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Abstract: Intracortical brain–computer interfaces (iBCIs) translate neural activity into control com-
mands, thereby allowing paralyzed persons to control devices via their brain signals. Recurrent
neural networks (RNNs) are widely used as neural decoders because they can learn neural response
dynamics from continuous neural activity. Nevertheless, excessively long or short input neural
activity for an RNN may decrease its decoding performance. Based on the temporal attention module
exploiting relations in features over time, we propose a temporal attention-aware timestep selection
(TTS) method that improves the interpretability of the salience of each timestep in an input neural
activity. Furthermore, TTS determines the appropriate input neural activity length for accurate
neural decoding. Experimental results show that the proposed TTS efficiently selects 28 essential
timesteps for RNN-based neural decoders, outperforming state-of-the-art neural decoders on two
nonhuman primate datasets (R2 = 0.76± 0.05 for monkey Indy and CC = 0.91± 0.01 for monkey
N). In addition, it reduces the computation time for offline training (reducing 5–12%) and online
prediction (reducing 16–18%). When visualizing the attention mechanism in TTS, the preparatory
neural activity is consecutively highlighted during arm movement, and the most recent neural
activity is highlighted during the resting state in nonhuman primates. Selecting only a few essential
timesteps for an RNN-based neural decoder provides sufficient decoding performance and requires
only a short computation time.

Keywords: intracortical brain–computer interface; recurrent neural network; temporal attention
module; timestep selection

1. Introduction

Intracortical brain–computer interfaces (iBCIs) aim to improve the daily lives of
paralyzed patients by restoring their motor functions [1,2]. An iBCI ascertains the patient’s
movement intention and generates motor commands for assistive devices, such as computer
cursors [3], and the functional electrical stimulation of paralyzed limbs [4]. The iBCI
first records neural activity by microelectrode arrays implanted in motor-related brain
regions, such as the primary motor cortex. Then, a neural decoder translates neural activity
into movement intention or spatial location information. Conventional neural decoding
techniques process well-segmented neural activities in previous time windows where

Sensors 2021, 21, 6372. https://doi.org/10.3390/s21196372 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5893-6299
https://orcid.org/0000-0001-6413-0179
https://doi.org/10.3390/s21196372
https://doi.org/10.3390/s21196372
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21196372
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21196372?type=check_update&version=2


Sensors 2021, 21, 6372 2 of 17

task-related information is likely encoded as spiking sequences. Thus, neural decoding
may benefit from continuous neural activity because movement intention often occurs
before execution [5]. Therefore, a sequence of spike count vectors from many preceding
time windows is usually adopted to capture the neural response dynamics [6] and improve
the decoding accuracy [7]. However, an excessively long neural sequence may be polluted
by stochastic noise, and a short neural sequence may not contain sufficient information.
Furthermore, the length of the neural sequence for a neural decoder presents inter-subject
variability and often depends on the task. Thus, the length of the neural sequence, a
hyperparameter for decoding, is usually designed manually by trial and error. In the
literature, various terminologies are used for the length of a neural sequence, including
number of timesteps [8,9], number of taps [6,10], length of the sliding window [4] and
time window size [7,11]. We refer to the length of a neural sequence for decoding as the
number of timesteps for consistency with most neural decoders and considering its use in
neuroscience [12].

Recent advances in recurrent neural networks (RNNs) have led to improved neural
decoder designs [9,13] and real-time BCI systems [14]. RNN-based neural decoders learn
the neural response dynamics from the neural activity in both the previous and current
timesteps (time bins) [6]. These decoders also employ gates to balance the contributions of
the current and previous timesteps when learning a neural sequence. Although most RNN
hyperparameters have been analyzed and discussed in a large-scale study [15], obtaining
the correct number of timesteps for neural decoding remains challenging.

Existing iBCIs often rely on grid search to optimize the number of timesteps. Alterna-
tively, a high number of timesteps can be selected to retain informative timesteps. Table 1
summarizes the various iBCIs that use RNNs as the neural decoders for nonhuman primate
models. In most of the studies, the long short-term memory (LSTM) architecture is applied
as an RNN for neural decoding. These iBCIs predict the kinematic states based on the
neural activity over the previous 2–30 timesteps.

Table 1. Summary of existing iBCIs that use RNNs as neural decoders. The iBCIs were implemented for a nonhuman
primate model. The time windows corresponding to the number of timesteps is given in parentheses in column #T. In [1],
the number of hidden states and timesteps were optimized over a predefined range. (GRU, Gated recurrent unit; #L,
Number of layers; #H, Number of hidden units; #T, Number of timesteps; DR: Dropout rate).

