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Abstract

Understanding the biological mechanisms underlying episodic outbreaks of infectious diseases is one of mathematical
epidemiology’s major goals. Historic records are an invaluable source of information in this enterprise. Pertussis (whooping
cough) is a re-emerging infection whose intermittent bouts of large multiannual epidemics interspersed between periods of
smaller-amplitude cycles remain an enigma. It has been suggested that recent increases in pertussis incidence and shifts in
the age-distribution of cases may be due to diminished natural immune boosting. Here we show that a model that
incorporates this mechanism can account for a unique set of pre-vaccine-era data from Copenhagen. Under this model,
immune boosting induces transient bursts of large amplitude outbreaks. In the face of mass vaccination, the boosting
model predicts larger and more frequent outbreaks than do models with permanent or passively-waning immunity. Our
results emphasize the importance of understanding the mechanisms responsible for maintaining immune memory for
pertussis epidemiology.
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Introduction

Whooping cough (pertussis) outbreaks are highly variable in size

and regularity. Pertussis time series from diverse countries,

including Denmark, Algeria, Japan, and the United States, exhibit

a peculiar kind of variability: intermittent bouts of large multi-

annual epidemics interspersed with periods of less pronounced

cycles [1]. Herein we refer to this as ‘‘regime-switching’’ behavior.

Changes in temporal patterns of disease incidence can often be

attributed to secular changes in key demographic or climatic

drivers [2,3], but not in this case: though trends in birth rate and

vaccine coverage have been shown to cause shifts in the duration of

pertussis’ interepidemic period [4], no such trends are generally

associated with the regime-switching behavior [1]. An age-

specified, weekly time series of pertussis reports from Copenhagen

in the early 20th century provides an excellent illustration of

regime-switching, displaying distinct shifts between low-amplitude,

noisy multiannual cycles and high-amplitude cycles marked by a

high signal-to-noise ratio (Fig. 1). These data uniquely combine

weekly incidence reports from a large city with detailed

demographic data on births and population size in the prevaccine

era. They allow us to glimpse a portrait of pertussis’ natural history

before the vaccine was widely used. Vaccination affected not only

immunity and transmission among vaccinated human populations,

but also the genetic make-up of Bordetella pertussis populations [5].

Here, we examine the hypothesis that an interaction between

transmission, waning immunity, and stochasticity underlies the

regime-switching behavior.

Three biological mechanisms are thought to contribute to the

cyclic nature of pertussis outbreaks. First, the long infectious

period, estimated at between three and four weeks, renders the

dynamics sensitive to stochastic perturbations, which in turn leads

to transient multi-annual cyclicity [6]. Second, infections stimulate

immunity; those who have been infected are typically protected

against subsequent infection for several years at least, which in

turn leads to nonlinear feedbacks in the dynamics. Third,

components of the immune memory response can be stimulated

by re-exposure, potentially resulting in prolongation of protection

following infection [7–10] and the potential for positive feedbacks

between incidence and population-level immunity. Historically,

pertussis was thought of as a classic, permanently immunizing,

childhood infection, with the mean age of infection around five

years and few reports of re-infection [11,12]. Recently, however,

increasing incidence among teenagers in highly vaccinated

populations has led doctors and scientists to reconsider the

duration of pertussis immunity. It is now widely believed that

vaccine-induced immunity wanes and that infections in older

individuals contribute to transmission [13–17]. Moreover, cross-

sectional serological surveys and clinical records suggest that

infection-induced immunity may not be life-long either [7,18,19].

We have recently shown that deterministic models combining

impermanent immunity with rapid immune boosting can capture
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the change in age-incidence following vaccination, and predict,

under some circumstances, coexistence of cyclic and fixed-point

attractors [20]. These models also predict an interesting interplay

between the dynamic regime and the age-specific incidence in

which a dynamic regime change to large-amplitude cycles with

deep troughs drives increased incidence among older age-groups

[20]. Two questions arise: (i) How do stochasticity and immune

boosting together affect the amplitude and frequency of cyclic

pertussis outbreaks? (ii) Can this model shed light on the apparent

regime-switching in pertussis dynamics?

