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Recent studies have proved that dynamic regional measures extracted from the

resting-state functional magnetic resonance imaging, such as the dynamic fractional

amplitude of low-frequency fluctuation (d-fALFF), could provide a great insight into

brain dynamic characteristics of the schizophrenia. However, the unimodal feature

is limited for delineating the complex patterns of brain deficits. Thus, functional

and structural imaging data are usually analyzed together for uncovering the neural

mechanism of schizophrenia. Investigation of neural function-structure coupling enables

to find the potential biomarkers and further helps to understand the biological

basis of schizophrenia. Here, a brain-network-constrained multi-view sparse canonical

correlation analysis (BN-MSCCA) was proposed to explore the intrinsic associations

between brain structure and dynamic brain function. Specifically, the d-fALFF was first

acquired based on the sliding window method, whereas the gray matter map was

computed based on voxel-based morphometry analysis. Then, the region-of-interest

(ROI)-based features were extracted and further selected by performing the multi-view

sparse canonical correlation analysis jointly with the diagnosis information. Moreover,

the brain-network-based structural constraint was introduced to prompt the detected

biomarkers more interpretable. The experiments were conducted on 191 patients with

schizophrenia and 191 matched healthy controls. Results showed that the BN-MSCCA

could identify the critical ROIs with more sparse canonical weight patterns, which are

corresponding to the specific brain networks. These are biologically meaningful findings

and could be treated as the potential biomarkers. The proposed method also obtained

a higher canonical correlation coefficient for the testing data, which is more consistent

with the results on training data, demonstrating its promising capability for the association

identification. To demonstrate the effectiveness of the potential clinical applications, the

detected biomarkers were further analyzed on a schizophrenia-control classification task

and a correlation analysis task. The experimental results showed that our method had

a superior performance with a 5–8% increment in accuracy and 6–10% improvement in
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area under the curve. Furthermore, two of the top-ranked biomarkers were significantly

negatively correlated with the positive symptom score of Positive and Negative Syndrome

Scale (PANSS). Overall, the proposed method could find the association between

brain structure and dynamic brain function, and also help to identify the biological

meaningful biomarkers of schizophrenia. The findings enable our further understanding

of this disease.

Keywords: multimodal brain image analysis, brain network constraint, sparse canonical correlation analysis,

schizophrenia, biomarker

INTRODUCTION

Schizophrenia (SCZ) is a severe psychiatric disorder, which is
characterized by cognitive dysfunction, delusions, hallucinations,
and personality disturbance (Ventura et al., 2009). It has affected
about 1% of the population throughout the world, and has
potentially become a lifetime burden for the patients and their
families (McGrath et al., 2008). Finding objective biomarkers
for the accurate diagnosis and effective intervention in the early
stage of SCZ is of great importance for the neuroscience and
medical science. However, it is still challenging to identify the
accurate biomarkers of SCZ as the pathological mechanism of
this disease is unclear yet (Insel, 2010). In the recent decades, the
advancements in magnetic resonance imaging (MRI) techniques
have provided an alternative opportunity to search for SCZ-
related biomarkers. Using the non-invasive MRI, such as
functional MRI (fMRI), structural MRI (sMRI), and diffusion
tensor imaging (DTI), the brain functional and structural
abnormalities can be detected, facilitating the understanding
about the pathophysiology of SCZ (Ding et al., 2019; Steardo
et al., 2020,Sagarwala and Nasrallah, 2021).

A lot of literatures proved that fMRI has played an
important role in the analysis of SCZ (Wang et al., 2018;
Steardo et al., 2020). Based on the resting-state fMRI (rs-
fMRI), the static functional measures are commonly extracted
to find the abnormal patterns in brain, and then, the disease-
related biomarkers are identified for further analysis. Currently,
beyond the traditional static analysis of functional brain activity,
the temporal dynamic features of brain have attracted more
and more attention, which can depict the temporal alteration
of brain function (Filippi et al., 2019). Dynamic regional
measurements at resting-state were widely investigated on brain
disorders, demonstrating their sensitive detection capability for
the abnormal characteristics of brain (Tang et al., 2018). Dynamic
fractional amplitude of low-frequency fluctuation (d-fALFF) is
one of the popularly used dynamic regional measurements in
SCZ research, which can reflect the temporal variability of the
amplitude of intrinsic neural activity (Yan et al., 2017; Zhang
et al., 2019). However, as a complex brain disorder, such single-
modality data cannot adequately depict the defective pattern
caused by SCZ. Recently, an increasing number of evidences have
shown that the combination of multimodal imaging data might
provide distinct and complementary information, contributing
to the comprehensive investigation of SCZ (Zhuang et al., 2019;
Lei et al., 2020a). Among these multimodal studies, the fMRI

and sMRI were most commonly combined, following with a
machine learning method, to conduct the subsequent analysis
such as the classification of healthy controls (HCs) and SCZ
(Cao et al., 2020). Even though the improved performances were
obtained based on these multimodal methods, the inter-modality
relationships were inevitably overlooked in most of these studies,
which are also important for the multimodal analysis.