Study Year Decoded Kinematics Neural Modality Neural
Decoder #L #H #T DR

Naufel et al. [13] 2018 Wrist
electromyography Spikes LSTM 1 – 10 (500 ms) 0.25

Wang et al. [9] 2018 Hindlimb kinematics Spikes LSTM – 200 3 (130 ms) 0.2
Tseng et al. [6] 2019 Hindlimb kinematics Spikes LSTM 2 128 30 (1500 ms) 0.2

Ahmadi et al. [16] 2019 Velocity Spikes,
local field potentials LSTM 1 100 2 (256 ms) 0.2

Park et al. [17] 2019 Velocity Spikes LSTM – – 3 (150 ms) –

Shaikh et al. [1] 2020 Actions Spikes LSTM 1 75–200 1–4
(600–900 ms) 0

Ahmadi et al. [8] 2021 Velocity Spikes Quasi-RNN 1 400 2 (256 ms) 0.4

As the number of timesteps varies according to the task and subject, grid search is
commonly used to determine the appropriate number of timesteps. Grid search evaluates
all the possible numbers of timesteps and selects the number that provides the best fit,
as shown in Figure 1a. Grid search evaluates the decoding performance according to the
number of timesteps. One possible number of timesteps is designated to a neural decoder,
and the model weights of the neural decoder are then optimized. Subsequently, a score
is determined to evaluate the effectiveness of the neural decoder for the selected number
of timesteps. However, grid search may cause a high computational burden because
weight optimization is computationally expensive over all the parameter combinations.
Consequently, grid search has a low applicability in real-world iBCIs.
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Figure 1. Selection of essential timesteps for neural decoding. (a) Conventional method consisting of numerous iterations
with high computational cost (R2, coefficient of determination). (b) Proposed temporal attention-aware timestep selection
(TTS) method. This one-pass method only requires three steps. First, the neural decoder is trained with the temporal
attention module (TAM). Next, essential timesteps (T∗) are selected according to the attention weights. Finally, the neural
decoder with a short input sequence of length T∗ is retrained.

Alternatively, a high number of timesteps can be used in a neural decoder [6], as-
suming that contextual information related to movement intention is likely available over
such a long period. To efficiently extract task-related features, RNNs can decode neural
activity over several timesteps [6]. However, excessively long neural activity periods cause
a high computational burden because an RNN iteratively updates the hidden states at each
timestep. The iterative processing in the RNN cannot be implemented in parallel, which
increases the computational burden. Moreover, long neural activity periods may introduce
stochastic noise, which hinders the decoding performance. Therefore, an adequate number
of timesteps can reduce the computational burden and enable real-time iBCIs. However,
the lack of meaningful interpretation for each timestep impedes the selection of an adequate
number of input timesteps for decoding.

Ensuring that timesteps are interpretable by a neural decoder is essential for selecting
an adequate number of input timesteps. In other words, one can easily select essential
timesteps according to the interpretable salience of each timestep in a neural sequence.
Because the RNN models the temporal dynamics of neural sequences, this architecture is
widely used as the basis for neural decoders. In fact, RNNs employ gates to individually
process each timestep and balance the contribution of the neural activity in the current
and previous timesteps. Nevertheless, the relative importance of the timesteps is difficult
to interpret [18]. To improve the interpretability of models, attention modules can be
included to highlight salient information [19]. Attention modules have been demonstrated
to enhance salient objects in images [20] and localize actions in videos [21]. In particular, a
temporal attention module (TAM) highlights the time intervals of event occurrences by
exploiting the relations in features over time [22]. The TAM provides a sequence of attention
weights in which each element corresponds to a timestep and whose values represent the
relevance of the timestep to an event of interest. Furthermore, the TAM highlights salient
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timesteps relevant to the final decision and ignores noisy timesteps in an input sequence.
Therefore, we include the TAM in the RNN-based neural decoder to highlight salient
timesteps that contribute to determining the kinematic states for increasing interpretability.

Inspired by the TAM that highlights the time intervals of interest, we propose a tem-
poral attention-aware timestep selection (TTS) method that reduces the design complexity
and computational burden in an RNN-based neural decoder. To the best of our knowledge,
this is the first method that automatically selects essential timesteps for RNN-based neural
decoding. We adopt the TAM to determine the contribution of neural activity at each
timestep to the prediction of movement intention, assuming that this contribution varies
across timesteps. Determining the relative importance of each timestep in a behavioral
task can improve the interpretability of timesteps and facilitate timestep selection for
neural decoding.

The main contributions of this study are summarized as follows:

1. We propose a scheme that efficiently determines the essential timesteps for a general
RNN-based neural decoder, thus avoiding the time-consuming grid search;

2. We adopt a TAM that interprets the salience of each timestep for predicting movement
intention, leading to essential timestep selection;

3. Experimental results reveal that the proposed TTS can determine the essential timesteps
for three RNN-based neural decoders while reducing the computation time of offline
training and online prediction;

4. The RNN-based neural decoders with a few essential timesteps outperform state-of-
the-art neural decoders on two nonhuman primate datasets;

5. The visualization of attention weights demonstrates that only a few neural activity
timesteps are emphasized for neural decoding during arm motion and resting.

2. Behavioral Tasks and Neural Data Collection

In this study, we used publicly available nonhuman primate datasets acquired from
monkey Indy [23] and monkey N [24].

