
fNIRS Exhibits Weak Tuning to Hand Movement
Direction
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Abstract

Functional near-infrared spectroscopy (fNIRS) has become an established tool to investigate brain function and is, due to its
portability and resistance to electromagnetic noise, an interesting modality for brain-machine interfaces (BMIs). BMIs have
been successfully realized using the decoding of movement kinematics from intra-cortical recordings in monkey and
human. Recently, it has been shown that hemodynamic brain responses as measured by fMRI are modulated by the
direction of hand movements. However, quantitative data on the decoding of movement direction from hemodynamic
responses is still lacking and it remains unclear whether this can be achieved with fNIRS, which records signals at a lower
spatial resolution but with the advantage of being portable. Here, we recorded brain activity with fNIRS above different
cortical areas while subjects performed hand movements in two different directions. We found that hemodynamic signals in
contralateral sensorimotor areas vary with the direction of movements, though only weakly. Using these signals, movement
direction could be inferred on a single-trial basis with an accuracy of ,65% on average across subjects. The temporal
evolution of decoding accuracy resembled that of typical hemodynamic responses observed in motor experiments.
Simultaneous recordings with a head tracking system showed that head movements, at least up to some extent, do not
influence the decoding of fNIRS signals. Due to the low accuracy, fNIRS is not a viable alternative for BMIs utilizing decoding
of movement direction. However, due to its relative resistance to head movements, it is promising for studies investigating
brain activity during motor experiments.
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Introduction

Functional near-infrared spectroscopy (fNIRS) has recently

attracted the interest of researchers working on motor control [1,2]

and brain-machine interfaces (BMIs; [3]). Unlike electroenceph-

alography (EEG), fNIRS is not corrupted by electromagnetic noise

and in contrast to functional magnetic resonance imaging (fMRI),

fNIRS is portable.

Several studies have assessed the capabilities of fNIRS to

investigate brain activity or as a potential control signal for BMIs

[4–6]. Here, we investigated the characteristics of movement

related fNIRS signals recorded above motor areas. So far, fNIRS

signals have been shown to vary between rest and motor execution

or imagery [7,8] and to reflect motor task complexity [9] or force

levels exerted in isometric hand/finger contractions [10]. fNIRS

also allows to distinguish between left and right hand movements

(performed or imagined), i.e. between left and right hemispheric

motor activity [3,11,12].

Until now it has been unknown whether the spatial resolution

and the signal-to-noise ratio of fNIRS are sufficient to investigate

cortical activity related to different movements of the same limb.

This question is of interest for motor control and BMIs, where the

decoded direction of upper limb movements can be used as a

control signal. Georgopoulos and colleagues [13] found a

systematic dependence of single neuron spiking activity in monkey

primary motor cortex on arm movement direction. Since then,

systematic relations between spiking activity and various move-

ment parameters have been found and online BMIs using decoded

movement kinematics have been realized [14,15]. Recently,

researchers showed that not only spiking activity is tuned to

movement parameters but also signals reflecting the activity of

neuronal populations: local field potentials, electrocortico-

(ECoG), magnetoencephalograms and EEG, see review [16];

corresponding online BMIs have been realized using ECoG [17]

and MEG [18].

Research on respective tuning of hemodynamic signals com-

menced only recently. Studies using fMRI found single voxel

activity to depend on hand/arm movement direction [19–21].

These studies suggest that the directional tuning of hemodynamic

signals might be used as a BMI control signal. However, fMRI is

not portable and therefore, not suitable for many BMI applica-

tions. fNIRS, a portable and low-cost technique, might instead be
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used to gather these signals but until now, it has remained unclear

whether movement kinematics can be extract from fNIRS signals.

Therefore, we investigated fNIRS signals recorded simulta-

neously above several brain regions while subjects performed

unilateral hand movements in different directions. We character-

ized the spatio-temporal properties of hemodynamic signals,

quantified the strength of movement dependent differences and

performed single-trial decoding of movement direction from

fNIRS signals. Furthermore, we used a magnetic tracking system

to measure and analyze the influence of head movements on

fNIRS.

Materials and Methods

Subjects and Ethics Statement
Seventeen naı̈ve subjects (aged between 20 and 45, average

26.865.6, seven female, ten male) participated in this study after

giving written informed consent. From these subjects, five (aged

between 22 and 30, average 26.662.8, one female, four male)

participated in a pilot experiment and twelve (aged between 21

and 45, average 26.866.4, six female, six male) in the main

experiment. The experimental procedures have been approved by

the Ethics Committee of the University of Freiburg.

Recording Systems – fNIRS
Hemodynamic brain activity was recorded using the fNIRS

system ‘DYNOT-932’ from NirX Medical Technologies. The

system operates at wavelengths of 760 and 830 nm and provides

32 optodes, from which 23 are detectors and nine are co-located

sources. Flexible distribution of the optodes on the scalp was

possible. Each detector measured the light intensity at 7.94 Hz

sampling rate.