A detailed quantitative accounting of observed disease dynamics

must be based on models that combine (i) secular trends in key

parameters, such as birth rate, (ii) external periodic drivers, such as

seasonality, and (iii) stochasticity intrinsic to the transmission

process [21]. Here, we first explore the dynamical and age-specific

implications of immune boosting and stochasticity in pertussis

epidemiology and then attempt to distinguish among several

possible explanations of the observed dynamical behavior of

pertussis via model comparison. We fit stochastic models of

pertussis transmission and immune dynamics to the time series of

total disease incidence in prevaccine-era Copenhagen.

We compare a nested set of models with different roles for

immunity (Fig. 2) to these data. Under the first model (SIR), re-

exposure never results in reinfection. In the second, immunity

wanes passively and subsequent exposure can lead to infection

(SIRS). In the third, waning immunity may be boosted by

reexposure (SIRWS). All the models integrate concurrent data on

births and population size and thus accomodate the possibility that

the observed regime-switching is due to secular changes in these

drivers. We compare the models using maximized likelihood and

explore their consequences.

Figure 1. Time series of reported pertussis cases in Copenhagen (A), wavelet decomposition of the square-root transformed
reports (B), and the signal-to-noise ratio (C). Darker areas of the wavelet plot indicate stronger support for cycles of the period identified on the
middle left axis. The black band shows the region with strong cycles as identified by the ridge-finding algorithm.
doi:10.1371/journal.pone.0072086.g001

Figure 2. Flow diagram for the models, showing rates of flow
among compartments containing individuals who are suscep-
tible to pertussis (S), infected and infectious (I), recovered and
immune (R), and susceptible to boosting because their
immunity is waning (W). When kw0 and sw0, immunity wanes
and is boosted by re-exposure; we term this the SIRWS model. When
k~0 and sw0, immunity wanes passively; we term this the SIRS model.
In this model, the duration of immunity is gamma-distributed with
mean 2=s and variance 2=s2 . When k~0 and s~0, immunity is
permanent; this is the SIR model.
doi:10.1371/journal.pone.0072086.g002
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We show (i) the best model incorporates both immune waning

and boosting, though we are near the limit of the data’s ability to

distinguish between the models; (ii) the boosting model exhibits

regime-switching behavior that can be related to two coexisting

cyclic attractors created by the interplay between waning and

boosting of immunity; and (iii) the two most viable models (SIRS

and SIRWS) make distinct quantitative predictions in the presence

of vaccination.

Results

Time-series Analysis
The data exhibit two types of dynamical behavior. Strong three-

year cycles are present between 1914 and 1924, whereas the rest of

the time series exhibits only weak signals of multiannual cyclicity

(Fig. 1). The cycles between 1914 and 1924 are distinguished from

the rest of the time series by: their large amplitude (Fig. 1A), their

increased signal-to-noise ratio (Fig. 1C), and a ridge in the wavelet

spectrum (black band in Fig. 1B). Neither birth rate, nor

population growth show any conspicuous change preceding the

entrance into the large cycles or the reversal back to the low-

amplitude regime (Figs. S1 and S2 in File S1), and there is no other

obvious external driver, such as changes in school attendance

policies [22].

We estimated model parameters by maximum likelihood

using iterated filtering [23–25]. We distinguished among the

various models using likelihood ratio tests (LRT) and AIC weights

[26]. The model with both waning and boosting (SIRWS)

provided the best fit to the data (Table 1). The model with life-

long immunity (SIR) received essentially no support. The model

with waning but no boosting (SIRS) received marginal support.

Under this model, a single exposure to pertussis induces immunity

that on average is very long-lived. However, the model implies

a wide variance in the durations of immunity, DI , with

DI*Gamma(shape~2, rate~s). Therefore, although the rate

of immune decay is small, the model predicts a substantial

contribution of loss of immunity to susceptible recruitment (Fig. 3,

bottom panel): more than one third of infected individuals may be

reinfected. This result is in accordance with that obtained by

Wearing & Rohani [27], who did not consider, as we do here, the

possibility of highly sensitive boosting.