2.1. Monkey Indy

Monkey Indy (Macaca mulatta) was trained to reach targets randomly appearing on
a plane using its left arm, as illustrated in Figure 2a. Monkey Indy successfully reached
the target when placing the fingertip on the target for 450 ms. Then, a new target was
randomly drawn on any possible locations. The fingertip position was acquired by an
electromagnetic position sensor, and neural activity was recorded using a 96-channel
silicon microelectrode array (Blackrock Microsystems, Salt Lake City, UT, USA), which was
chronically implanted in the primary motor cortex (M1). This array was designed to cover
the upper-arm and shoulder representation areas. The neuronal activity was sorted using
a custom software written in C++, where 171–413 units were obtained. The population
firing rate was computed at a bin width of 64 ms and was considered to be the input of a
neural decoder. The population firing rate, x ∈ RC, had C elements, with C being either
the number of channels or single units (single neurons). Data from three to seven sessions
over 300 days were collected. More details about the corresponding behavioral tasks and
neural data collection can be found in [23,25].

2.2. Monkey N

Monkey N (Macaca mulatta) was trained to perform an instructed delayed reach-to-
grasp task, as illustrated in Figure 2b. Monkey N grasped an object using either a side grip
or a precision grip and then pulled the object against one of two possible loads by applying
either a high or low force. The horizontal displacement of the object was measured using
a Hall effect sensor. A 96-channel Utah electrode array (Blackrock Microsystems, Salt
Lake City, UT, USA) was chronically implanted to cover the primary motor cortex (M1)
and dorsal or ventral premotor cortex. The neuronal activity was sorted using the Plexon
Offline Sorter (Plexon, Dallas, TX, USA), where 156 units were obtained. As the trials
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contained large portions of preparatory delay intervals, they were segmented to contain
only the motion execution intervals. Nevertheless, only the data from one session are
publicly available. More details about the corresponding behavioral tasks and neural data
collection can be found in [24].
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3. Temporal Attention-Aware Timestep Selection for RNN-Based Neural Decoder

We aimed to efficiently determine the essential timesteps for an RNN-based neural
decoder. Figure 1b illustrates the proposed TTS. Most kinematic information is assumed to
be encoded over a few essential timesteps in a long neural sequence. First, a long neural
sequence is fed into the neural decoder with a TAM, which learns the attention weights that
provide the meaningful salience of each timestep. The salient timesteps are likely related to
movement intention. Then, a statistical analysis enables the determination of the number
of timesteps required for the neural decoder. Next, the neural decoder is modified by the
selected timesteps and retrained for a few epochs. Finally, a neural decoder with the adequate
number of input timesteps is obtained. We share our code and models at https://github.
com/nclab-me-ncku/Temporal_Attention_LSTM (accessed on 1 September 2020) [26].

3.1. RNN-Based Neural Decoder

For an RNN-based neural decoder, let the input sequence x = {xt−T+1, · · · , xt}
contain the t-th observation of neural activity and the previous T timesteps of neural
activity. For ease of notation and without loss of generality, we refer to this input sequence
as x = {x1, · · · , xT}, where xτ ∈ RC represents neural activity with C elements (population
firing rate) at the τ-th timestep.

An RNN is adopted to obtain a hidden representation embedded in the observed
neural activity. The hidden representation consists of sequence h1, · · · , hT of length T,
where hτ ∈ RM denotes a hidden state at the τ-th timestep. Once a bidirectional RNN

is implemented, the hidden state consists of both forward hidden state
→
h τ ∈ RM and

backward hidden state
←
h τ ∈ RM (i.e., hτ =

[→
h τ ,
←
h τ

]
∈ R2M). Mathematically, the hidden

state can be computed as follows:

hτ = f (xτ , hτ−1), (1)

where f (·) represents the RNN model. The RNN can be the vanilla RNN [27], LSTM [28], or
gated recurrent unit (GRU) [29], which have been widely adopted for neural decoding [4,6,7].

https://github.com/nclab-me-ncku/Temporal_Attention_LSTM
https://github.com/nclab-me-ncku/Temporal_Attention_LSTM
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3.2. Temporal Attention Module

The TAM aims to determine the relative importance of each neural activity timestep.
The relative importance is then used to select the essential timesteps for neural decoding.
To model the relative importance, attention weight aτ is estimated as follows:

uτ = ReLU(Whτ + b), (2)

aτ =
exp(uT

τ v)

∑T
τ=1 exp(uT

τ v)
, (3)

where W, b, v, and ReLU denote a linear transformation matrix, bias term, linear trans-
formation vector, and rectified linear unit, respectively. Equation (3) represents a softmax
function that normalizes attention weights in [0,1].

The TAM aggregates the hidden states of all timesteps according to the attention
weights to form the following hidden representation:

hw =
T

∑
τ=1

aτhτ . (4)

This learned hidden representation is then fed into a fully connected layer to predict a
kinematic state as follows:

ŷ = dT · hw, (5)

where d denotes a linear transformation vector and ŷ can represent position, velocity, or
acceleration.

3.3. Essential Timestep Selection for Neural Decoding

Our aim is to select only essential consecutive timesteps for the RNN-based neural
decoder. As the attention weights reflect the relevance of the neural activity information in
the corresponding timesteps, the cumulative attention weights determine the importance
of the consecutive timesteps for neural decoding. For a high cumulative value, the corre-
sponding consecutive timesteps are suitable for the RNN-based neural decoder. In this
case, the neural decoder can accurately predict the kinematic state from the neural activ-
ity observed over these few consecutive timesteps while reducing the computation time.
Subsequently, the most recent T∗ consecutive timesteps are selected for neural decoding,
where T∗ ≤ T. Figure 3 schematically illustrates the essential timestep selection process
using attention weights.