In the neuroscience field, researchers have been aware of
the importance of exploring the inter-modality associations (Du
et al., 2020). Various types of correlation analysis method have
been proposed to identify the relationship between different
modalities (Shen and Thompson, 2020). Within them, the
sparse canonical correlation analysis (SCCA) is one of the most
popular methods (Witten et al., 2009). The SCCA could identify
multivariate associations between two sets of variables, while it
is an unsupervised approach, indicating that it cannot utilize
the diagnosis information to guide the exploration of disease-
related associations. So, it is limited to find the disease-related
and biologically interpretable biomarkers. To overcome this
shortcoming, the multi-view SCCA (e.g., three-view SCCA) was
adopted by including the diagnosis information as the third
type of data, with the aim of simultaneously maximizing the
pairwise correlations among diagnosis information and other
two sets of variables. By introducing the diagnosis information,
the disease-related biomarkers could be detected based on
this kind of methods (Hao et al., 2017; Won et al., 2020).
However, from the point of view of biologically meaningful
interpretation, it still remains a challenge to obtain biologically
interpretable findings for the current multi-view SCCA method.
To incorporate the biologically meaningful structure knowledge,
simplify the model complexity, and reduce the risk of overfitting,
different regularization methods were used in the SCCA, such
as lasso penalty (Witten et al., 2009), graph-constrained elastic
net (Kim et al., 2021), group lasso regularization (Du et al.,
2014), and so on. Recent studies have tried to associate the
detected brain regions with a certain brain network, and found
network-level aberrant alterations in SCZ (Li et al., 2019; Supekar
et al., 2019). Based on the observations above, it is hypothesized
that this brain-network-based structural information might be
helpful for the exploration of SCZ-related biomarkers. To our
best knowledge, this kind of structure information has not
been utilized in SCCA yet. Thus, a novel multi-view SCCA
method, which could simultaneously utilize the brain-network-
based structural information and the diagnosis information to
help to explore the disease-related biomarkers, is needed for
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FIGURE 1 | The flowchart of our proposed method.

better identifying disease-related multivariate associations and
producing biologically meaningful findings.

In this study, we proposed a novel brain-network-constrained
multi-view SCCA (BN-MSCCA) to explore the complex
relationships between brain structure and dynamic brain
function, and subsequently identify the SCZ-related biomarkers.
The temporal dynamic analysis (TDA) was first performed to
compute the dynamic brain functional measurement (e.g., d-
fALFF) using the sliding window method. Then, voxel-based
morphometry (VBM) analysis was performed to obtain the gray
matter (GM) map. After that, the region of interest (ROI)-based
features were further extracted from these two measurements.
Finally, the three-view canonical correlation analysis jointly with
the diagnosis information was performed. Moreover, the brain-
network-based structural constraint was introduced into the
model to prompt the detected biomarkers more interpretable.
Using 191 SCZ and 191 HC data, BN-MSCCA obtained
more sparse canonical weight patterns and higher canonical
correlation coefficients (CCCs). The subsequent classification

and PANSS correlation experiments also proved the capability of
detected biomarkers for depicting the abnormalities of SCZ.

The rest of this article is organized as follows. Section
Materials and Methods describes the materials used in this
study and the proposed BN-MSCCA method following with its
optimization algorithm. The specific experimental settings and
the results are introduced in Section Experiments and Results. In
Section Discussion, a comprehensive discussion about the results
is presented. Section Conclusion concludes this article.

MATERIALS AND METHODS

The proposed method comprised of four main steps, such as
(1) data preprocessing and feature extraction, (2) identifying
associations using the proposed BN-MSCCA method, (3)
detecting SCZ-related biomarkers, and (4) subsequent analysis
based on the detected biomarkers. Figure 1 presents the
overall flowchart of the proposed BN-MSCCA method. In
this section, we mainly introduce the data preprocessing,
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TABLE 1 | Participant demographics.

Characteristic SCZ (N = 191) HC (N = 191) p-value*

Age (mean ± sd, year) 23.16 ± 8.45 23.28 ± 4.69 0.863

Gender (M/F) 91/100 89/102 0.838

*t-test is used for comparison of age, and χ2 test is used for gender comparison.

feature extraction, the proposed BN-MSCCA method, and its
optimization algorithm.

Data Preprocessing and Feature Extraction
Data Acquisition
The dataset used in this study was collected at the First
Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
For the patients with SCZ, the psychiatric diagnoses were
based on the USA manual of the Diagnostic and Statistical
Manual of Mental Disorders IV (DSM-IV) (Guze, 1995). The
exclusion criteria included the presence of traumatic brain
injury, severe endocrine diseases, anemia, hematological diseases
or other mental diseases, a history of excessive drinking or
abuse of psychotropic substances, or the incompletion of MRI
examination. Finally, 191 patients with SCZ were enrolled in this
work, in which 108 patients have the complete PANSS score.

A total of 191 healthy subjects with matched age and gender
were recruited as the HC group. The subjects were able to
complete the MR scanning and had no history of organic brain
disease or other chronic diseases and mental disorders, nor
a family history of psychosis. The demographic information
of the studied subjects is summarized in Table 1. The study
procedures have passed the approval of the ethics committee of
the First Affiliated Hospital of Zhengzhou University. All the
participants and their legal guardian have consented and signed
the informed consent.

The T1-weighted MRI and rs-fMRI were acquired on a GE
Discovery 750 3T MRI scanner with an 8-channel head coil. The
T1 images were acquired with repetition time (TR) = 8.2ms,
echo time (TE) = 3.2ms, field of view (FOV) = 256 mm × 256
mm, slice number = 188, slice thickness = 1mm, flip angle =

12◦, and 256 × 256 matrix. The rs-fMRIs were collected using
the echo planar imaging sequence (EPI) with TR = 2,000ms, TE
= 30ms, FOV = 220 mm × 220 mm, slice number = 32, slice
thickness = 4mm, inter-slice gap = 0.5mm, flip angle = 90◦,
and 64 × 64 matrix, and the scanning time for each subject is
about 6min (resulting in 188 volumes). During the scanning, the
participants were required to think about nothing in particular
and keep their head still and eyes closed at the same time.

