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Abstract: We investigated a comprehensive analysis of the mutual exciting mechanism for the
dynamic of stock price trends. A multi-dimensional Hawkes-model-based approach was proposed to
capture the mutual exciting activities, which take the form of point processes induced by dual moving
average crossovers. We first performed statistical measurements for the crossover event sequence,
introducing the distribution of the inter-event times of dual moving average crossovers and the
correlations of local variation (LV), which is often used in spike train analysis. It was demonstrated
that the crossover dynamics in most stock sectors are generally more regular than a standard Poisson
process, and the correlation between variations is ubiquitous. In this sense, the proposed model
allowed us to identify some asymmetric cross-excitations, and a mutually exciting structure of stock
sectors could be characterized by mutual excitation correlations obtained from the kernel matrix of
our model. Using simulations, we were able to substantiate that a burst of the dual moving average
crossovers in one sector increases the intensity of burst both in the same sector (self-excitation) as
well as in other sectors (cross-excitation), generating episodes of highly clustered burst across the
market. Furthermore, based on our finding, an algorithmic pair trading strategy was developed
and backtesting results on real market data showed that the mutual excitation mechanism might be
profitable for stock trading.

Keywords: self- and mutually exciting processes; Hawkes process; stock price trend dynamics

1. Introduction

In numerous complex systems, activity is driven by endogenous and exogenous
factors. The endogenous factors mainly refer to intrinsic self-excitation mechanisms, while
the exogenous factors come from environmental changes or other events that take place
independently of events that have occurred in a system. Typical instances could be found
in seismic dynamics [1–4], tweets in social networks [5], neuronal firing [6,7], and so on. In
this respect, financial markets are the most representative. The movement of asset prices is
consistently affected by the occurrence of internal events, such as large orders and abnormal
price changes related to past events [8–12], and also by the arrival of exogenous events,
such as news and economic policies [13,14]. To identify the endogenous and exogenous
effects and characterize how they influence movements in financial markets has been a
crucial problem for decades.

Hawkes processes [2,15,16], described as point processes with linear or nonlinear
interactions, are frequently used to model non-stationary dynamics of financial activities
driven by endogenous and exogenous joint factors [17,18]. In Bowsher’s pioneering
work [19], a bivariate Hawkes process was introduced in order to model the joint dynamics
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of trades and mid-price changes of the NYSE. Since then, a great number of works have been
proposed, which include market activity or risk models [9,19–22], price models [10,11,23],
and impact models [9,23,24]. The most attractive feature of the Hawkes model is that the
intensity consists of two terms: one term is a background rate, which accounts for the
environmental exogenous effect, and the second term stands for the triggering effect from
the preceding events, which could represent the endogenous self-excitation or other kinds
of combination excitation [13].

In a recent series of articles, several constructive works [13,22,25–28] have addressed
the important problem of a mutually exciting mechanism in stock markets within the
framework of Hawkes models. In [27], Ait-Sahalia et al. proposed an effective mutually
exciting model to capture the jump-diffusion process in global stock markets. It is well
demonstrated that a jump in one region of the world or one segment of the market increases
the intensity of jumps occurring both in the same region (self-excitation) as well as in
other regions (cross-excitation). Actually, this mutual excitation induces a special kind of
correlations between markets or different segments of one market. We call such correlations
mutual excitation correlations in the following discussion.

In this study, we proposed a multidimensional Hawkes-model-based approach for
the characterization of mutual excitation correlations in stock markets. Instead of checking
micro activity such as jumps or transactions in price change, we considered events identified
by technical trading indicators [29,30]. The profitability of technical trading indicators has
been discussed widely in the technical analysis literature [30–34]. The majority of trading
rules based on technical indicators stem from the assumption that prices move in trends
determined by the changing attitudes of traders towards various economic, political, and
psychological forces. In this sense, the activity or patterns induced by technical indicators
form a mesoscopic portrayal of market price movements.