The value of T∗ is determined in three steps by using the cumulative percentage of
the attention weights. First, as the neural decoder predicts kinematic state ŷt based on the
t-th observation, the corresponding attention weights are at =

[
at

1, at
2, . . . , at

T
]T . Second,

the average attention weight at timestep τ over all the observations (i.e., over clock time) is
determined as follows:

aτ =
1
N

N

∑
t=1

at
τ , (6)

where N is the number of observations. Then, the average attention weights are obtained as

a = [a1, a2, . . . , aT ]
T , (7)

Third, T∗ is selected as the minimum that makes

a∗ = 100% ·
T

∑
τ=T−T∗+1

aτ/
T

∑
τ=1

aτ , (8)

to be above a predefined threshold. We select this threshold to be 95% based on principal
component analysis [30], where the first few principal components represent over 95% of
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the total variation in a signal. Accordingly, we aim to retain the timesteps that represent
95% of the attention weights. In these timesteps, the corresponding neural activity likely
encodes the most relevant information about a kinematic state.
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at timestep T − 1, which is identical to the neural activity observed at the first time bin. Therefore,
the mostly highlighted neural activities at the first three time bins are identical to the observed neural
activity at the first time bin. (b) Average attention weight across clock time. (c) Cumulative attention
weight over the timestep. The most recent T∗ consecutive timesteps are essential for neural decoding.
(d) The RNN-based neural decoder is retrained with T∗ timesteps.

3.4. Neural Decoder Retraining with Short Input Sequence

Once T∗ is obtained, the input sequence is modified to x∗ = {xT−T∗+1, · · · , xT−1, xT},
which has a shorter length T∗ (T∗ < T). The RNN-based neural decoder is then retrained
using the modified input sequence. Note that the TAM is no longer used in the retrained
neural decoder. The kinematic state is predicted as follows:

ŷ = dT · hT , (9)

where hT denotes the hidden state at timestep T. Whereas (5) aggregates the hidden states
only at all timesteps to predict the kinematic state, while (9) only aggregates the hidden
state at the final timestep. We observed no difference between the two methods in terms
of decoding performance. However, most existing RNN-based neural decoders adopt (9)
because its computational complexity is lower than that of (5). Similarly, we adopt (9) for
the neural decoding with short input sequences.

3.5. Optimization

The neural decoder aims to predict a kinematic state from neural activity. We use the
squared L2 norm (mean squared error) as the loss function:

L = ∑y∈B(y− ŷ)2, (10)

where y and ŷ denote the actual and predicted kinematic states, respectively, and B denotes
the mini-batch. To optimize the model weights, we adopt Adam [31] with a learning rate
of 10−4. The coefficients used for computing the running averages of the gradient and
their squares are 0.9 and 0.999, respectively, to achieve a high generalization ability to
various RNNs.
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3.6. Performance Evaluation and Statistical Evaluation

We evaluated the decoding performance using the coefficient of determination (R2) [25]
and Pearson’s correlation coefficient (CC) [8]. The coefficient of determination measures
the goodness of fit of a neural decoder as follows:

R2 = 1− Var(y− ŷ)
Var(y)

, (11)

where Var(·) is the variance. The Pearson’s correlation coefficient measures the linear
correlation between the actual and predicted kinematic states as follows:

CC =
σyŷ

σyσŷ
, (12)

where σyŷ represents the covariance between y and ŷ, and σy and σŷ represent the standard
deviations of y and ŷ, respectively. For monkey Indy, the proposed TTS was compared with
the state-of-the-art method in [25] that uses the coefficient of determination. For monkey
N, the proposed TTS was compared with state-of-the-art method in [8] that uses Pearson’s
correlation coefficient.

For rigorous statistical evaluation, the Shapiro Wilk test was first performed to assess
whether the observations generated from a normal distribution because it is suggested to
be the most powerful normality test [32]. The Friedman test is a non-parametric equivalent
of the repeated-measures analysis of variance (ANOVA) and does not assume that the
observations are normally distributed. Therefore, the Friedman ANOVA test, followed by
a post hoc Wilcoxon signed-rank test, was applied to assess the effect of various lengths
T in the timestep selection. The significance levels were set at * p < 0.05, ** p < 0.01, and
*** p < 0.001. This statistical evaluation has been widely adopted in the neuroscience
community [33]. Furthermore, the Friedman ANOVA test, followed by a post hoc Wilcoxon
signed-rank test, was applied to assess the decoding performance compared with state-of-
the-art methods.

4. Experimental Results
4.1. Implementation Details

We implemented three RNN-based neural decoders that are widely used in existing
iBCIs: vanilla RNN, LSTM, and GRU. Vanilla RNN predicts the output according to both the
input sequence and hidden states. However, it suffers from the vanishing gradient problem
during training. LSTM avoids this problem by introducing a forget gate that controls the
influence of short- and long-term dependencies. GRU further simplifies the gates to reduce
the computational cost. Table 2 lists the settings for the three neural decoders. The neural
decoders predicted the velocity of the hand movement for both monkey Indy and monkey
N in this study. As training involved random weight initialization, each architecture was
executed in five independent runs. The experiments were implemented using the PyTorch
library and executed on a computer equipped with an NVIDIA GeForce GTX 1080 Ti GPU.