Data Pre-processing
CAT12 (http://www.neuro.uni-jena.de/cat), an extension
toolkit of SPM12, provides a platform for both surface-based
morphometry and VBM analysis. Using the T1-weighted
MRI data, we followed the standard pipeline of the CAT12
to conduct the VBM analysis. The main steps included the
correction of bias-field inhomogeneities, segmentation of brain
tissues (gray matter, white matter and cerebrospinal fluid),

spatial normalization into the Montreal Neurological Institute
(MNI) space, resampling to 1.5 mm × 1.5 mm × 1.5 mm, and
non-linear modulation. Finally, the obtained GM maps were
smoothed using an 8mm full width at half maximum (FWHM)
Gaussian kernel.

The rs-fMRI data were preprocessed using the DPABI (http://
www.rfmri.org/dpabi) software. The processing steps are as
follows. First, the initial 10 volumes were removed, followed
by the slice-timing correction. Then, the time series of each
subject were realigned by a linear transformation. After the
realignment, the mean functional image was co-registered to
the corresponding T1 image, which had been segmented into
gray matter, white matter, and cerebrospinal fluid using a unified
segment method (http://www.fil.ion.ucl.ac.uk/spm). Finally, the
functional images were resampled to 3 mm × 3 mm × 3 mm
and then normalized into the MNI space using the DARTEL
(Ashburner, 2007). To alleviate the influence of noise, the images
were smoothed by a 4-mm FWHM Gaussian kernel and band-
pass filtered within 0.01–0.1HZ. The nuisance regression was
used to regress out the irrelevant variable interferences, including
the Friston-24 parameters, white matter signal, cerebrospinal
fluid signal, and global signal.

Feature Extraction
Based on the GM images, the ROI-based features were extracted
for the subsequent analysis. First, the normalized and modulated
GM maps were resampled to 3 mm × 3 mm × 3 mm using the
trilinear method. Then, the whole GM map was divided into 116
ROIs according to the AAL atlas. Finally, we averaged the values
within each ROI to obtain the ROI-based measurements.

As for the rs-fMRI, we computed the d-fALFF through the
TDA module in DPABI. First, we divided all BOLD time series
of the whole brain into multiple overlapping windows. In this
study, we empirically set the width of each sliding window as 60 s
and the interval between time windows as 10 s. Second, the fALFF
was calculated based on the time series in a specific time window.
The time series was converted to the frequency domain using the
fast Fourier transform, and the square root of power spectrum
was computed. Then, the sum of amplitude in 0.01–0.1HZ was
divided by the entire frequency range to obtain the fALFF map.
Subsequently, the mean and standard deviation of each voxel in
the fALFF maps of all sliding windows were computed. Finally,
we obtained the coefficient of variation (CV) of these fALFF
maps, which was usually regarded as d-fALFF and it was acquired
by dividing the standard deviation by the mean in details. The
raw d-fALFF of each voxel was further divided by the mean value
of the whole brain to reduce the global effects of variability across
the subjects (Wang et al., 2020). Similar to T1 image, the d-fALFF
of each ROI was also obtained based on the AAL template. To
remove the possible effects of age and gender, we pre-adjusted all
these imaging features using the regression.

Methods
In this article, we define a matrix using the uppercase letter and
a vector using the lowercase letter. Specifically, let X ∈ R

n×p and
Y ∈ R

n×q represent the data matrices, where X corresponds to
the d-fALFF-based features with n samples and p variables, and
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Y corresponds to the GM volume-based features with n samples
and q variables.

SCCA
For identifying the complex multivariate associations, SCCA
was proposed with the aim to find the linear transformation
of X and Y and obtain the maximal correlation between these
two transformed variables. Meanwhile, the penalty terms were
introduced to make the variables more sparse and avoid the
overfitting (Witten et al., 2009). The SCCA could be formulated
as follows.

max
u,v

uTXTYv (1)

s.t. uTXTXu ≤ 1, vTYTYv ≤ 1, ‖u‖1 ≤ a1, ‖v‖1 ≤ a2

where u and v are the canonical weights for the corresponding
data modalities (X and Y), showing the contribution of
each feature in this canonical correlation. In this model, the
uTXTXu ≤ 1 and vTYTYv ≤ 1 are used to describe the
covariance structure of the data. The ‖u‖1 ≤ a1 and ‖v‖1 ≤

a2 are constraints for controlling the sparsity and selecting the
most relevant features from the d-fALFF-based and GM volume-
based features, respectively. However, the SCCA can only capture
associations between two distinct types of data, which cannot
meet the demand for identifying multi-view associations among
more than two different types of modalities. On the other hand,
the SCCA is an unsupervised method indicating that it cannot
make full use of the diagnosis information.