Recording Systems - Head Tracking
Head movements were recorded with the magnetic tracking

system ‘Patriot’ from Polhemus. The device recorded the position

and orientation (six degrees of freedom) with a resolution of

11.7 mm and 0.0031u, respectively, for source-sensor distances

around 30 cm. The sensor was attached at a medial occipital

position at the fNIRS helmet. The source creating the magnetic

field was placed at approximately the same height and 30 cm

behind the sensor (Figure 1A). The head position was sampled at

30 Hz. The smallest distance between the magnetic sensor and the

metal sheaths of all optodes was approximately 6 cm. We could

not detect any differences in the measurements of the tracking

system with or without the helmet and optodes (similar precision

according to visual interpretation of data recorded during

extended position tracking).

The tracking system also provided a stylus, which was used to

determine the 3D-coordinates of the optodes and the surface of the

scalp.

Control of the tracking system and the presentation of visual

cues were realized in separate Matlab programs. Both Matlab

programs as well as the software controlling the fNIRS system ran

on the same computer, which allowed for synchronization of the

three systems based on system time.

Experimental Setup and Paradigm
Subjects were seated approximately 60 cm in front of a

computer screen and asked to rest their head on a chin rest in

order to reduce head movements and support the weight of the

fNIRS helmet with optodes during the experiment. Optodes were

positioned above contra- and ipsilateral sensorimotor areas (C3

and C4 position, 10–20 system) as well as above ipsilateral

prefrontal and occipital areas (Figure 2). The right forearm rested

on a pillow to prevent arm and shoulder movements (Figure 1A).

The posture was adjusted so that the right hand was relaxed and

could move without contact to objects or obstacles.

Subjects continuously gazed at a fixation cross. Visual cues (size

,1.2u) were presented on the screen according to the sequence

shown in Figure 1B. Each trial started (white square) with the hand

hanging down in a relaxed position (home position). Subjects were

instructed to perform periodic (,0.25 Hz) hand movements

causing the finger tips to alternate between the outer and home

position for ten seconds in each trial (directions: left – radial

deviation of the wrist and finger extension, up - dorsiflexion of the

wrist and finger extension, right - ulnar radiation of the wrist and

finger extension, down - palmar flexion of the wrist and finger

flexion). Movement amplitudes (,5 cm) and speeds were approx-

imately the same for all directions. Directions were indicated in a

pseudo-random order by a visual cue. A temporal jitter between

the preparation (white square) and the directional cue (arrow)

prevented periodic signals (e.g. heart beat, breathing or Mayer

wave) to influence fNIRS signals in a consistent manner.

We performed a pilot experiment (five subjects) using all four

movement directions to estimate which two of the four directions

could be distinguished best from the fNIRS signals. In this pilot

experiment, subjects were instructed to prevent any head

movements while moving their hand in one of the four directions

as instructed by the corresponding cue. Each movement direction

had to be performed 20 times. No head tracking data were

recorded during the pilot experiment.

Based on the results of the pilot experiment, we selected two

movement directions (left- and downwards, see Results) in order to

increase the number of trials per movement direction in the main

experiment. The main experiment (twelve subjects) consisted of

two sessions. Each session comprised 30 trials per direction and

recordings of head tracking data. In session 1, we instructed the

subjects to prevent any head movements while moving the hand.

After a short break, we continued with session 2 (control). In this

session, the posture was the same but we instructed the subjects to

not move the hand but instead to perform small direction-

correlated head movements (left - head shaking left right, down -

head nodding up down) in the same periodic pattern as previously

for the hand in session 1. The amplitude of head movements was

similar for both directions and less than 1 cm (, ca. 3u yaw (left)

and pitch (down)).

Data Analysis – fNIRS
The fNIRS signals were low-pass filtered using a 3rd order

Butterworth filter. In most analyses, acausal filtering (zero phase

shift) with 0.15 Hz cutoff was applied. As acausal filtering requires

knowledge about the signal’s future, it cannot be applied in a real-

time BMI. Therefore, we applied causal filtering using a corrected

cutoff [22] of 0.12 Hz in the decoding analysis. After filtering, the

signal was cut into trials ranging from six seconds before

movement onset (MO) to 25 seconds after movement end (ME).

All trials were used, i.e. no trials were rejected.