Table 2. Settings of three RNN-based neural decoders widely used in existing iBCIs. All the decoders
were implemented with layer normalization.

Parameter RNN LSTM GRU

Number of hidden layers 2 2 2
Number of hidden states 128 256 128

Processing Bidirectional
Mini-batch size 32 256 64
Learning rate 1 × 10−4

Number of weights 0.42 M 1.56 M 1.19 M
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The training and testing protocols for the monkey Indy and monkey N data were the
same as those used in [25] and [8], respectively. For monkey Indy, the first 5000 samples
of each session were used to establish the training set, and the remaining samples were
used as the test set. The neural decoder was independently trained during each session.
For monkey N, the data, excluding large portions of preparatory delay intervals, were
split into ten folds, where eight folds (1178 samples), one fold (147 samples), and one fold
(148 samples) established the training, validation, and test sets, respectively.

4.2. Timestep Selection for Neural Decoders

Given an input neural sequence of length T, the TTS highlighted the neural activities
and selected the essential timesteps T∗ for the RNN-based neural decoder. We quantita-
tively evaluated the proposed TTS for three RNN-based neural decoders and the effects of
various lengths T.

For the quantitative evaluation of the timestep selection, Figure 4 shows the selected
timesteps T∗ of the three RNN-based neural decoders for T = 10, 15, 20 using the monkey
Indy data in [23] and the monkey N data in [24]. For monkey Indy, Figure 4a shows that
each RNN-based neural decoder selected fewer than seven timesteps. For the vanilla RNN,
significantly fewer timesteps (T∗ = 3.00± 0.71) was selected from T = 20 than that from
T = 10 and 15 (analyzed by Friedman ANOVA test, followed by Wilcoxon signed-rank
test). For the LSTM, significantly fewer timesteps (T∗ = 6.70± 0.57) was selected from
T = 10 than that from T = 15 and 20 (analyzed by Friedman ANOVA test, followed by
Wilcoxon signed-rank test). For the GRU, significantly fewer timesteps (T∗ = 4.30± 0.76)
was selected from T = 20 than that from T = 10 and 15 (analyzed by Friedman ANOVA
test, followed by the Wilcoxon signed-rank test). There was a significant difference among
the groups T = 10, 15, 20 for the vanilla RNN (p < 0.001, Friedman ANOVA test), LSTM
(p < 0.001, Friedman ANOVA test) and GRU (p < 0.001, Friedman ANOVA test).
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Figure 4. Number of selected timesteps T∗ in three RNN-based neural decoders for neural activity of
length T = 10, 15, 20 from (a) monkey Indy and (b) monkey N. Each bar represents the mean, and
the whiskers represent the standard deviation of T∗ across 37 sessions over 300 days for monkey Indy
and across five independent runs for monkey N. T∗ was independently obtained in each session.
BayesOpt. represents the Bayesian optimization. * p < 0.05, ** p < 0.01, and *** p < 0.001.

For monkey N, Figure 4b shows that the proposed TTS selected fewer than three
timesteps for the vanilla RNN. For the vanilla RNN, significantly fewer timesteps
(T∗ = 2.00 ± 0) was selected from T = 10 than that from T = 15 and 20 (analyzed
by Friedman ANOVA test, followed by Wilcoxon signed-rank test). For the LSTM, signifi-
cantly fewer timesteps (T∗ = 9.17± 1.04) was selected from T = 10 than that from T = 15
and 20 (analyzed by Friedman ANOVA test, followed by Wilcoxon signed-rank test). For
the GRU, significantly fewer timesteps (T∗ = 7.96± 0.73) was selected from T = 10 than
that from T = 15 and 20 (analyzed by Friedman ANOVA test, followed by Wilcoxon
signed-rank test). There was a significant difference among the groups T = 10, 15, 20 for
the vanilla RNN (p < 0.001, Friedman ANOVA test), LSTM (p < 0.001, Friedman ANOVA
test) and GRU (p < 0.001, Friedman ANOVA test).



Sensors 2021, 21, 6372 10 of 17

Our proposed TTS was compared to the Bayesian optimization [34], which is widely
used to search effective timesteps for neural decoding. Figure 4 shows that our TTS could
select significantly fewer timesteps for vanilla RNN and GRU than that achieved by the
Bayesian optimization (p < 0.001 for T = 10, 15, 20, Friedman ANOVA test, followed by the
Wilcoxon signed-rank test). The Bayesian optimization selected fewer timesteps than that
achieved by the LSTM (p < 0.001 for T = 15, 20, Friedman ANOVA test, followed by the
Wilcoxon signed-rank test). However, the LSTM optimized by the Bayesian optimization
achieved a lower decoding performance than that optimized by the TTS (see Section 4.4).
The TTS was effective in selecting essential timesteps for neural decoders.

4.3. Timestep Selection across Multiple Sessions

In Section 4.2, we quantitatively evaluated the effectiveness of TTS for monkey Indy.
As the neural activity of monkey Indy was collected across 37 sessions over 300 days, we
also evaluated the variation of T∗ over the sessions. This evaluation could not be conducted
for monkey N because only one of its sessions is publicly available.