Multi-View SCCA
Recently, to uncover the complex associations among multiple
types of data, a variant of SCCA, called multi-view SCCA
(MSCCA), was proposed to include more than two types of
data (Witten and Tibshirani, 2009; Hao et al., 2017). Using
the MSCCA, some studies were performed to investigate
relationships among three modalities (Du et al., 2021). The
MSCCA could be formulated as follows:

max
u,v,w

uTXTYv+ vTYTZw+ wTZTXu (2)

s.t. uTXTXu ≤ 1, vTYTYv ≤ 1, wTZTZw ≤ 1,

‖u‖1 ≤ a1, ‖v‖1 ≤ a2, ‖w‖1 ≤ a3

Note that Z ∈ R
n×r is the third type of data, where r is its feature

dimension and w is the canonical weight of Z. As a special case of
MSCCA, the task-oriented MSCCA was used to incorporate the
supervision information as the third type of data, which is from
the target task (Hao et al., 2017; Won et al., 2020). According
to these studies, the MSCCA has demonstrated its promising
capacity for uncovering the disease-related biomarkers. However,
the data structure information was overlooked in these methods
as the L1-norm penalty can only enforce the individual sparsity
without considering the internal structure of the data.

BN-MSCCA
In this work, we focused on association identification among the
GM volume-based and d-fALFF-based features. The diagnosis
information was also introduced into the model, so that we
can find the brain functional and structural biomarkers that
are relevant to the disease. Considering the brain structure
information as prior information, we further embedded the
brain-network-based structural constraint of both imaging
features into theMSCCAmodel, which is formulated as Equation
(3). We call it the BN-MSCCA.

max
u,v,w

uTXTYv+ vTYTZw+ wTZTXu (3)

s.t. uTXTXu ≤ 1, vTYTYv ≤ 1,wTZTZw ≤ 1,

‖u‖1 + ‖u‖bn ≤ a1, ‖v‖1 + ‖v‖bn ≤ a2,

‖w‖1 ≤ a3

Here ‖u‖bn and ‖v‖bn are the brain-network-based structural
penalties, introducing the brain-network-based prior
information. Their definitions were given in Equations (4)
and (5), respectively.

‖u‖bn =

K
∑

k=1

√

√

√

√

∑

j∈k

u2j =

K
∑

k=1

∥

∥

∥
Uk

∥

∥

∥

2
(4)

‖v‖bn =

K
∑

k=1

√

√

√

√

∑

j∈k

v2j =

K
∑

k=1

∥

∥

∥
Vk

∥

∥

∥

2
(5)

Specifically, the ROI-based GM volume and d-fALFF features
were extracted based on the same AAL template (116 ROIs).
We manually grouped these 116 regions into K = 15 brain
networks (including both left and right hemispheres) according
to a previous study (Han et al., 2019). In our work, the cerebellum
was divided into two networks (each in one hemisphere), and the
whole vermis was treated as a single brain network. Thus, the
objective function for BN-MSCCA was rewritten as follows.

min
u,v,w

−uTXTYv− vTYTZw− wTZTXu+
1

2
‖Xu‖22

+
1

2
‖Yv‖22 +

1

2
‖Zw‖22 + λ1α ‖u‖bn + λ1 (1− α) ‖u‖1

+λ2β ‖v‖bn + λ2 (1− β) ‖v‖1 + λ3 ‖w‖1 (6)

In this function, λ1, λ2, λ3, α, and β are the non-negative
tuning parameters. λ1, λ2, and λ3 are used to balance between
the penalty and the loss function, whereas α and β are used
to balance the brain-network-based and individual ROI-based
feature selections for the functional and structural modalities
respectively.
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Algorithm 1 | BN-MSCCA.

Require:

d-fALFF-based features X = [x1, . . . , xn]
T
∈ R

n×p,

GM volume-based features Y = [y1, . . . , yn]
T
∈ R

n×q, p = q = 116

in our study,

diagnosis information Z = [z1, . . . , zn]
T
∈ R

n×r , r = 1

Ensure: canonical weights u, v, w

Initialization: u ∈ R
p×1, v ∈ R

q×1, w ∈ R
r×1

While not converged do

Calculate the diagonal matrix D1 and D1;

Update u =

(

XTX + λ1αD1 + λ1 (1− α)D1

)−1
XT (Yv+ Zw);

Scale u so that ‖Xu‖22 = 1;

Calculate the diagonal matrix D2 and D2;

Update v =
(

YTY + λ2βD2 + λ2 (1− β)D2

)−1
YT (Xu+ Zw);

Scale v so that ‖Yv‖22 = 1;

Calculate the diagonal matrix D3;

Update w =
(

ZTZ + λ3D3

)−1
ZT (Xu+ Yv);

Scale w so that ‖Zw‖22 = 1;

End while

Optimization Algorithm
In this study, we used the alternative iteration algorithm to
optimize the BN-MSCCA. To minimize the equation, we take
the derivate of the objective function with respect to u, v, and
w separately and make them approach zero. Then, we arrive at

u =

(

XTX + λ1αD1 + λ1 (1− α)D1

)−1
XT(Yv+ Zw) (7)

D1 is a diagonal matrix with the j-th diagonal entry being 1
|uj|

.D1

is a block diagonal matrix of the k-th diagonal block as 1
2‖Uk‖2

.

Using the same procedure, we can obtain the solution of v and w:

v =
(

YTY + λ2βD2 + λ2 (1− β)D2

)−1
YT(Xu+ Zw) (8)

w =

(

ZTZ + λ3D3

)−1
ZT(Xu+ Yv) (9)

During each iterative procedure, we first fix v and w to solve u,
then fix u and w to solve v, and finally fix u and v to solve w. The
process stops until meeting the stopping criterion. Algorithm 1

shows the pseudocode of the BN-MSCCA algorithm.