Raw fNIRS signals were converted to relative concentration

changes according to [23]: division by baseline, taking of the

negative logarithm, integration of absorption coefficients. The

average signal over the second preceding MO was used as baseline

and the absorption coefficients were obtained by averaging the

individual coefficients provided in Wray and colleagues [24] and

Prahl [25]. Not all theoretically possible 288 channels (source-

detector pairs) provided reasonable signals due to too small or

large distances. Therefore, data analysis was performed using

channels selected in a two-step procedure: First, channels were

fNIRS: Directional Tuning & Movement Resistance
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Figure 1. Experimental setup and trial structure. (A) Experimental setup showing the fNIRS optodes and the source and sensor of the magnetic
head movement tracking device. (B) Trial structure, timing and visual cues presented to the subjects. The white square indicated the preparation cue,
followed by the white arrow indicating the direction of hand (or head) movements to be performed between movement onset (green square) and
end (red square). The trial number was displayed continuously in the lower left corner of the screen (numbers not in scale).
doi:10.1371/journal.pone.0049266.g001

Figure 2. Optode setup, numbers and positions mapped on the scalp (red - source, blue - detector).
doi:10.1371/journal.pone.0049266.g002

fNIRS: Directional Tuning & Movement Resistance
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selected which across all trials only contained real values for

relative concentration changes (complex values can occur due to

the logarithm used in conversion from negative values in raw data,

negative values being caused by strong noise in weak signals).

From this group of channels, only those with source-detector

distances between 2.5 and 5.2 cm (long-distance channels) were

selected. Signals recorded on channels with shorter source-

detector distances are unlikely to have penetrated cortical tissue.

However, such channels can be used for artifact assessment and

are, therefore, included in some analyses (explicitly indicated).

Likewise, contralateral sensorimotor signals with corresponding

source-detector distances in the range of 0–2 cm (short-distance

channels) were decoded for comparison.

Data Analysis – Head Tracking
The tracking data were filtered (causal) and cut into trials

exactly as the fNIRS signals. These data thus reflect changes of

head position and orientation with respect to the position and

orientation during the second preceding movement onset. The

head tracking data were resampled to 7.94 Hz (the sampling rate

of the fNIRS data).

Topographies
The 3D coordinates of the optodes above contralateral

sensorimotor areas were reduced to 2D coordinates using PCA,

i.e. contralateral optodes were projected on a ‘‘best-fit’’ (least-

square) plane using the two principle components with largest

eigenvalues of the 3D coordinates. Using the projected 2D

coordinates, the previously selected, contralateral fNIRS channels

were positioned midway between their corresponding source and

detector. Hemodynamic signals of single channels were plotted at

this position.

Furthermore, these positions were used to calculate an

interpolated topographical activity map (Matlab function ‘TriS-

catteredInterp’, linear interpolation). The spatial distribution of

the signal-to-noise ratio (difference between the mean signals l

(left) and d (down) for both movement directions, divided by the

standard deviation of the mean corrected trials l and d across both

directions)

SNR~
Dl{d D

std l{l,d{d
� �

was calculated in this activity map.

Decoding
The fNIRS and head tracking data were decoded on a single-

trial basis with regularized linear discriminant analysis (RLDA;

[26]) and non-linear support vector machines (SVM, LibSVM;

[27]) with radial basis functions. For each subject, decoding

performance of both classifiers were determined as the average

across 5–10 times 10-fold cross-validations. The sets of trials used

for training and decoding were mutually exclusive. Hyperpara-

meters were determined exclusively using training data. The

decoding performance was quantified as the percentage of

correctly decoded trials, termed decoding accuracy (DA). As input

to the classifier we used the amplitude of the fNIRS signals at

single time points (time-resolved decoding) or multiple time points

of either single channels, channel groups, all contralateral

sensorimotor channels (27 to 42 (Ø35) channels per subject) or

all channels above the ipsilateral hemisphere (7 channels for all but

one (4 channels) subject). The statistical significance of the

individual or average decoding performance for all subjects was

estimated using the binomial cumulative distribution of the

subject-individual data or the data pooled across all subjects,

respectively. With t being the number of targets and n the number

of decoded trials, the probability to predict the correct target at

least k times by chance is calculated as follows:

p(k)~
Xn

i~k

n

i

� �
: 1

t

� �i

: t{1

t

� �n{i

Thus, all decoding accuracies larger than l = 100 6 k/n are

considered significant with a p-value smaller than p(k).

Results

For the pilot experiment, comprising four movement directions

and five subjects, we only calculated the time-resolved decoding

accuracy with RLDA (not shown) and found a maximum average

accuracy of 36% (binomial test: p,0.01, 3% standard error of the

mean (s.e.m.)) around ME. Additionally, we performed pair-wise

decoding, i.e. left vs. right, down vs. up, etc. and found that on

average across all subjects left vs. down provided a slightly higher

decoding accuracy (71%) than pairs of the other directions (58% to

64%). We decided to use left vs. down in the main experiment with

twelve additional subjects.

All results presented in the following are based on the main

experiment.