Specifically, we studied the dynamics of crossovers of moving average lines in stock
market. Moving average crossover is one of the most popular trend-determining techniques
based on the crossing of two moving averages of prices. This technique is also known as
the dual moving average crossover (henceforth dual moving average crossovers) rule [29]
in the technical analysis literature. Dual moving average crossovers are considered to be a
good indicator of a market movement since the “microstructure” noise could be partially
eliminated by price averaging. To the best of our knowledge, there are few works using
mesoscopic economic activity such as dual moving average crossovers of prices to study
the inner relevance in stock markets. We applied our approach to the analysis of stock
price data from Chinese A-share markets. In [28], Hung T. Diep and Gabriel Desgranges
present some very interesting results about the dynamics of the price behavior in stock
markets, such as that an assembly of agents in a financial market interact with each other,
which involved some exogenous factors like the economic temperature as well as economic
measures taken by the government. We also identified a large number of golden and
death crossovers in all the stock sectors. Interestingly, our approach demonstrates that
the crossover arrival dynamics in most stock sectors are generally more frequent than the
standard Poisson process.

Our main original contribution is a Hawkes model of the crossover activity in various
stock sectors where a multidimensional kernel describes the mutual effect among different
stock sectors. We found that a triggering structure of stock sectors could be revealed by the
mutual excitation correlations obtained from the excitement kernel matrix of our model. It
is significant to emphasize that mutual excitation correlations can be applied to design a
profitable trading strategy since the crossover activity studied in our model is fundamental
for the classical moving average (MA) trading rules [29]. To make a preliminary attempt,
we proposed a quantitative pair trading strategy verified by back-testing on real stock
market data.

The remainder of the article is organized as follows. In Section 2, we present our data
set of prices and the main variables introduced to characterize the MA. We then perform
statistical measurements for the crossover event sequence like the method used in spike
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train analysis. Meanwhile, we introduce the model of the univariate Hawkes processes
and multidimensional Hawkes processes. In Section 3, we show how Hawkes models
are able to describe the dynamics of an MA cluster in sectors when only the endogenous
component is considered, and then we choose the leading sector and present our modeling
approach, where a new component of the Hawkes process is added, taking into account the
effect of the leading sector. Moreover, we present an empirical performance comparison
of trading portfolios, which use our finding with the buy-and-hold strategy on the sector
index. Finally, we present some conclusions Section 4.

2. Materials and Methods
2.1. DATA

We used daily frequency price data of more than 2000 stocks in Chinese A-share
markets, purchased from the Wind data service. Specifically, these stocks were divided
into 10 sectors according to the Global Industry Standard Classification (GISC), which in-
cluded energy, materials, consumer discretionary, consumer staples, health care, financials,
information technology, telecommunication services, utilities, and industrials. Details of
each stock sector are demonstrated in Table 1. Here, the telecommunication sector was
not taken into consideration due to a very few number of stocks. The timestamps of the
data set were restricted to the regular session (9:30–11:30 and 13:00–15:00) from 4 January
2016 to 31 December 2018. For convenience, in the following discussion the time scales are
normalized into interval (0, 100).

The change of stock prices is full of random noise and cannot serve as a good indicator
of market movement. Thus we alternatively choose the crossovers of moving average
lines as filtered price transactions and analyzed the time series of the crossover events.
Basically, moving averages are considerable parts in the ensemble of tools in technical
analysis trading. The properties and efficacy have been investigated in many previous
academic studies. Without loss of generality, here we considered a commonly used moving
average indicator, the exponential moving average (EMA). Denoting the closing price
Pn(n ∈ N+) of a stock at time n and denoting En(k) as the kth day backward exponential
moving average at time n, the calculation formula reads:

En(k) = 2(Pn − En−1(k))/n + En−1(k), (1)

where a large (small) value of parameter k indicates a long-term (short-term) moving
average. To filter the price change with crossovers, we considered the long-short EMA
cross-over, which also performs as a basic trading strategy. Concretely, a “buy” signal
could be issued when the shorter EMA crosses above the longer EMA, which is also named
as a “golden crossover.” Similarly, “sell” signals can be defined in the opposite direction,
which is called a “death crossover” as the longer EMA crosses above the shorter one. This
technique is also known as the dual moving average crossover (henceforth dual moving
average crossovers) rule [29] in the technical analysis literature. Technical analysts argue
that when price moves upwards, the shorter moving average will rise faster than the
long-term one, which is less responsive to recent price changes, indicating buying pressure
and the possibility of a future bullish trend. Thus, for investors, the appearance of a golden
crossover indicates that one should open a long position and maintain the position until
the short-term average cross below the long-term one. By applying the same reasoning,
investors should sell the asset when a death crossover appears.

In this study, we were concerned with the statistical properties of golden and death
crossover signals, which can be represented as binary variables. The golden crossover
signal variable SG

n at time n based on an EMA cross-over is defined as follows:

SG
n =

{
1, En−1(ks) < En−1(kl)&En(ks) > En(kl),

0, else.
(2)

In the same manner, the death crossover signal SD
n at time n can be obtained as:
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SD
n =

{
1, En−1(ks) > En−1(kl)&En(ks) < En(kl),

0, else.
(3)

Here, ks and kl are short-term and long-term parameters, respectively. In the following
study, we took ks = 12 and kl = 26 as general settings. To make an intuitive description,
in Figure 1 we demonstrate an EMA golden crossover and a death crossover of a selected
stock. Some statistical results of the stock data, such as numbers of stocks and crossovers
in each sector, are presented in Table 1.
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Figure 1. (Color online) EMA golden and death crossover. Red points identify golden and death
crossovers of an individual stock 000001.XSHE during the period: (20150106, 20150405). Blue line:
short-term EMA with ks = 12 days. Yellow line: long-term EMA with kl = 26 days. Black line: daily
close price line.

Table 1. Some statistical results of stock sectors. The names listed in the first line are the abbreviations of energy, materials,
consumer discretionary, consumer staples, health care, financials, information technology, telecommunication services,
utilities, and industrials respectively.

Sectors Ene Mat CD CS HC Fin IT Tel Uti Ind

No. of stocks 83 618 596 214 293 98 668 4 121 924

No. of golden crossovers 847 5641 5274 2244 2813 978 5648 40 1384 8463

No. of death crossovers 812 5355 5011 2148 2671 920 5388 39 1354 8164

Avg. interval of
golden crossover 13.9 12.8 11.6 12.4 12.8 11.1 12 37.4 11.4 10.1

Avg. interval of
death crossover 14.2 13.8 12.6 13.4 13.4 11 12.5 36.9 11.2 12.9

2.2. Statistical Measure for Crossover Event Sequences

In order to investigate events with a more distinct financial meaning, we mainly
focused on those FIRST crossover events of each stock instead of all the crossover events.
The first moving average crossover in a given time window has significant behavioral
finance meanings, which indicates a potential beginning of a trend among the stocks in
a certain sector. We were more concerned about the excitation between different sectors
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in a given time window. The first crossover event could be a nice representation of the
trend dynamics of one sector. It is also easier to identify these first crossovers so as to better
distinguish the excitation effects between different sectors. In this sense, the first EMA
crossovers of each stock in a certain sector during a given period were selected. We note here
that since the data granularity was 1 day, to distinguish those events happening on the same
day, we randomized the corresponding event times by adding each timestamp expressed
in days with a random number uniformly distributed in (0,1]. In Figure 2 we illustrate how
those first golden EMA crossovers in the financial and IT sector were distributed.