EXPERIMENTS AND RESULTS

Experimental Setup
To evaluate the effectiveness of the proposed BN-MSCCA, we
chose three closely related methods as the benchmarks. They
are SCCA (Witten et al., 2009), MSCCA (Hao et al., 2017),
and SCCAR (Du et al., 2019). These three methods could find
the associations between GM volume-based and d-fALFF-based
features. However, the SCCA ignores the diagnosis information.
SCCAR combines the linear regression with SCCA to guide
the correlation analysis using the diagnosis information, and
the discriminative biomarkers could be detected. Both MSCCA

and BN-MSCCA extend the SCCA into three-view condition,
so that it could introduce the diagnosis information into
model for guiding the association identification; meanwhile, BN-
MSCCA further incorporated the brain-network-based structure
information as prior.

There are five parameters λ1, λ2, λ3, α, and β in the
proposed BN-MSCCA method. The α and β were fixed as 0.5
to balance the brain-network-based and individual ROI-based
feature selections for the functional and structural modalities
respectively. Such settings simplified the parameter tuning
procedure and reduced the time consumption without affecting
the performance significantly. The optimal values of λ1, λ2, and
λ3 were found by the grid searching strategy during a nested 5-
fold cross-validation. ForMSCCA and BN-MSCCA, we tuned λ1,
λ2, and λ3 in the range of [0.01, 0.1, 1, 10, 100]. As for SCCA
and SCCAR, due to the limitation of sparse parameter values
by applying the soft-thresholding function (Parkhomenko et al.,
2009), we tuned the parameters in the range of [0.01: 0.05: 0.5],
according to the strategy in the study of Du et al. (2019). For
these four methods, the corresponding optimal parameters were
determined by minimizing the differences between training and
validating canonical correlation coefficients (CCCs). For each
comparison method, the overall procedure was repeated for five
times to ensure the robustness of results; meanwhile, the time
consumption was acceptable. In addition, the data partition and
termination condition were same for all comparison methods.
The experiments of all comparison methods were executed on
the same software platform.

Multivariate Association Identification
In the field of medical image analysis, the detected imaging
biomarkers are of great importance. In this work, we compared
the amplitude of the canonical weight, which indicated the
importance of the biomarkers. After the cross-validation, the
canonical weights were averaged for each ROI. The heatmaps
of canonical weights U of d-fALFF and V of GM volume for
different methods are shown in Figures 2, 3, respectively. In
these figures, each row stands for the canonical weights for
one method, in which the deeper color indicates the features
corresponding to the canonical weights more important. From
Figures 2, 3, it can be seen that the SCCA and SCCAR
methods identified too many signals, which may misguide
the subsequent investigation. MSCCA and our proposed
method detected more sparse canonical weight patterns than
SCCA and SCCAR methods. Moreover, our method obtained
more interesting canonical weight patterns compared with the
MSCCA. As shown in Figure 2, the largest weight consistently
located in left putamen for the MSCCA and BN-MSCCA
methods. What is more, the d-fALFF in left hippocampus is
also detected by our proposed BN-MSCCA method. Both of
them belong to the subcortical network in left hemisphere.
As for the canonical weight V in Figure 3, the greatest
signal in right pallidum is found by the MSCCA and BN-
MSCCA methods. Besides this, the right middle cingulate
and right hippocampus are also identified by our proposed
method. These three ROIs are within the right subcortical

Frontiers in Neuroscience | www.frontiersin.org 6 June 2022 | Volume 16 | Article 879703

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Song et al. BN-MSCCA for Schizophrenia

FIGURE 2 | The mean canonical weight U of d-fALFF during five times 5-fold cross-validation.

FIGURE 3 | The mean canonical weight V of gray matter volume during five times 5-fold cross-validation.
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TABLE 2 | Comparison of CCCs on different methods (mean ± standard

deviation).

Method CCC (training) CCC (testing)

SCCA 0.25 ± 0.02 0.09 ± 0.06

SCCAR 0.26 ± 0.03 0.08 ± 0.06

MSCCA 0.22 ± 0.08 0.11 ± 0.07

BN-MSCCA 0.16 ± 0.03 0.14 ± 0.08

network. These results demonstrated that the proposed BN-
MSCCA is very promising in finding the biologically meaningful
imaging biomarkers by introducing the brain-network-based
structural information.

We also compared BN-MSCCA with other methods in
terms of CCCs between d-fALFF-based and GM volume-
based features. For each method, the CCCs across the cross-
validation were averaged for the training and testing data
respectively, and their corresponding mean and standard
deviation were calculated. From Table 2, we can see that
our method achieved the best CCC result in the testing
data, which is also more consistent with the CCC result in
the training data. This indicates that our method may have
better generalization performance compared with the other
competing methods.

Classification Setting and Results
To investigate the effectiveness of the identified biomarkers for
assisting the diagnosis of SCZ, we performed the classification
task based on different feature selection methods. In this study,
we compared our BN-MSCCA method with five competing
methods, including the method with the original features
(without feature selection), the method with two-sample t-test
feature selection, SCCA, SCCAR, and MSCCA. The details of
these methods are summarized as follows.