Characteristics of fNIRS Signals Related to Movements of
One Hand in Different Directions

Comparing signals of the same movement

direction. For all subjects and independently of movement

direction, several channels above contralateral sensorimotor areas

detected movement related hemodynamic responses (Figure 3).

Besides this common pattern, the waveform of the signals was not

uniform across subjects but differed in characteristics like

maximum amplitude, time point of maximum amplitude, and

duration to decline to baseline after ME, or also whether the

signals were uni- or bimodal.

fNIRS signals measured above contralateral sensorimotor areas

were always substantially stronger than those above ipsilateral

sensorimotor areas (paired one-tailed t-test: p,0.01 for ten

subjects, p,0.08 for two subjects; source-detector distances

,5.2 cm). Movement related neuronal activity in ipsilateral

sensorimotor areas is known from electrophysiological studies

[28–32] as well as fNIRS [3,33]. Furthermore, hemodynamic

responses above prefrontal or occipital areas were always lower

than those above contralateral sensorimotor areas, comparable to

those above ipsilateral sensorimotor areas or not detectable (four

subjects) (example subject 8: Figure 4, all subjects overview:

Figure 5).

Comparing signals for one movement direction against

the other. Within subjects, the trial-averaged fNIRS signals for

both directions were almost identical for some channels, for other

channels the signals differed in amplitude and for some subjects

also in waveform (Figure 3). However, there was no systematic

amplitude difference across subjects, i.e. for some subjects leftward

movements caused higher hemodynamic responses than down-

ward movements and vice versa for other subjects. In five subjects,

responses for leftward movements were for some channels higher

and for other channels lower than those for downward

movements.

Topographies. To visualize the topographical distribution of

hemodynamic responses elicited by the two movement directions,

fNIRS: Directional Tuning & Movement Resistance
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we computed an interpolated map of the activity measured above

contralateral sensorimotor areas and computed the activity above

prefrontal, ipsilateral sensorimotor and occipital areas by sepa-

rately averaging the signals recorded by the corresponding

channels (Figure 4). For all subjects, the interpolated activity

map of the contralateral sensorimotor areas showed a focal

increase of oxygen supply (Figure 5). The location of this focal

increase was similar for both movement directions.

Based on the activity map (contralateral sensorimotor area) and

the averaged signals (ipsilateral hemisphere), we computed the

topographic distribution of SNRs for left- versus downward

movements. The SNR maps for individual subjects were

heterogeneous (Figure 5). For some subjects, the area of highest

SNR was focal and often coincided with the area of strongest

activity. For other subjects, this area did not coincide with the area

of strongest activity and was not focal, but also never uniformly

covered the complete map. For all subjects (except subjects 2 and

12), the SNR of the contralateral sensorimotor areas was higher

than that of ipsilateral prefrontal, sensorimotor and occipital areas.

Decoding of Movement Direction
Decoding of fNIRS signals. Using RLDA to decode single-

trial fNIRS signals recorded above contralateral sensorimotor

areas during left- and downward movements of the right hand, we

found the decoding performance to vary across subjects (Table 1

and Figure 6A).

For comparison with the head tracking data and to provide a

general estimate of what performance to expect when in such a

BMI, we focused on the time-resolved decoding curves (Figure 6A)

for all following results. Averaging decoding curves across all

subjects revealed a maximum DA of 64% (binomial test: p,0.001,

3% s.e.m.) around 12 s after MO (Figure 6B; values for acausal

filter: max 66% around 8.7 s, 2% s.e.m.; hence ,65% as reported

in the abstract). DA started to continuously increase from chance

level around 7 s after MO, exceeding the significance level

(binomial test: p,0.001) around 9.3 s and reaching a plateau

around 11.3 s after MO (acausal filter: 2.4, 4.5 and 8.3 s,

respectively). DA declined after ME and fell below significance

level around 6.9 s later (acausal filter: 4 s).

Importantly, DA for contralateral sensorimotor areas remained

around chance level when only channels with source-sensor

distances 0–2 cm were used as input to the decoder (not shown).

Likewise, the signals measured with channels above the ipsilateral

hemisphere yielded a DA which fluctuated around chance level

and never reached significance (Figure 6B).

Decoding performance decreased to 58% (causal, 59% acausal)

if the HbR instead of HbO signals were classified. Feature vectors

composed of both signals did not improve decoding accuracy

(HbO+HbR: 65% causal, 64% acausal) compared to the decoding

accuracy obtained using HbO alone.