The maximum likelihood estimates (MLEs) of R0 (16, CI:12–19)

and the infectious period (3.7, CI:2.8–4.2 weeks) were clearly

identified by these data (Fig. S3 in File S1), and are in agreement

with previous estimates for pertussis from a variety of sources (e.g.

[12,22,27]). The average duration of immunity induced by natural

infection was estimated to be between 17 and 66 years. The

seasonal transmission rate, b, had a peak in December and a

modest range of 3.8–4.8/wk (Fig. S4 in File S1).

Large Cycles: Stochasticity and Waning Immunity
In simulations from both of the supported models (SIRS and

SIRWS), even when not forced with the trends in birth and

population size from Copenhagen, large cyclic outbreaks were

often present (for example, Fig. 3). Secular trends in demography

are therefore not a required ingredient for regime-switching

behavior in this system.

We therefore turn to the other two potential explanations of

large cycles: stochasticity and nonlinearity. The SIRS and SIRWS

models provide distinct explanations for the regime-switching

behavior. The deterministic skeleton of the SIRS model offers only

damped oscillations to a low-amplitude annual cycle. Stochasti-

cally forced, the model can produce episodes of large-amplitude

cycles. The deterministic skeleton of the SIRWS model, by

contrast, produces transient bursts of cycles that do not strictly

decay in magnitude (Fig. 4b). In this model, immune waning and

boosting create a positive feedback between incidence and

population-level immunity. During periods of low incidence,

boosting is infrequent and waning individuals lose protection (red

line in Fig. 3, top). The resulting build-up of susceptibles provides

fuel for large outbreaks. In these outbreaks, many individuals

whose immunity has begun to wane (those in the W class) have

their immunity boosted so that, at the end of the outbreak, most

are in the fully protected class (R), and the stage is set for the cycle

to repeat. In contrast, loss of immunity is a relatively constant

process that is unrelated to incidence in the model without

boosting (Fig. 3, bottom). The time spent in the large-amplitude

regime increases with the boosting coefficient, k, in the SIRWS

model (Fig. S5 (left panel) in File S1), but also the degree of

stochasticity, even in the absence of boosting (Fig. S5 (right panel)

in File S1).

Deterministic Dynamics: Attractors and their Ghosts
The deterministic skeleton of the SIRWS model in the vicinity

of the MLE has a rich repertoire of dynamical behaviors. In

regions of parameter space where birth rates are somewhat lower

than they were in Copenhagen, one-, three- and four-yr cycles

coexist with intermingled basins of attraction (Fig. 4a). In nearby

parameter space, corresponding to Copenhagen’s historical birth

rates, the only stable attractor is the smaller-amplitude annual

cycle, yet certain initial conditions lead deterministically to

transient bursts of large multi-annual outbreaks (Fig. 4b). These

intermittent behaviors generates the transient multiannual cycles

and represents the influence of the ‘‘ghost’’ of the nearby large-

amplitude attractor.

Table 1. Maximum likelihood parameter estimates for the three models and model comparison statistics.

basic reproductive
ratio, R0

infectious

period, 1
c (wk)

immune

period,
2

s
(yr)

boosting
coefficient, k

notification
efficiency, r

AIC
weight DAIC LRT P-value

SIRWS 16(12,19) 3.7(2.8,4.2) 34(17,66) 6.6(0.66,69) 0.15(0.15,0.16) 0.95 0 –

SIRS 18(16,19) 3.6(3.1,3.8) 192(178,192) 0 0.15(0.15,0.16) 0.05 6 0.012

SIR 17(16,17) 3.4(3.0,3.4) ‘ 0 0.17 0.00 30 v0.0001

Parameter estimates are given with 95% confidence intervals (in parentheses). We compare models using Akaike weights, DAIC values, and likelihood-ratio test (LRT) P-
values, the latter being relative to the SIRWS model.
doi:10.1371/journal.pone.0072086.t001
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Model Predictions: Age-stratified Incidence and
Vaccination