Original features: In this method, the GM volume-based and
d-fALFF-based features were directly concatenated as a feature
vector to fit the classifier. Two-sample t-test feature selection:
Similar to the method with original features, we first obtained
the feature vector for each subject. Then, two-sample t-test
was used to find the most discriminative features. A threshold
of p-value was set for feature selection. The selected features
were used for further model training and testing. The optimal
threshold for selecting the features was determined from a
set of 10 predefined p-values of [0.01–0.1] with the step of
0.01. SCCA: In this method, the GM volume-based and d-
fALFF-based features were analyzed using SCCA. According to
the absolute value of canonical weights, the top ten features
were selected in each imaging modality for the classification.
SCCAR: Similarly, the GM volume-based and d-fALFF-based
features were analyzed using SCCAR. According to the absolute
value of canonical weights, the top ten features were selected
for the classification. MSCCA: The GM volume-based and
d-fALFF-based features were selected using MSCCA method.
Different with SCCA, the diagnosis information was treated as

the third type of data to guide the feature selection. We used
the features with top ten absolute value of canonical weights in
each imaging modality for the classification. BN-MSCCA: The
GM volume-based and d-fALFF-based features were selected
using BN-MSCCA, with the guidance of diagnosis information
for feature selection. And the features corresponding to the top
ten absolute value of canonical weights were used to conduct
the classifier.

In our study, all the methods used the linear kernel-based
support vector machine (SVM) with the same default setting
to perform the classification. The 10-fold cross-validation was
repeated ten times to ensure the robustness of the model. Finally,
the classification performance was evaluated by computing
metrics such as the accuracy (ACC), specificity (SPE), sensitivity
(SEN), and area under the curve (AUC). As shown in Table 3,
we can see that the two-sample t-test based method, SCCAR,
MSCCA, and BN-MSCCA outperform the method with original
features. However, the classification performance of SCCAR
and MSCCA methods are slightly worse than that of two-
sample t-test based method, as the latter one is directly
designed for finding the discriminative features between two
classes. Apparently, our BN-MSCCA method achieves the best
performance, and also has the increments of 5.33%, 5.01%,
5.63%, and 6.77% on ACC, SEN, SPE, and AUC respectively,
compared with the two-sample t-test based method. Overall,
we can conclude from these results that the GM volume-based
and d-fALFF-based features are effective for the classification of
SCZ. After using the feature selection, the performance could be
improved. In addition, our proposed BN-MSCCA particularly
takes both the diagnosis information and the brain-network-
based structural information into consideration, achieving the
best classification performance.

Correlation With PANSS Score
The correlation analysis between the detected biomarkers and the
PANSS score has been regarded as a proof for the effectiveness of
the feature selection in this SCZ research. We used the adjusted
features to conduct the correlation with the PANSS scores based
on 108 patients with SCZ, whose PANSS scores were available
and complete for this analysis. Figure 4 shows that significant
correlations exist between the PANSS scores and two of the
detected biomarkers respectively. It is obvious that the d-fALFF
of left cerebellum shows a significant negative correlation with
the positive symptom score of PANSS (R = −0.2, p = 0.035).
Additionally, the gray matter volume of left heschl is negatively
correlated with positive symptom score of PANSS at a significant
level (R=−0.21, p= 0.026).

DISCUSSION

In this section, we summarized the main idea and contributions
of this study and further discussed the top 10 identified
brain regions of d-fALFF and gray matter volume respectively,
following with the investigation about their pairwise correlations.
Then, both the classification with the identified biomarkers
and the correlation between PANSS score and the detected

Frontiers in Neuroscience | www.frontiersin.org 8 June 2022 | Volume 16 | Article 879703

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Song et al. BN-MSCCA for Schizophrenia

TABLE 3 | Comparison of classification performance on different feature selection methods (mean ± standard deviation).

Method ACC (%) SEN (%) SPE (%) AUC (%)

Original features 62.98 ± 7.96 63.28 ± 12.04 62.62 ± 10.80 67.90 ± 8.30

Two-sample t-test 65.17 ± 7.24 64.72 ± 10.70 65.63 ± 10.34 69.77 ± 7.36

SCCA 62.04 ± 8.02 62.39 ± 11.30 61.73 ± 12.13 66.20 ± 8.27

SCCAR 64.92 ± 7.33 63.89 ± 11.05 65.95 ± 9.69 68.63 ± 8.03

MSCCA 64.47 ± 7.42 64.32 ± 11.82 64.57 ± 10.69 70.54 ± 8.20

BN-MSCCA 70.50 ± 7.43 69.73 ± 10.31 71.26 ± 10.76 76.54 ± 7.46

Bold values indicate the best results.

FIGURE 4 | Two detected biomarkers (adjusted values) which have significant correlations with the positive symptom score of PANSS.

TABLE 4 | Top 10 ROIs of d-fALFF identified by our method.

ROI Related brain network Weight

PUT.L SN.L 0.72464

HIP.L SN.L 0.354

PHG.L SN.L 0.04529

CEREcrus1.L CN.L 0.014084

PAL.L SN.L 0.012935

CERE10.L CN.L 0.012429

CERE3.L CN.L 0.0094317

VERS12 VN 0.0060698

ORBinf.L ATN.L 0.0053477

OLF.L SN.L 0.0050575

R, right; L, left; PUT, putamen; HIP, hippocampus; PHG, parahippocampal gyrus;

CEREcrus, cerebellum_crus; PAL, pallidum; CERE10, cerebellum_10; CERE3,

cerebellum_3; VERS12, vermis_1_2; ORBinf, inferior orbitofrontal cortex; OLF,

olfactory; SN, subcortical network; CN, cerebellum network; VN, vermis network; ATN,

attention network.

biomarkers are analyzed. Finally, the limitations of our method
and the potential future study directions are presented.