Likewise, non-linear classification or different preprocessing of

the fNIRS signals as well as decoding from multiple time points

did not improve the decoding accuracy for HbO: using non-linear

SVMs with radial basis functions and a grid search for parameter

optimization (kernel size and either nu or C), yielded on average

across subjects a DA around 63/66% (C/nu, 4/3% s.e.m.; values

for acausal filter: 65/64%, 4/3% s.e.m.; all DAs significant with

p,0.001, binomial test), similar to the decoding accuracy obtained

by RLDA (no significant difference between both SVMs or

between either SVM and RLDA, Wilcoxon signed rank test

p..0.05). Using the cutoffs 0.3 or 0.5 Hz for the low-pass filter or

a sliding window including multiple time points as input to the

RLDA also resulted in similar peak decoding accuracies (63%, 3%

s.e.m.; for acausal filter: 66%, 3% s.e.m.; all DAs significant with

p,0.001, binomial test) on average across subjects.

Next, the acausally filtered, contralateral HbO signals at 8.7 s

(time point of highest decoding) were decoded using groups of

increasing numbers of randomly selected channels, numbers

ranging from one to 35 channels. This procedure was repeated

35 times per subject and carried out for the average across all

subjects and, due to the high variability over subjects and a

possible subgroup of better performing subjects, also separately for

the average across the five subjects showing highest decoding

performance (Figure 6A and Table 1: S3, S4, S6, S9, S11). The

following holds for both groups of subjects: The average decoding

performance increases with the number of channels, starting at

chance level for one random channel and reaching maximum DA

for 35 channels (Figure 7A, black curves). If the group of channels

contained only those channels which showed highest single

channel decoding (‘best channels first’, single channel DA

determined in a ten times 10-fold cross-validation), the decoding

performance curves are very similar but start at a higher DA

(Figure 7A, gray curves).

Figure 3. Average hemodynamic responses. Average hemodynamic responses recorded by one exemplary, contralateral sensorimotor channel
for each subject (acausal filter, red solid/dashed - HbO/HbR leftward hand movements, blue solid/dashed - HbO/HbR downward hand movements,
shaded areas - standard error of the mean, ordinate - concentration change, abscissa - time relative to movement onset, vertical black lines -
movement onset and end).
doi:10.1371/journal.pone.0049266.g003

fNIRS: Directional Tuning & Movement Resistance
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Figure 4. Topographic distribution of hemodynamic responses for subject 8. (A) Contralateral sensorimotor optodes mapped on a plane
(3D positions shown in Figure 2) and average hemodynamic responses (HbO, acausal filter, Figure 3) for exemplary contralateral sensorimotor
channels (insets). Insets are positioned in relation to the sources (S) and detectors (D). (B) Same as (A) but hemodynamic responses interpolated using
original signals and channel positions. Insets in the right column show the hemodynamic responses averaged across trials and channels above the
ipsilateral-prefrontal, ipsilateral-sensorimotor and ipsilateral-occipital brain areas as indicated (ipsilateral channels with source-detector distances
,5.2 cm). (C) Hemodynamic responses for leftward movements as in (B) but color-coded amplitudes (in mM*mm) around movement end. This
presentation is used in Figure 5.
doi:10.1371/journal.pone.0049266.g004

fNIRS: Directional Tuning & Movement Resistance
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Among the ten ‘best’ channels (showing highest single channel

decoding) for each subject, most had a source-detector distance

around 3 cm (Figure 7B, pooled across all subjects, hence 120

‘best’ channels in total, or pooled across five subjects, hence 50

‘best’ channels in total). However, the total number of recorded

channels varied strongly across source-detector distances. If the

number of ‘best’ channels for each source-detector distance is

normalized by the total number of recorded channels for this

source-detector distance, the distribution of ‘best’ channels across

distances between 2.5 and 5.2 cm is more uniform (Figure 7C).

Still, channels with distances between 3 and 4.5 cm tended to be

more likely among the ‘best’ channels.

Decoding of head tracking data, comparison of sessions 1

and 2. Although subjects were instructed to prevent head

movements in session 1 (hand but no head movements), data of the

high-precision head tracking system could be decoded with a peak

DA of around 77% (binomial test: p,0.001, 4% s.e.m.) on average

across subjects (Figure 6B). DA rapidly increased after MO and

remained at a plateau until ME. Thus, subjects made unconscious

head movements that were correlated to the direction of hand

movements and clearly measurable with the head tracker. Yet, the

decoding of the head movements yielded a time course of DA

which was strikingly different from the time course of the DA of

the fNIRS signals, which resembled the time course of the

hemodynamic responses (Figure 6B, DA; Figure 3, hemodynamic

response).

In session 2 (control: voluntary, small direction-correlated head

but no hand movements), decoding of the head tracking signals

resulted in a similar time course of DA as for session 1 with an

even higher plateau of around 88% (binomial test: p,0.001, 4%

s.e.m., Figure 6B). This indicates at least equally strong head

movements in sessions 1 and 2, which we further confirmed by

comparing the amplitude of head movements of both sessions

(amplitudes in session 2 were two to twenty times larger than and

rarely similar to those in session 1). Although the DA of the head

tracking data was higher in session 2, the DA for the contralateral

fNIRS signals from this session fluctuated around chance level.