Figure 5 shows T∗ across the 37 sessions for each RNN-based neural decoder. T∗

slightly varied across the sessions. Given an input neural sequence of length T = 10, the
timestep selection for the vanilla RNN was more stable than that for LSTM and GRU across
all the 37 sessions. Even within a single session, T∗ slightly varied across independent runs,
as indicated by the T∗ distributions defined by the shaded areas of Figure 5. This finding
suggests that T∗ may be affected by the random initial weights of the neural decoder in
each independent run.
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For T = 20, the variation of T∗ was larger than that for T = 10 in the RNN-based
neural decoders. Furthermore, both the GRU and LSTM obtained a more stable T∗ than
the vanilla RNN, which differed from the case of T = 10.

4.4. Comparison with State-of-the-Art Methods

When the number of timesteps is reduced to T∗, the decoding performance may be
affected. Thus, we evaluated the effect of timestep selection for three RNN-based neural
decoders. Furthermore, we compared the decoding performance with state-of-the-art
methods including recurrent exponential-family harmonium (rEFH) [25] for the monkey
Indy data and the entire spiking activity-driven quasi-RNN (ESA-driven QRNN) [8] for
the monkey N. Figure 6a–c show that when the number of timesteps was reduced from
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T to T∗, all the neural decoders reduced their performance for monkey Indy. However,
the decoding performances of both the LSTM and GRU (R2 = 0.74± 0.05 for LSTM and
R2 = 0.76± 0.05 for GRU) were significantly better than that achieved by the rEFH in [25]
(p < 0.001 for T = 10, 15, 20, Friedman ANOVA test, followed by the Wilcoxon signed-rank
test). The vanilla RNN with T∗ timesteps achieved a lower decoding performance than
the rEFH.
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across five independent runs for the monkey N data. BayesOpt. represents the Bayesian optimization. The significance
levels were set at * p < 0.05, ** p < 0.01, and *** p < 0.001.

For the monkey N, the decoding performance of the three RNN-based neural decoders
did not decrease when the number of timesteps was reduced to T∗, as shown in Figure 6d–f.
Both vanilla RNN and LSTM with T∗ timesteps (CC = 0.91 ± 0.01 for vanilla RNN
and CC = 0.91± 0.01 for LSTM) significantly outperformed the ESA-driven QRNN [8]
(p < 0.001 for T = 10, 15, 20, Friedman ANOVA test, followed by the Wilcoxon signed-rank
test). The GRU achieved significantly better decoding performance (CC = 0.89± 0.02) than
the ESA-driven QRNN (p < 0.001 for T = 10, p < 0.05 for T = 15, and p < 0.01 for T = 20,
Friedman ANOVA test, followed by the Wilcoxon signed-rank test).

We further compared the decoding performance of the neural decoders whose timesteps
were optimized by the Bayesian optimization [34] and the TTS. Figure 6 shows that both
vanilla RNN and LSTM optimized by the Bayesian optimization achieved lower decoding
performance than those optimized by the TTS (p < 0.001 for T = 10, 15, 20, Friedman
ANOVA test, followed by the Wilcoxon signed-rank test). The GRU, optimized by the
Bayesian optimization, achieved a decoding performance comparable with that achieved
by the TTS. However, the Bayesian optimization selected longer timesteps than the TTS
for the GRU, as shown in Figure 4. The TTS could not only select fewer timesteps but also
facilitate a higher decoding performance than the Bayesian optimization.

4.5. Reduced Computation Time

We also evaluated the computational efficiency of the proposed TTS by obtaining the
computation time as listed in Table 3. For fair comparison, the computation time needed
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to train a neural decoder for one epoch during the training phase and that needed to
predict one kinematic state during the testing phase are reported. Table 3 shows that the
proposed TTS reduced the computation time for all the RNN-based neural decoders. The
vanilla RNN and LSTM could reduce the computation time by at least 16% for online
prediction, possibly enabling real-time iBCI operation. Furthermore, the computation
time could be reduced by 5–12% for offline training. The time duration of the timesteps
selection achieved by our TTS was compared to the Bayesian optimization [34], which is a
conventional optimization approach. The rightmost two columns of Table 3 show that the
TTS could save 48–81% of the time duration of the timesteps selection compared with the
Bayesian optimization. This demonstrates the computational efficiency of our TTS method.

Table 3. Computation time of neural decoders using neural activity with T and T∗ timesteps. The efficiency is given by the
computation time (ms) required to complete one epoch of offline training and one online prediction. The reduced number
of timesteps T∗ of vanilla RNN, LSTM, and GRU were obtained from Figure 4, and the corresponding computation time
was obtained over 37 sessions. The reduction in the computation time (in percentage) compared to that of T = 10 is shown
in parentheses. DBO and DTTS represent the time duration (second) of the timesteps selection achieved by the Bayesian
optimization and our TTS, respectively. The reduction of the time duration (in percentage) compared to that of the Bayesian
optimization is shown in parentheses.