We hypothesized that the different mechanisms of immunity

underlying the two best supported models would result in

qualitatively different age distributions of cases, particularly during

the high-amplitude cycles. The SIRWS model predicts that,

during the deep troughs of this regime, loss of immunity is

common, which leads to an increase in the number of re-

infections, and therefore a higher age of infection, in this regime

relative to the low-amplitude regime (Fig. S6 in File S1). Under the

SIRS model, by contrast, the proportions of primary and repeat

infections remain roughly constant. The Copenhagen data do

indeed contain a disproportionately large number of cases in

individuals over the age of 15 during the high amplitude period

(chi-squared test for independence, pv0:001, and Fig. S7 in File

S1). However, stochastic simulations that track age from both

models both predict a shift to cases in older individuals; during

violently fluctuating periods the age of infection increases even in

the model without boosting since there are long periods over

which the force of infection is low (during the deeper troughs).

With mass vaccination there are much more pronounced

differences between the models’ predictions, since vaccination

effectively lowers the birth rate and thereby promotes large

excursions under the boosting model (Fig. 3), with consequences

for the age-specific incidence. The boosting model predicts more

total cases (Fig. S8 (left), in File S1), larger amplitude outbreaks

(Fig. S8 (right) in File S1) and more frequent outbreaks (Fig. S9 in

File S1), with mean interepidemic period of 6 yr, as compared to

8 yr for the model without boosting. Additionally, both models

predict an increase in cases in older individuals and a decrease in

younger ones with the onset of vaccination. However, there are

quantitative differences in the age distributions predicted by each

model (Fig. S10 in File S1). Interestingly, neither model predicts

the ‘‘honeymoon period’’ of low incidence observed in many

highly vaccinated regions for the first few decades after the

introduction of vaccination. This remains an enigma of whooping

cough epidemiology.

Discussion

We propose that spatial and temporal variability in pertussis

cyclicity can be explained by a combination of stochasticity and

nonlinear immunodynamics in which both waning and boosting

are important. Under this model, stochasticity excites transient

multiannual cycles of two types: damped oscillations around an

annual attractor, on which population-level immunity fluctuates

little, and the much more violently cyclic dynamics associated with

large fluctuations in population-level immunity. We suggest that

the mildly cyclic regions of the Copenhagen time series are an

example of the former and that the three large peaks 1915–1923

were the result of a stochastic excitation of large-amplitude

transients.

There are a number of biological realities not included in our

model but potentially of great importance. First, we assumed

homogeneous mixing between all age groups. Recent work has

shown, however, that heterogeneities in mixing are detectible and

important in pertussis dynamics [28]. Moreover, different age

groups display different seasonalities in incidence testifying to age-

stratified chains of transmission [16,17,29]. Second, immigration

may have had a significant impact. The urbanization trend of the

20th century was partly responsible for the near-doubling of

Copenhagen’s population over the period in question. We

assumed that immigrants had the same profile of immunity as

Figure 3. Sample simulations from the MLEs of the two best-supported models. The top panel shows the model with boosting (SIRWS), the
bottom panel the model with passive waning of immunity (SIRS). In each, the black curve shows the weekly number of reported cases, the red curve
the number of waning events that occurred each week. The thick vertical black line indicates the start of 90% vaccine coverage. The simulations have
been carried out with the birth rate and population size fixed at their historical averages.
doi:10.1371/journal.pone.0072086.g003
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the resident population. However, rural areas may have seen less