Discussion

We showed that hemodynamic signals recorded with fNIRS

above contralateral sensorimotor areas vary with the direction of

hand movements and can be decoded with ,65% accuracy. This

finding closes a gap in previous research about directional tuning

by completing the spectrum of signal types, so far comprising

intra- and extracranial electrophysiological recordings and fMRI.

The modulation of fNIRS signals by movement direction is weak

and the decodable directional information too low for an

application in practical BMIs. Our results also demonstrate that

fNIRS is relatively resistant to head movements, which makes an

application of fNIRS in motor control studies promising.

Characteristics of fNIRS Signals & Topographies
Across subjects neither the waveform of fNIRS signals nor their

directional tuning was uniform, e.g. for some channels the signal

amplitude differed with movement direction, for other channels

the signal waveform varied with direction (Figure 3). Such signal

diversity is a common finding for all recording techniques and

Figure 5. Topographies for each subject around movement
end. Left and middle column: Interpolated color-coded amplitudes (in
mM*mm) of average hemodynamic response (HbO, acausal filter) for left
and downward movements, right column: interpolated signal-to-noise
ratios (color-coding equal for all subjects). The small insets adjacent to
each topography show the color-coded amplitudes of the hemody-

namic responses averaged across trials and channels above ipsilateral-
prefrontal, ipsilateral-sensorimotor and ipsilateral-occipital brain areas
(from top to down, ipsilateral channels with source-detector distances
,5.2 cm).
doi:10.1371/journal.pone.0049266.g005

fNIRS: Directional Tuning & Movement Resistance
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Figure 6. Time-resolved decoding accuracies. Time relative to movement onset, vertical black lines indicate movement onset and end,
horizontal black line indicates chance level (50%). (A) Subject individual decoding accuracies (DAs) computed using fNIRS signals (HbO, causal filter)
recorded above contralateral sensorimotor areas during hand movements (session 1). (B) Average DAs computed using precise head tracking data or
using fNIRS signals (HbO, causal filter) recorded above different brain areas and during the different tasks (sessions 1 and 2, see Materials and
Methods). Time-resolved DA based on acausally filtered fNIRS signals is shown for comparison (gray solid line, see Methods). Shaded areas reflect
standard error of the mean and the dashed line the significance level (binomial test: p,0.001) for the average decoding accuracy across all subjects.
doi:10.1371/journal.pone.0049266.g006

Table 1. Maximum decoding accuracies (DAs) within the time window 5–20 seconds after movement onset.

subject S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

DA (%) 67* 61 75*** 91*** 66* 78*** 54 68** 74*** 62* 79*** 54

DA values extracted after 0.5 Hz low-pass filtering the DA curves (Figure 6A) to reduce fluctuations of DA due to noise. Asterisks indicate a significant DA with *p,0.05,
**p,0.01 and ***p,0.001 (binomial test, false discovery rate corrected for multiple testing).
doi:10.1371/journal.pone.0049266.t001
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implies that also decoders for fNIRS BMIs should be individually

trained for each subject to increase performance.

The topographic representations revealed a focal increase of

hemodynamic activity in contralateral sensorimotor areas

(Figure 5). As the location of this increase was similar for both

movement directions, it might reflect movement related neuronal

activity in the hand area of the primary motor cortex. Differences

in the location across subjects are explained by differences in the

positions of the optodes relative to the hand area and by different

activation patterns. The area of highest SNR was also focal and

often coincided with the area of strongest activity (Figure 5). The

SNR of ipsilateral areas was lower than that of contralateral

sensorimotor areas.

These findings demonstrate that the strongest signal modulation

and most pronounced differences in the signals between both

movement directions were found above contralateral sensorimotor

areas.

Decoding of fNIRS Signals
Our results show that on average the directional information of

fNIRS is low. Different decoding strategies were applied but could

not increase accuracies. The observed differences in decoding

performance across subjects (Figure 6A, Table 1) could be due to a

suboptimal optode placement in some subjects (e.g. subjects 5, 7,

10, Figure 5) but also indicate that for some subjects (e.g. S4 and

S6, Figure 6A) fNIRS can allow for higher decoding performance.

At this stage it is unclear whether there are two groups of subjects,

one with directional fNIRS tuning and the other one without; the

maximum DAs did not indicate any multi-modality but rather a

broad distribution of decoding performance. A higher number of

subjects would allow investigating a potential grouping of subjects

according to their decoding performance.

Using HbR instead of HbO signals resulted in a performance

decrease. Thus, the HbR is less informative with respect to hand

movement direction (unilateral), which is in contrast to left hand

versus right hand movements, for which HbR can allow for similar

decoding performance as HbO [3] because control of these

movements is spatially separated into the motor areas of the two

hemispheres.

