LI-COR biosciences Inc., USA) at room temperature for 1hour

and subsequently incubated overnight at 4˚C with Anti-phospho-p44/p42 MAPK (Thr202/

Tyr204) antibody at a 1:2000 dilution (Cell Signaling Technology, Inc., USA) to detect phos-

phorylated Mkc1 and Cek1 MAPKs. The expression of total Mkc1 was detected with the pri-

mary antibody against total Mkc1 (1:1000). The expression of total Cek1 was measured with

an antibody to total Cek1 (1:1000). The secondary antibody against Phospho-p44/42 Ab,

Mkc1 Ab and Cek1 Ab was IRye800CW goat anti–rabbit IgG (H+L) conjugate (green,

1:10,000 dilution; LI-COR Biosciences) incubated in the dark followed by extensive washing

and quantitation using an Odyssey IR imaging system (LI-COR Biosciences). Phosphorylated

and total proteins levels were quantitated using ImageJ (National Institutes of Health,

Bethesda, MD). As a control protein, tubulin was detected with rat anti-tubulin primary anti-

body (Bio-Rad Laboratories Inc., USA) at a 1:1000 dilution and IRDye 680RD Goat-anti-Rat

IgG (H+L) (red, 1:10,000 dilution; LI-COR Biosciences).

Pull-down assay for active Cdc42

Cells were grown in YPD to log phase, and pelleted by centrifugation, and re-suspended in

Lysis/Binding/Wash buffer, provided by Active Cdc42 Pull-Down and Detection Kit (Thermo

Fisher Scientific) with protease inhibitors cocktail (PMSF, leupeptin, and pepstatin) (RPI,

Corp., Mount Prospect) and complete phosphatase inhibitor tablet (Roche Diagnostics

GmbH, Mannheim, Germany), and cells were disrupted with acid-washed glass beads (Sigma-

Aldrich Co. LLC., USA) in a Biospec Mini-Bead Beater with 6 rounds of 1min homogenization

at 4˚C and 1min interval for each cycle. The protein concentration was quantified using the

Bradford protein assay (Bio-Rad Laboratories Inc., USA).

1,500 μg of total protein were used for the pull-down procedure following the instruction

from Active Cdc42 Pull-Down and Detection Kit (Thermo Fisher Scientific). 50ul of the pull-

down samples containing active Cdc42 were separated by SDS-PAGE, transferred to PVDF

with the Hoefer MiniVE vertical electrophoresis unit (Amersham Biosciences Inc., USA), and

detected with mouse monoclonal anti-Cdc42 antibody at a 1:250 dilution (Cytoskeleton Inc.,

USA), followed by secondary detection with IRye800CW goat anti–mouse IgG (H+L) conju-

gate (1:10,000; LI-COR biosciences). As a control protein, tubulin was detected with rat anti-

tubulin primary antibody (Bio-Rad Laboratories Inc., USA) and IRDye 680RD Goat-anti-Rat

IgG (H+L) (LI-COR biosciences). Densitometry quantification of Cdc42 bands was performed

with ImageJ (National Institutes of Health, Bethesda, MD).

Immunofluorescent imaging of β (1,3)-glucan exposure

This procedure was done as described in [13] with minor modification. C. albicans cells were

grown overnight in YPD or YPM medium at 30˚C. Mouse anti-β (1,3)-glucan antibody (Bio-

supplies Australia Pty Ltd., Australia) at a 1:800 dilution was used as the primary antibody,

and a goat anti-mouse antibody conjugated to Cy3 (Jackson ImmunoResearch Inc., USA) at

1:300 dilution was used as secondary antibody. For imaging, Candida cells were resuspended

in 100 μL of PBS and visualized with LEICA DM5500B epi-fluorescent microscope with

Hamamatsu Orca-ER CCD digital camera (Model#C4742-80-12AG). The pictures were taken

through Leica Application Suite AF (Advanced Fluorescence) software.
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Fluorescence Imaging

For imaging GFP-Cdc42 expressed under theMET3 promoter, Candida cells were cultured

overnight in SD minimal medium plus 1mM ethanolamine at 30˚C, diluted to an OD600 of 0.2

in the fresh SD medium and allowed to grow for about 4–5 hours to reach the OD600 of 0.6–

0.8. Cells carrying the CRIB-GFP or GFP-RID constructs (the expression of each is under the

constitutive ADH1 and ACT1 promoters, respectively), were cultured in YPD medium. The

overnight culture at 30˚C was diluted back to an OD600 of 0.2 in fresh YPD medium and

grown for 3 hours to reach log phase. 1mL of cells was collected and re-suspended in 100μl of

PBS. 3μl of samples were mounted on the slide and observed under Leica DM RXA epi-fluo-

rescent microscope with Leica DFC365FX CCD camera (Vashaw Scientific, Inc.). The pictures

were taken through Leica Application Suite (LAS) V4.4 software.

Flow cytometry

To stain the STE11ΔN467 strain (PMAL promoter) and its controls, overnight cultures in YPM or

YPD were collected and blocked in PBS plus 3% bovine serum albumin (BSA, Thermo Fisher

Scientific, USA) for 30mins. Primary and secondary antibody incubations occurred on ice in

PBS plus 3% BSA for 1.5 h and 20mins, respectively. Soluble Dectin-1–Fc (sDectin-1-Fc) [8] at

16.5 μg/ml was used to detect exposed β (1,3) glucan and mouse anti-Als3 antibody with 1:800

dilution was used for staining Als3 on hyphal cells. The Donkey anti-human IgG (H+L) Alexa

Fluor 488 (Jackson ImmunoResearch) and goat anti-mouse antibody conjugated to R-Phyco-

erythrin (R-PE) were used as secondary antibodies, respectively.