pertussis than urban regions, so it is conceivable that the

immigrant population may have held a greater proportion of

susceptible individuals. It is also worth noting that these data span

World War I and the 1918 global flu pandemic. However, neutral

Denmark actually saw increased life expectancy during the war

and no large fluctuations in death rates [30]. Third, our model’s

description of immunity using just two categories–fully immune

(R) and waning (W)–is a simplification. A more elaborate model

would posit a continuum of immune status, with associated

variable susceptibilities, transmission rates, and reporting. Incor-

porating more immune classes than the two we consider would

reduce the variance in the duration of immunity, a consideration

which has been shown to promote cyclic dynamics. However, this

seems unlikely to be driving the observed cyclicity; for this

mechanism to generate limit cycles, R0 must be very low and the

duration of immunity of the same order as the inter-epidemic

period [31] in contradiction of observations [32]. Fourth, we have

neglected the possibility of ecological interference between for

example pertussis and measles, which has been demonstrated in

other settings [33,34]. However, over the period in question,

measles and pertussis case reports are weakly but significantly

positively correlated, not negatively correlated as one would expect

were interference playing a large role (Fig. S11 in File S1). Nor is

the 1914–1924 ‘‘regime shift’’ in pertussis mirrored in measles (Fig.

S12 in File S1). Finally, we note that, while no long-term trends

are visually evident in the data, it is possible that important

parameters, such as reporting and transmissison rates, experienced

trends in Copenhagen over this period. Our assumptions of

constant reporting rate and periodic transmission rate are

parsimonious, but we can not rule out the possibility of more

complex time-dependence of these parameters. More generally,

we note that, while the model with boosting is selected as the best

explanation of the data from among the three candidates, no

Figure 4. Basins of attraction and undamped transients. (A) The basins of attraction were computed using the maximum-likelihood estimates
of parameters, but with a low birth rate of 0:01/yr. Blue corresponds to a 5-yr cycle, green to a 4-yr cycle, and pink to the annual attractor. (B)
Simulations from the same model and parameters but with a realistic birth rate of 0:02/yr. Initial conditions that lead to oscillations with transiently
increasing amplitude are indicated in yellow; blue indicates oscillations of steadily decreasing amplitude. Two example time series (from points
labeled `a’ and `b’ are shown at right.
doi:10.1371/journal.pone.0072086.g004
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model-selection study can exclude the possibility that another, as

yet unformulated, model might possess even greater explanatory

power.

Our results suggest that the kinetics of immune waning and

sensitivity to boosting may be important determinants of pertussis

dynamics. If so, this would have significant implications for the

efficacy of vaccination campaigns, since high levels of vaccination

might lead to low incidence, infrequent immune boosting, and

concomitant rapid waning of immunity [20]. Susceptible hosts

might therefore accumulate in regions with little or no pertussis,

increasing the potential for large outbreaks when the pathogen is

once again locally re-introduced. Our results also highlight the

need for a careful consideration of the changes that occurred with

the introduction of vaccination. Puzzlingly, none of the models

predicts the honeymoon period, an observation which requires us

to posit alternative hypotheses for the initial impact of vaccination.

Possible explanations may include heterogeneous mixing with

respect to age, a slow increase in vaccine uptake, or vaccine-driven

evolution. Plug-and-play statistical methods, such as the iterated

filtering algorithm used here, make rigorous likelihood-based

comparison of models practical in the face of stochastic and

partially observed data, and thus make possible efficient extraction

of what information pertinent to these issues is latent in time-series

data. Our analysis further highlights some remaining important

questions about pertussis epidemiology, in particular, the role of

heterogeneous mixing and the consequences for transmission of

repeat infections have yet to be fully elucidated. We were further

able to identify specific model predictions–regarding age-distribu-

tion of cases and vaccine-era dynamics–that distinguish the two

leading models and that can be tested using vaccine-era data.

Looking ahead, it is clear that new information from vaccine-era

dynamical data will be accompanied by new challenges to do with

age-specific reporting bias, differences between natural and

vaccine-induced immunity, and pathogen evolution. We antici-

pate, however, that model-based analyses that integrate genetic

and serological data with age-specific incidence data and extract

information from the disease’s dynamics will be especially valuable

in resolving pertussis’ persistent puzzles.