T=10 T*
DBO DTTS

Training Testing Training Testing

Vanilla RNN 890.43 ± 5.21 1.08 ± 0.02 827.73 ± 6.76 (−7.04%) 0.88 ± 0.02 (−18.52%) 253.54 ± 32.24 45.66 ± 3.05 (−81.99%)
LSTM 219.87 ± 51.22 1.51 ± 0.08 191.85 ± 44.08 (−12.74%) 1.26 ± 0.07 (−16.56%) 244.88 ± 12.43 81.41 ± 2.74 (−66.76%)
GRU 1006.02 ± 6.18 1.20 ± 0.02 948.67 ± 13.77 (−5.70%) 1.00 ± 0.03 (−16.67%) 211.67 ± 7.38 108.61 ± 2.76 (−48.69%)

4.6. Visualization of Attention Weights in TTS

The attention weights of the TAM in TTS were visualized across all observations, as
shown in Figure 7. Three RNN-based neural decoders were implemented using neural
activity over 15 timesteps (i.e., T = 15) for the monkey Indy data [23] and monkey N
data [24]. Different attention weights were obtained from the vanilla RNN, LSTM, and
GRU. Furthermore, the attention weights also differed between behavioral tasks.

The attention weights implicitly reveal many line segments with a positive slope
and various lengths. Figure 3a illustrates the meaning of the line segments. At the first
time bin, the TAM highlights the neural activity at timestep T, which is the most recently
observed neural activity. At the second time bin, the TAM highlights the neural activity
at timestep T − 1, which represents identical neural activity to that highlighted at the
first time bin. The top panel of Figure 3a shows that the TAM highlights identical neural
activity to that observed in the first time bin (the leftmost part in purple in the bottom
panel) across the first three time bins. The attention weights with large values could be
fitted with a straight-line segment. This suggests that, although new neural activity is
observed, the neural decoder prefers to decode the leftmost neural activity rather than
the most recently observed neural activity. A longer line segment indicates that neural
activity within a time window is successively highlighted over a longer period. Thus, the
highlighted neural activity is likely important over this period for neural decoding. This
further implies that most highlighted timesteps are potentially related to the kinematic
state and are thus selected as essential timesteps for neural decoding.

For the vanilla RNN-based neural decoder, multiple timesteps are highlighted at each
time bin, as shown in Figure 7a (i.e., numerous attention weights are large in each column
in the middle panel) for monkey Indy. Hence, the vanilla RNN relies on multiple previous
neural activity data for neural decoding. The vanilla RNN dynamically requires shorter
and longer timesteps for neural decoding, as indicated by the green and blue arrows in
Figure 7a, respectively. For monkey N, the preparatory neural activity observed at the
leftmost time bin in the green-shaded area in Figure 7d is consecutively highlighted during
the preparatory period and arm acceleration period where monkey N was instructed to
grasp and pull an object. In addition to the preparatory neural activity, the recent two
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timesteps are highlighted simultaneously; however, the most recent timestep is highlighted
during the arm deceleration period, as indicated by the yellow-shaded areas where monkey
N was allowed to release the object.
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examples were obtained from session indy_20161024_03 for monkey Indy and session i140703-001 for monkey N.

In the LSTM-based neural decoder, attention weights have more regular patterns
compared with those of the vanilla RNN-based neural decoder for monkey Indy. Figure 7b
shows that approximately five timesteps are highlighted at each time bin. When monkey
Indy performed the reaching movement, the attention weights implicitly revealed thick
line segments, as indicated by the green-shaded areas. According to the illustration of the
line segments in Figure 3a, the thick line segment suggests that the neural activity observed
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at multiple time bins are consecutively highlighted and are important for neural decoding
over this reaching period. In other words, the preparatory neural activity that occurred
before the movement onset is consecutively highlighted during the arm movement. In
contrast, the neural activity observed at the previous one timestep was highlighted during
the resting state, as indicated by the yellow-shaded areas in Figure 7b.

For monkey N, the neural activity observed during the early preparatory period (as
indicated by the pink arrows) was consecutively highlighted during the preparatory pe-
riod, as indicated by the green-shaded areas in Figure 7e. The attention weights implicitly
revealed a thinner line segment than that for monkey Indy. This suggests that neural decod-
ing of the instructed delayed reach-to-grasp task highlights fewer timesteps compared with
the neural decoding of the reaching task, as can be seen from Figure 7b. The values of the
attention weights during the arm acceleration period are small (i.e., the attention weights
at all timesteps are almost white), as indicated by the orange arrows. This suggests that the
LSTM-based neural decoder treats the neural activity at all timesteps equally. This makes
it difficult for TTS to select fewer essential timesteps for neural decoding, which leads to a
high number of selected timesteps, as shown in Figure 4b. During the arm deceleration
period, the neural activity observed at the most recent timestep is highlighted, as indicated
by the yellow-shaded areas in Figure 7b.

For the GRU-based neural decoder, the most recently observed neural activity was
highlighted during the resting state for monkey Indy, as indicated by the yellow-shaded
areas in Figure 7c. During reaching, the neural activity observed earlier than the movement
onset was consecutively highlighted over the movement period, as indicated by the green-
shaded areas. The attention weights implicitly revealed thinner line segments than those
in the LSTM-based neural decoder, suggesting that the GRU highlights fewer timesteps
compared with the LSTM at each time bin for neural decoding. For monkey N, a few
recently observed neural activities were highlighted during the preparatory and arm
acceleration periods, as indicated by the green-shaded areas in Figure 7f. Compared with
the LSTM, the GRU highlighted the neural activity observed at four recent timesteps rather
than those at farther timesteps (i.e., the early preparatory period indicated by green arrows
in Figure 7e). Similar to the vanilla RNN and LSTM, the GRU highlighted the most recent
neural activity during the arm deceleration period (release phase).