Main Idea and Contributions
In this study, a brain-network-constrained multi-view SCCA was
proposed. It has been demonstrated that the proposed method
has significantly improved performance for the identification of
brain structural and functional biomarkers, compared with the
other competing methods. The main idea and key contributions
of this study are summarized as follows: (1) a novel model was
proposed to jointly analyze the d-fALFF, gray matter volume,
and diagnosis information for the identification of SCZ-related
biomarkers; (2) the brain-network-based structural constraint
was introduced into the model, so that the detected biomarkers
were interpretable; (3) the experiments were performed on
191 patients with SCZ and 191 matched healthy controls, and
the proposed method achieved superior performance for the
biomarker detection, compared with the other methods; (4) the
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FIGURE 5 | The top 10 ROIs of d-fALFF selected by BN-MSCCA (different colors denote different brain networks).

effectiveness of detected biomarkers was further verified on two
subsequent analysis tasks, including the SCZ-HC classification
and the PANSS correlation analysis. The results proved the
potential usage of these biomarkers for the clinical applications.
Overall, the proposed method would be a powerful alternative
method for multimodal analysis. In addition, the findings in
this study could be supplementaries and verifications to the
exploration of biomarkers for SCZ.

Top-10 Selected Brain Regions of d-FALFF
We calculated themean values of the canonical weights across the
five times 5-fold cross-validation to select the top brain regions
of d-fALFF. The top ten ROIs are shown in Table 4. We also
visualized these top-10 selected regions in Figure 5. According
to Table 4 and Figure 5, we observed that multiple detected
regions belong to a certain brain network. For example, five
detected regions are within the left subcortical network, including
the putamen, hippocampus, parahippocampal, pallidum, and
olfactory gyrus in left hemisphere. Previous studies about
SCZ have demonstrated the increased functional connectivities
between certain subcortical regions and cortical ROIs, showing
the important role of the subcortical network in SCZ (Zhang
et al., 2012). And the cerebellum might be another key brain
region involved in the cognitive function. A study has suggested
the functional abnormalities of the cerebellum in a cerebellar-
subcortical-cortical loop in the brains of SCZ patients, and it

TABLE 5 | Top 10 ROIs of gray matter volume identified by our method.

ROI Related brain network Weight

HIP.R SN.R 0.46577

MCG.R SN.R 0.39399

PAL.R SN.R 0.30736

ROL.L AUN.L 0.060209

MCG.L SN.L 0.052595

ORBinf.L ATN.L 0.047987

CERE3.L CN.L 0.045651

INS.L AUN.L 0.038043

PHG.R SN.R 0.035748

HES.L AUN.L 0.032479

R, right; L, left; HIP, hippocampus; MCG, middle cingulate gyrus; PAL, pallidum; ROL,

rolandic operculum; ORBinf, inferior orbitofrontal cortex; CERE3, cerebellum_3; INS,

insular; PHG, parahippocampal gyrus; HES, heschl; SN, subcortical network; AUN,

auditory network; ATN, attention network; CN, cerebellum network.

may be the underlying mechanism of SCZ (Zhuo et al., 2018).
A total of three ROIs which located in left cerebellum were
found in our study, which might be support for this previous
finding. The above findings have verified the effectiveness of
BN-MSCCA for identifying the interpretable biomarkers of
SCZ. With the help of the L1-norm, the proposed method
also detected some individual-level SCZ-related ROIs, such
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FIGURE 6 | The top 10 ROIs of gray matter volume selected by BN-MSCCA (different colors denote different brain networks).

as vermis and the left inferior frontal gyrus, which is also
consistent with the findings in the previous studies (Jeong et al.,
2009,Collin, 2011).

Top-10 Selected Brain Regions of Gray
Matter Volume
The top-10 selected brain regions of gray matter volume based on
their respective average canonical weights are shown in Table 5.
Accordingly, four ROIs in right subcortical network and three
ROIs in left auditory network are detected as the most important
biomarkers, proving the effectiveness of introducing the brain-
network-based structural constraint. The left middle cingulate
gyrus, left inferior frontal gyrus, and left cerebellum were also
detected in the GM volume-based features, which is prompted
by the L1-norm. Figure 6 shows the visualization of these top
10 selected regions. As can be seen in Table 5 and Figure 6, we
obtained consistent results with the previous studies about these
most important ROIs for SCZ (Witthaus et al., 2009; Kubera et al.,
2014; Krause and Pogarell, 2017; He et al., 2019).

Refined Correlation Analysis
After identifying SCZ-related biomarkers for each single
modality, we further conducted a refined correlation analysis
between d-fALFF-based and GM volume-based biomarkers
to explain their relationships. We here present the pairwise
correlation results between top 10 ROIs of d-fALFF and top 10
ROIs of gray matter volume. Figure 7 shows the heatmap of

this correlation analysis of each pair, where circles labeled with
“∗” indicate that the correlations between the d-fALFF and gray
matter volume of their corresponding regions are significant (p
< 0.05). As shown in Figure 7, when looking horizontally, the
d-fALFF of left putamen is significantly correlated with most
(seven out of ten) of the GM volume-based biomarkers. The d-
fALFF in left hippocampus is positively correlated with three
brain regions of gray matter volume (left rolandic operculum,
right parahippocampal, and left heschl gyrus) at significant
level. When looking vertically, six regions of gray matter
volume (bilateral middle cingulate, right pallidum, left rolandic
operculum, right parahippocampal, and left heschl gyrus) are
significantly correlated with at least two regions of d-fALFF.
These pairwise correlation results show that our proposed
method could identify the brain regions where the brain function
and structure are significantly associated with each other, and
these significant correlations might reflect the abnormal brain
regions of SCZ.