Compared to electrophysiological recordings ranging from

single- and multi-unit activity over local-field potentials and

electrocortico- to electroencephalo- and magnetocencephalograms

(for a comparison see [16]), fNIRS allowed for a much lower

accuracy in decoding hand/arm movement direction. This low

performance for fNIRS might be caused by the low spatial

resolution and extra-cortical sources (e.g. movement-unrelated

changes of blood flow in the scalp), which influence the absorption

of near-infrared light. In a related fNIRS study, Sato and

colleagues [34] estimated the direction of high isometric forces

(15 N) applied with the arm in different directions and reported

DAs of 87.5% for two and 55.5% for four directions. A

comparison is problematic as that study used large isometric

forces and did not provide information about the recorded signals.

Is it possible to increase the directional information of fNIRS by

using a higher resolution optode arrangement? We used six

sources and 15 detectors over the contralateral sensorimotor area,

which is comparable to previous studies on decoding fNIRS

signals from sensorimotor areas [3,10–12]. A more dense

arrangement of optodes might increase the decodable information;

however, source-detector distances below approximately 2 cm are

Figure 7. Decoding performance versus number of channels and source-detector distances. (A) Decoding accuracy in relation to the
number of decoded channels (black – using random channels, gray – using those channels which showed highest (‘best’) decoding on the single
channel level, solid – average across all subjects, dashed – average across the five subjects showing highest decoding performance). (B) Occurrences
of certain source-detector distances among the ten ‘best’ single channels for each subject (left: pooled across all subjects, hence 120 channels in total;
right: pooled across the five subjects showing highest individual decoding performance). (C) As (B) but normalized by the total number of recorded
contralateral channels of the same source-detector distances, yielding the likelihood of a particular source-detector distances to be among the ten
channels with highest decoding.
doi:10.1371/journal.pone.0049266.g007
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unlikely to provide reliable signals from cortical sources. Our

results show indeed that channels with source-detector distances

between 3 and 4.5 cm are more likely to contain high directional

information compared to channels with shorter (2–3 cm) or longer

(4.5–5.2 cm) distances (Figure 7C). As the density in the used

optode arrangement was already high, adding further optodes

would mainly yield additional short-distance channels and is

therefore unlikely to substantially improve accuracy. However,

performance might benefit from an optimized arrangement of

optodes which could for instance be obtained by an additional

calibration procedure or by localizing the hand area in primary

sensorimotor areas by fMRI. Whether any of the above means can

boost the accuracy of directional decoding such that it can actually

be used in a practical BMI remains a question to be addressed in

future studies.

Decoding of Head Tracking Data
Head movements could be decoded from head tracking data in

both sessions (Figure 6B). If the DA obtained for the contralateral

fNIRS signals were based on head movement artifacts, we would,

due to identical data processing, expect (a) a similar time course of

DA of fNIRS and head movement data (increase immediately

after MO, plateau from MO to ME) and (b) a DA significantly

above chance for session 2 (head movements but no hand

movements). We did not observe these effects. Even in the

presence of head movements, the fNIRS signals of contralateral

sensorimotor areas did only carry information about movement

direction when hand movements were performed (session 1).

Further tests (not shown) revealed that head movements of large

amplitudes (<.10 cm) do affect fNIRS due to mechanical

displacement of optodes.

How can fNIRS Signals Vary with the Direction of Hand
Movements?

Task-related changes in fNIRS signals could originate from

extra-cortical factors such as task-related displacement of optodes

or changes in skin blood flow [35]. Whereas movement artifacts

would affect both hemispheres and channels independently of

source-detector distances, changes in skin blood flow should affect

short-distance as well as long-distance channels. Furthermore, if

head movements caused changes in skin blood flow, these changes

should also occur in session 2 (no hand but only head movements)

and would be most likely bilateral and wide-spread. However, we

observed: significant decoding only for long-distance contralateral

sensorimotor channels, no decoding above chance for short-

distance contralateral sensorimotor channels or for signals from

the ipsilateral hemisphere, focal SNR increases and decoding

above chance only if hand movements were performed. Together

with the head tracking controls, our findings, therefore, show that

the fNIRS signals reflected tuning of cortical, hemodynamic

responses related to hand movements.

Tuning of neuronal population activity to movement parame-

ters has been demonstrated repeatedly [31,36–39], yet its origin

especially in the context of extra-cranial recordings is not

understood. In motor tasks, the intensity of hemodynamic

responses, recorded with fNIRS, seems to be directly related to

the force [10,40,41] and complexity [9] of movements, whereas

the relation to movement frequency seems to be less direct [42,43].