Methods

The Data
Weekly case notifications from 1900 to 1937 were recorded and

maintained by the municipality of Copenhagen (see [22] for

details). City censuses were taken approximately every 5 yr and we

estimated the population size at each week using a smoothing

spline (with 10 df) on these data (Fig. S2 in File S1). The

population grew from approximately 390,000 to 680,000 people

during the study period. The model was stochastically forced with

weekly birth data. The number of births per week showed no

monotonic long-term trend but did vary, ranging from 124 to 325,

with a mean of 212 and a standard deviation of 29 (Fig. S1 in File

S1). We smoothed the birth data using a smoothing spline (with

10 df) and drew the number of births each week randomly from a

Poisson distribution with the mean equal to the smoothed births

for that week. During this time period, there was significant

population growth of an average of 1.5% per yr. This was in part

due to higher birth than death rates (0.0217 vs. 0.0135/person/yr

respectively), accounting for about half of the population growth

rate. The other 0.7%/year is attributable to an influx of domestic

migrants to the city [22]. We assumed that the immune status of

migrants entering the population mirrors that of the city residents

and the death rate was independent of immune status. Therefore,

in the model formulation the immigration rate (0.0068/person/yr)

was subtracted from the death rate (0.0135/person/yr) to yield a

total exit rate from the population, m, of 0.0067/person/yr.

Time Series Analysis
Morlet’s wavelet transform of the square-root transformed

weekly case notifications was computed [35,36]. The signal-to-

noise ratio for each week was calculated as the sum of the power in

the three to four year period divided by the power in the less-than-

half-year period. The crazy-climber ridge-finding method [35] was

used to identify time periods of strong multiannual cyclicity both in

the data and in simulations.

The Models
The core of the model consists of four stochastic difference

equations giving the weekly changes in the composition of the host

population, one each for classes of people who are susceptible (S),

infected and infectious (I), recovered and fully immune (R), and

immune but susceptible to boosting (W). Susceptible recruitment

occurs through births (b), which are forced with weekly data, and

loss of immunity, which occurs at a competing rate s. This rate

competes with the boosting process, which occurs at a rate

proportional to the boosting coefficient, k and the seasonally

forced and environmentally stochastic force of infection, l.

Individuals become infected at rate l and recover at rate c. The

mean infectious period is therefore 1=c. Recovered hosts begin to

lose their immunity, moving from class R to W at rate s, at which

point they may either fully lose their immunity or be boosted. In

the absence of boosting, the average duration of immunity is 2
s.

Death and migration are accounted for in the weekly survival

probability, m~ exp ({m=52) where m is the per capita annual

exit rate, described above. The models are nested: when k~0, the

model collapses to the SIRS model and the SIR model is obtained

by setting k~0 and s~0. Table S1 in File S1 summarizes the

model parameters and their meanings. The model is diagrammed

in Fig. 2; its mathematical representation is:

Stz1
m

~Stzbtz1z
s

kltzs (1{e{(szkl))Wt{dtz1

Itz1
m

~Itzdtz1{(1{e{c)It

Rtz1
m

~Rtz(1{e{c)Itz
klt

kltzs (1{e{(szkl))Wt{(1{e{s)Rt

Wtz1
m

~Wtz(1{e{s)Rt{(1{e{(szklt))Wt:

Stochasticity is incorporated via births and the frequency-

dependent force of infection according to:

btz1 *Poisson(b(t))

dtz1 *binomial(St,1{e{lt )

lt ~
btItQt

Nt
:

As discussed above, the expected number of births b(t) is taken

from smoothed demographic data. Infections follow a binomial

process in which the probability of success varies according to a

seasonally fluctuating bt and environmentally stochastic Qt. The

seasonality in transmission is incorporated via three periodic cubic

spline bases. Each basis function has a period of 52 weeks and

mean value 1; they are offset by 17–1/3 weeks and weighted by b,

a vector of 3 coefficients. Qt is temporally uncorrelated,

multiplicative white noise with unit mean and standard deviation

Regime Shifts in Pertussis
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bsd . To obtain these features, it is convenient to use a gamma

distribution:

Qt * Gamma
1

b2
sd

,b2
sd

 !
:

In order to fruitfully compare the model and data, we must

further contend with under-reporting. The notification efficiency,

or probability of an infection being reported, has been shown to be

quite low for pertussis, falling below 10% in the current era and

estimated at 10 to 20% in the prevaccine era [37,38]. Additionally,

overdispersion is ubiquitous and failure to account for it can lead

to spurious conclusions [39]. We therefore define a model by

which reported cases are related to true incidence according to an

over-dispersed binomial distribution,

reports * normal mean~cr,sd~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cr(1{r)ztc2

p� �
,

where r is the notification efficiency, and c the number of cases

reported. This process has greater variance than a standard

binomial process with mean rc and standard deviationffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cr(1{r)

p
when tw0, determined by tc2. The degree of

overdispersion is proportional to the number of reported cases,

in accord with observations that some doctors tended to report

more cases during the peak of an epidemic [22,40].