SCZ-HC Classification and PANSS
Correlation
By now, we have selected the SCZ-related ROIs of d-fALFF
and gray matter volume respectively based on our method.
To investigate the effectiveness of their potential clinical
applications, we performed two subsequent analyses, including
the SCZ-HC classification and the correlation with PANSS score.
According to the classification results, these two types of features
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FIGURE 7 | The pairwise correlations between top 10 ROIs of d-fALFF (column) and top 10 ROIs of gray matter volume (row). Here * denotes p < 0.05.

could classify the SCZ from the HC with a reasonable accuracy.
By performing the feature selection, we also found that the most
discriminative features were retained and the redundant features
were discarded, which helped achieve significant improvements
in the classification performance. Multiple studies have proved
SCZ is a disorder with brain network abnormalities (Rubinov
and Bullmore, 2013; Li et al., 2019). The detection of such brain
network abnormalities could help capture the different patterns
between SCZ and HC. Thus, various studies performed the SCZ-
HC classification using the brain network-based measurements,
which depicted the abnormal alterations of brain functional
or structural network (Han et al., 2019; Lei et al., 2020b).
Our method can take both the diagnosis information and the
brain-network-based prior information into consideration for
the selection of the most discriminative features. The biomarkers
detected by the proposed method have strong discriminative
power, and the classification performance outperforms all
comparison methods.

We also conducted the PANSS correlation analysis based on
the detected biomarkers. Two significant negative correlations

were found in our study, which included the correlation between
the d-fALFF of cerebellum and the positive symptom score of
PANSS, and the correlation between the gray matter volume
of left heschl and the positive symptom score of PANSS.
Interestingly, previous studies have proved the same negative
correlation trend between the positive symptom score of PANSS
score and these two brain regions in SCZ (Narayanaswamy et al.,
2015; Du et al., 2017), demonstrating the reasonability of our
findings. Here only two detected biomarkers showed significant
correlation with the positive symptom score of PANSS. The
potential reason may be that the diagnosis information was used
as the target to guide the canonical correlation in this study,
which might lead to the detected biomarkers not specific to the
PANSS score.

Limitations and Future Directions
Based on the above experimental results and discussion, we could
conclude that our proposed BN-MSCCA has a great capability
for the biomarker identification. However, there are also some

Frontiers in Neuroscience | www.frontiersin.org 12 June 2022 | Volume 16 | Article 879703

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Song et al. BN-MSCCA for Schizophrenia

limitations in this study. First, only two imaging modalities
were included in this work. In fact, SCZ is a complex and
multi-factor induced disease. The other types of data, such
as gene and gut microbiome, were also investigated for SCZ
(Guan et al., 2021; Li et al., 2021). These different modalities
could provide useful and complementary information, which
would be considered in our future work. Second, due to the
proposed method is based on the MSCCA, it requires that
the identified d-fALFF-based biomarkers should be correlated
with GM volume-based biomarkers and diagnosis information
simultaneously. Thus the modality-specific correlation and its
corresponding biomarkers would be overlooked, which might
be also valuable for the understanding of the disease. Third,
recent studies have proved that SCZ is a heterogeneous disease
comprising various symptoms, which could be divided into
multiple subtypes (Chand et al., 2020). However, only two
diagnostic classes were considered in this work, ignoring the
different patterns of abnormalities among different subtypes of
patients. Our future direction includes exploring the biomarkers
which are oriented to a specific subtype of SCZ, aiming for the
accurate diagnosis and treatment of this disease. Fourth, we only
used a specific AAL atlas, which may limit the capability of
biomarker detection. Future studies should also consider other
widely used atlases for feature extraction, such as Power 264 atlas
(Power et al., 2011), exploring the influences of different atlases
on BN-MSCCA.

CONCLUSION

In this study, we developed a brain-network-constrained multi-
view SCCA method namely BN-MSCCA, which could uncover
the brain structural and functional associations and identify
the potential biomarkers for SCZ. The proposed BN-MSCCA
could leverage the inter-modality associations to better find
the disease-related multimodal neuroimaging biomarkers, which
is achieved by performing the multi-view sparse canonical
correlation analysis among brain structural features, functional
features, and diagnosis information simultaneously. Moreover,
the identified biomarkers were encouraged to locate in multiple
predefined brain networks. Thus more biologically interpretable
results could be achieved, which was guaranteed by incorporating
the brain-network-based structural constraint.

The proposedmethodwas validated on a SCZ dataset, with the
aim of mining the relationship between d-fALFF-based features
and GM volume-based features and further finding the SCZ-
related biomarkers. Compared with the SCCA, SCCAR, and
MSCCA method, the BN-MSCCA could not only identify more
sparse and meaningful canonical weight patterns, but also obtain

the larger testing CCC. Furthermore, the detected biomarkers
were evaluated by the subsequent classification and correlation
analysis tasks for validating the effectiveness of their clinical
applications. Experimental results showed that our method could
identify more discriminative biomarkers, achieving the superior
classification performance to other competing strategies for
feature selection. Moreover, the significant negative correlations
were found between the positive symptom score of PANSS and
two of the identified biomarkers respectively, demonstrating the
promising application of these biomarkers in discovering the
severity of SCZ symptoms.
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