5. Discussion
5.1. Timestep Selection for Varying Recording Conditions

For monkey Indy, the T∗ slightly differed, which suggests that the T∗ may be slightly
affected by T for the three RNN-based neural decoders; however, these T∗ values varied in
a small range, with T∗ ∈ [2, 4] for the vanilla RNN, T∗ ∈ [5, 7] for the LSTM and T∗ ∈ [3, 6]
for the GRU. Overall, the proposed TTS selected essential timesteps even when the input
neural sequences covered long periods.

For monkey N, the TTS selected more than seven timesteps for the LSTM and GRU.
This result is consistent with that of the monkey Indy, where the timesteps required for the
vanilla RNN were fewer than those required for LSTM and GRU. The numbers of selected
timesteps of the LSTM and GRU were strongly sensitive to T.

Neural recordings are nonstationary [4]. For instance, a slight movement of the
electrodes or changes in the electrode impedance can alter neural recordings [1,35]. These
changes affect the mapping between the neural activity and kinematic states, which in turn
modify the required timesteps for neural decoding. Regardless of the nonstationary nature
of the neural recordings, the proposed TTS can select the essential timesteps, imbuing the
neural decoder with robustness against varying recording conditions.

5.2. Computational Efficiency and Comparable Decoding Performance

It has been known that a long neural sequence may introduce stochastic noise that
decreases the decoding performance. Therefore, a neural decoder may benefit from the
appropriate number of timesteps. The proposed TTS not only reduces the number of
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timesteps for neural decoding but also preserves the decoding performance, which remains
comparable to that of a state-of-the-art method.

The proposed TTS could save the computation time of iBCI operation. The reduced
computational burden for training is important for the clinical application of iBCIs. In fact,
neural decoders typically require daily calibration for long-term use owing to variations in
the recording conditions, such as micro-motion of electrodes or changes in an electrode’s
impedance. The reduced calibration time provides a substantial benefit for the user of
being able to operate the iBCI without long waiting periods. Moreover, a short calibration
time reduces the power consumption, facilitating clinical application in portable devices.

5.3. Interpretation of Attention Weights in TTS

The attention weights of the TAM in TTS indicated whether the neural activity at one
timestep is important to the neural decoding. For the vanilla RNN-based neural decoder,
the patterns of the attention weights for monkey Indy and monkey N differ. Monkey
Indy performed the reaching task in a horizontal plane, whereas monkey N performed
the instructed delayed reach-to-grasp task. This suggests that various behavioral tasks
might result in different patterns of the attention weights. The patterns of the attention
weights suggested that the previous neural activity is essential for neural decoding during
the preparatory period and execution of the movement, whereas the most recent neural
activity is essential during the release phase. This finding is consistent with observations
made in [5,36–38], where preparatory neural activity served as an initial condition for
subsequent activity patterns. For the instructed delayed reach-to-grasp task, all findings
from the three RNN-based neural decoders suggest that the preparatory neural activity is
essential during the preparatory period and the execution of the movement, whereas the
most recent neural activity is essential during the release phase.

5.4. Limitation of TTS

Figure 4 reveals that the number of timesteps selected by the TTS is sensitive to T for
LSTM and GRU-based neural decoders. Assigning T for robust timesteps selection would
be a challenging task. Furthermore, Figure 6 reveals that the vanilla RNN-based neural
decoder with reduced timesteps achieved a lower decoding performance than that of state-
of-the-art methods. Our TTS fails to select essential timesteps for the vanilla RNN-based
neural decoder. How to select timesteps which are robust to T and are effective for all
neural decoders is left for future work.

6. Conclusions

In this paper, we proposed TTS to select a few essential timesteps for RNN-based
neural decoders while reducing the adverse effects of stochastic noise embedded in long
neural sequences. The proposed TTS incorporates a TAM to estimate the saliency and
relative importance of the input neural activity at each timestep. When an iBCI learns
the functional mapping between the neural activity and kinematic states, the TAM is
expected to learn to highlight the essential timesteps that contribute to neural decoding.
The attention mechanism improves the interpretability of the information in the timesteps.
Experimental results demonstrate that the proposed TTS selects a few essential timesteps
from a long neural sequence to accurately predict the kinematic states. Using the proposed
TTS, RNN-based neural decoders outperformed state-of-the-art methods on two nonhuman
primate datasets. Furthermore, the TTS reduced the computation time for offline training
and online prediction in the three RNN-based neural decoders. When visualizing the
attention weights of the TAM in TTS, the preparatory neural activity observed before the
movement onset is consecutively highlighted over the movement period, whereas the most
recent neural activity is highlighted during the resting state. Experimental results also
revealed that the number of essential timesteps varied over long recording days owing to
changes in the recording conditions. Potential future work may incorporate an adaptive
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mechanism into the proposed TTS to handle changes in the recording conditions for the
long-term use of iBCI.
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