To stain exposed β (1,3)-glucan on CDC42G12V cells, overnight cultures were collected, and

mouse anti-β (1,3)-glucan antibody at a 1:800 dilution and rabbit anti-mouse IgG (H+L) Alexa

Fluor 488 (Jackson Immuno Research) were utilized as primary and secondary antibodies,

respectively. 5ul of eBioscienceTM propidium iodide dye (Thermos fisher) was then added to

the solution for the live/dead staining, and incubated for 5min at room temperature.

To stain β(1,3)-glucan in Candida cells withMKC1 deleted, the overnight culture was incu-

bated with mouse anti-β (1,3)-glucan antibody at a 1:800 dilution as primary antibody, and fol-

lowed by goat anti-mouse antibody conjugated to R-Phycoerythrin (R-PE) at 1:300 dilution

(Jackson ImmunoResearch) as a secondary antibody. The staining process for RHO1Q67L

strains was the same except that the overnight cultures were diluted back to OD600 at 0.1 and

the log phage cells were collected after 3hrs growth for staining.

For all of the above conditions, after staining, cells were processed by washing five times

with PBS, and samples were resuspended in 500μl of FACS buffer (PBS, 1% serum, 0.1%

sodium azide) for flowcytometry in a FACSCalibur LSR II flow cytometer (Becton Dickinson).

Singlets were gated by using a forward scatter area (FSC-A) versus side scatter area (SSA) plot,

followed by forward scatter width (FSC-W) versus forward scatter area (FSC-A) density plot,

as well as a side scatter width (SSC-W) versus side scatter area (SSC-A) plot to exclude clump-

ing cells. We further compare the PE fluorescence intensity from the P3 singlets population in

different Candida strains. Flow cytometry data were obtained for 100,000 gated events per

strain and experiments were performed in triplicate, and analyzed using FlowJo software pack-

age with version 10.11 (FlowJo LLC, OR, USA).

Enzyme-linked immunosorbent assay (ELISA) of TNF-α
RAW264.7 macrophages were plated the day prior at 5×105/well in a 24-well plate. To activate

STE11ΔN467 expression under PMAL regulation, STE11ΔN467 mutant cells were grown in YPM.

Overnight cultures were washed and diluted to an OD600 of 1.25 in 5ml PBS/well in a 6-well

plate for UV-kill. To do this, the 6-well plate was placed in the Spectrolinker XL-1000 UV
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Crosslinker (Spectroline Inc., USA) and the ENERGY mode was set to 100,000 μJ/cm2. The

UV-killing process was repeated 5 times. UV-killed Candida cells were then added to the

RAW264.7 macrophages and coincubated at a 1:10 ratio for 4 h at 37˚C and 5% CO2. The

supernatant of each well was collected and filtered through a syringe filter with 0.2μm pore

size (Millipore Sigma, US) to exclude the macrophage debris. The ELISA kit instructions from

the manufacturer (R&D Systems) were followed. Each sample has three individual wells, and

the statistical analysis was performed by using Two-way analysis of variance ANOVA (Graph-

Pad Prism, v7.04 software).
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S1 Fig. The STE11ΔN467 strain exhibits significantly increased β (1,3)-glucan exposure com-

pared to wild-type. Overnight cultures of Candida cells was incubated with anti-β (1,3)-glucan

primary antibody and PE-conjugated secondary antibody, followed by flow cytometry to

quantify the fluorescence intensity. Data represent three biological replicates. The statistical

analysis was done by One-way ANOVA. ���, P = 0.0004; �, p = 0.0137

(TIF)

S2 Fig. Growth curves were measured to determine the growth rate of strains in YPD vs

YPM. Cells were grown overnight in YPD, diluted back to 0.1 OD600 and transferred to fresh

YPD or YPM. A growth curve was performed with three replicates per condition, and plotted

based on the growth rate of different strains measured in 48 hrs. The growth at each time-

point between YPD and YPM cultures of STE11ΔN467 were compared by Two-way ANOVA

(����, p<0.0001; �, p = 0.0286). The same comparison was made between wild-type YPD and

YPM culture (####, p<0.0001; ###, p = 0.0007).

(TIF)

S3 Fig. The exposed β (1,3)-glucan in STE11ΔN467 YPM cells was not restricted to bud

scars. Overnight cultures of wild-type and STE11ΔN467 grown in YPM were co-stained with

anti-β(1,3)-glucan antibody and Cy3 secondary to visualize exposed β(1,3)-glucan and calco-

fluor white to visualize chitin.

(TIF)

S4 Fig. CDC42G12V increases β (1,3)-glucan exposure, but also reduces the viable cell popu-

lation. (A) Propidium iodide staining was performed to quantify the live cells in Candida
strains. (B) β (1,3)-glucan exposure in live (gated for propidim iodide negative cells) wild-type

and CDC42G12V populations was measured by flow cytometry.

(TIF)

S5 Fig. MKC1 was knocked out in C. albicans via CRISPR-Cas9. Western blotting was per-

formed using anti-Mkc1 antibody to confirm the absence of Mkc1 in theMKC1 knockout

mutants compared to wild-type (WT) and other strains. Tubulin was probed with anti-tubulin
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antibody as a loading control.

(TIF)

S6 Fig. Deleting one PKC1 allele in cho1Δ/Δ did not rescue β (1,3)-glucan exposure. One

PKC1 allele was deleted by the SAT1-flipper method. Cells were then stained with anti-β (1,3)-

glucan primary antibody and phycoerythrin (PE)-conjugated secondary antibody. The statisti-

cal analysis was carried out by doing One-way ANOVA.

(TIF)
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