As we did not find a direct relation between the hemodynamic

response and the movement direction (e.g. leftward movements do

not uniformly cause higher responses) and as we instructed the

subjects to perform both movements with the same frequency, our

findings indicate that none of these three parameters (force,

complexity, frequency) had a prominent influence on the

measured fNIRS signals.

Directional tuning in recordings reflecting the activity of large

cortical areas might be explained by a large-scale ‘‘muscle map’’

because different movement directions require different muscles or

muscle activation patterns. However, such a map has not been

found and intra-cortical stimulation studies in monkeys do not

provide evidence for the representation of muscles in distinct,

separate areas [44].

Instead, previous studies suggested that directional tuning in

36363 mm fMRI voxels is observed due to neuronal clusters with

similar preferred directions [20]. It has been suggested [20] that

these clusters reflect mini-columns composed of neurons with

similar preferred directions as found in single-unit recordings in

monkey [45]. Given these findings one might explain the tuning of

the lower resolution fNIRS by assuming that fNIRS reflects the

activity of multiple fMRI voxels. To investigate whether this can

explain the strength of directional tuning found here would require

(1) a quantitative assessment of the resolution of fNIRS as well as

its signal-to-noise ratio given the influence of extra-cortical

confounding signals, and (2) assessing the distribution of

directional preferences over the range of fMRI voxels presumably

underlying the coarser fNIRS signal.

Alternatively, it has been shown that directional tuning of

neuronal population signals can emerge even in the absence of any

organization of preferred directions ([16]; see also [46] for a

similar case in the primary visual cortex).

In summary, our findings demonstrate that fNIRS allows for

investigating cortical activity associated with unilateral hand

movements. The signals vary with movement direction but

directional information is too low to be used as a control signal

in practical BMI applications. Utilization of fNRIS in motor

control studies seems particularly promising as we found fNIRS to

be relatively resistant to head movements.
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oxygenation changes in response to motor stimulation. J Appl Physiol 81: 1174–

1183.
34. Sato T, Tsubone T, Wada Y (2009) Estimation of the direction of arm force by

using NIRS signals. 31st Annual International Conference of the IEEE EMBS,

Minneapolis-St. Paul, USA.
35. Takahashi T, Takikawa Y, Kawagoe R, Shibuya S, Iwano T, et al. (2011)

Influence of skin blood flow on near-infrared spectroscopy signals measured on
the forehead during a verbal fluency task. Neuroimage 57: 991–1002.

36. Ball T, Schulze-Bonhage A, Aertsen A, Mehring C (2009) Differential
representation of arm movement direction in relation to cortical anatomy and

function. J Neural Eng 6: 016006.

37. Pistohl T, Schulze-Bonhage A, Aertsen A, Mehring C, Ball T (2012) Decoding
natural grasp types from human ECoG. Neuroimage 59: 248–260.

38. Schalk G, Kubánek J, Miller K, Anderson N, Leuthardt E, et al. (2007)
Decoding two-dimensional movement trajectories using electrocorticographic

signals in humans. J Neural Eng 4: 264–275.

39. Waldert S, Preissl H, Demandt E, Braun C, Birbaumer N, et al. (2008) Hand
movement direction decoded from MEG and EEG. J Neurosci 28: 1000–1008.

40. Shibuya K, Sadamoto T, Sato K, Moriyama M, Iwadate M (2008)
Quantification of delayed oxygenation in ipsilateral primary motor cortex

compared with contralateral side during a unimanual dominant-hand motor
task using near-infrared spectroscopy. Brain Res 19: 142–147.

41. Tsubone T, Tsutsui K, Wada Y (2007) Estimation of force motor command for

NIRS-based BMI. 29th Annual Conference of the IEEE EMBS, Lyon, France.
42. Jäncke L, Specht K, Mirzazade S, Loose R, Himmelbach M, et al. (1998) A

parametric analysis of the ‘rate effect’ in the sensorimotor cortex: a functional
magnetic resonance imaging analysis in human subjects. Neurosci Lett 252: 37–

40.

43. Kuboyama N, Nabetani T, Shibuya K, Machida K, Ogaki T (2005)
Relationship between cerebral activity and movement frequency of maximal

finger tapping. J Physiol Anthropol Appl Human Sci 24: 201–208.
44. Schieber M, Hibbard L (1993) How somatotopic is the motor cortex hand area?

Science 261: 489–492.
45. Amirikian B, Georgopoulos A (2003) Modular organization of directionally

tuned cells in the motor cortex: Is there a short-range order. Proc Natl Acad

Sci U S A 100: 12474–12479.
46. Hansel D, van Vreeswijk C (2012) The mechanism of orientation selectivity in

primary visual cortex without a functional map. J Neurosci 32: 4049–4064.

fNIRS: Directional Tuning & Movement Resistance

PLOS ONE | www.plosone.org 11 November 2012 | Volume 7 | Issue 11 | e49266