Parameter Estimation
We estimated twelve parameters for the full model: three

seasonal transmission coefficients, b, s, k, c, bsd , t, p, and three

initial conditions (four state variables less one constraint). One

thousand starting parameter combinations were chosen using a

latin hypercube. The initial conditions for each set of starting

parameters was optimized using trajectory matching followed by

probe matching [41] using synthetic likelihood [42]. The probes

used were third-degree polynomial regression, the autocorrelation

function at lags of 0, 1, 2, 3, 4, 26, 52, 78, and 104 wk and the

mean and median numbers of reports. The parameter combina-

tions with the forty best synthetic likelihoods were used to start the

iterated filtering procedure based on the full likelihood, computed

by sequential Monte Carlo [43]. This procedure was performed on

the best points repeatedly. New starting points were chosen to fill

in gaps in the likelihood surface by interpolating along ridges in

likelihood space. For example, the seasonality was strongly

identified, i.e. the ratios among the three bs showed little

variability. We therefore were able to choose starting values with

relatively high likelihoods for transmission rates (mean b) and R0

that we had not yet explored by shifting the bs with respect to each

other. We also did this for s and k, which also have a well-defined

relationship. Starting parameters for the model without boosting

(SIRS) and without waning (SIR) were selected from the likelihood

surface of the full model near k~0 and s~0 respectively. All

estimation procedures were carried out using the package pomp

[25] for the R statistical computing environment [44].

Simulations
Summary statistics of stochastic simulations were computed

from 100 simulations at each parameter combination listed in

legends to Figs. S5 and S7 in File S1. The boosting coefficient k
and the environmental stochasticity bsd were varied. For the rapid

waning simulations all other parameters were fixed at the

maximum likelihood estimates of the full model. For the slow-

waning simulations, the parameters with the highest likelihood

given that kv0:001 were used. Vaccination was implemented by

moving 90% of births directly to the recovered class, correspond-

ing to the assumption of 90% effective coverage. Pearson’s chi-

squared test for independence was used to assess differences in

simulated age distributions from the SIRS and SIRWS models in

the vaccine era.

The basins of attraction for the SIRWS model (Fig. 4a) were

identified through simulation from the deterministic skeleton of the

stochastic model at 10,000 starting points, using the maximum

likelihood estimates for all parameters, the birth rate fixed at 0.01/

yr. In addition to removing stochasticity, the birth and death rates

were taken to be equal so the model could reach a stable attractor.

The presence of transient oscillations of increasing amplitude was

identified for the same initial conditions and parameters except the

birth rate was fixed at 0.02/yr, which is within the range of actual

birth rates in Copenhagen at the beginning of the 20th century.

Supporting Information

File S1 Supporting information, including Figures S1–
S12 and Table S1. Table S1, Symbols appearing in the model

equations, with their interpretations. Figure S1, Births in

Copenhagen. Figure S2, Copenhagen population size. Figure

S3, Likelihood profiles for estimated parameters. Figure S4,

Estimated seasonality of transmission. Figure S5, Effect of k and

bsd on the time spent in multiannual cycles. Figure S6, Proportion

of post-primary cases during cyclic and acyclic regimes. Figure S7,

Proportion of cases in people over the age of 15 years. Figure S8,

Distributions of total annual and peak incidence. Figure S9,

Periodicity of simulated epidemics. Figure S10, Annual age-

stratified incidence in simulated epidemics. Figure S11, Lack of

correlation between measles and pertussis cases. Figure S12, Time

series of measles and pertussis in Copenhagen.
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