10−2 10−1 100 101

10−4

10−3

10−2

10−1
IETs data

20150112 20150126 20150209 20150302 20150316 20150330 20150414

Fi
n

20150112 20150126 20150209 20150302 20150316 20150330 20150414
Days

IT

Figure 2. Left panel: (color online) the distribution of inter-event times. This figure refers to the data of the financial
sector. Right panel: (color online) demonstration of first EMA golden crossovers. Each red line represents a crossover event
happening at a certain time along the horizontal axis. Upper panel: first EMA golden crossover events of each stock in the
financial sector during the period (20150112, 20150414]). Lower panel: the case in IT sector during the same period.

To study the statistical proprieties of the EMA crossover, we first considered inter-event
times, which indicate the time interval between each pair of events [35]. Let us consider a
sequence of interevent times T1, T2, . . . , Tn between n + 1 golden (death) crossover events,
and Ti represents the length of the ith time interval. We carefully checked the distribution
of Ti in various stock sectors, and it was demonstrated that the inter-event times between
successive events in any chosen stock sector distribute as a power-law form, which is
significantly divergent from the exponential distributions expected in a classical Poisson
process. In Figure 2, we show an example, which is the distribution of Ti in the financial
sector. In Table 2, we show the power-law constants of the inter-event times distributions
for each sector. The larger value of the power-law constant in the CS sector may indicate a
weak correlation between the crossover activity of intra-stocks, while, in the financial sector,
the power-law constant was smaller, which indicates a more active trend dynamic pattern.
We can use the variances of these distributions to adopt different investment strategies
for different sectors. Therefore, it was necessary to study the excitation effect between
different sectors.

Table 2. The power-law constants obtained by fitting the IET distributions for each sector.

Ene Mat CD CS HC Fin IT Uti Ind

2.3734 2.8053 2.6929 3.0038 2.6672 2.0956 2.7666 2.3319 2.5408

This observation motivated us that the dynamics of crossover events might not be
regular. In fact, similar questions are also investigated in computational neuroscience,
where neuronal activities called spike trains are extensively studied [36]. Revelation of inner
connectivity or relations from various patterns of event actions have been widely attempted
for neural circuits or online social contacts [37,38]. To make a quantitative description,
we analogically introduced a promising measure, which was originally introduced in
spike-train data analysis [38,39], the local variation(LV). It has been verified that the LV
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measure is quite efficient and robust in characterizing whether the activity rate of a event
sequence is regular or intermittent [38]. Generally, the LV is defined as follows:

LV =
1

(n− 1)

n−1

∑
i=1

3(Ti − Ti+1)
2

(Ti + Ti+1)
2 (4)

We note here that the factor 3 in Equation (4) was to make the LV value for a standard
Poisson process equal to unity. In this sense, if LV < 1, the inter-event times are smaller
than those expected in a Poisson process, which means the event sequence is more regular
than a Poission one. Otherwise, if LV > 1, the event sequence is much more intermittent.
To make a more comprehensive sketch of the crossover event sequence, we divided the
whole time interval into N times windows and checked the corresponding LV values for
each time window. In this way, we obtained a sequence of LV as LVi

1, LVi
2, · · · , LVi

N for
each stock sector i.

An intuitive question is whether these LV sequences for different stock sectors are
correlated. Since the answer to this question may help reveal the underlying connection
structure of the stock market, we made a direct attempt by checking the Pearson correlation
coefficient between two LV sequences. Take the IT and financial sectors for instance. We
checked the distributions of corresponding LV sequences in the two sectors and illustrated
the Pearson coefficient in a contour manner, as shown in Figure 3.
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Figure 3. (Color online) left panel: distribution of two LV sequences in the number time windows. The financial sector data
are plotted in blue, while the IT sector data are in orange. Right panel: Pearson correlation coefficient between the IT and
financial sectors.

For the whole stock market, the correlation coefficients for each pair of stock sectors
were examined. For both golden crossover and death crossover events in 9 stock sectors,
we obtained two 9× 9 coefficient matrix accordingly in Figure 4.
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Figure 4. The LV’s heat map of golden and death crossovers. Left panel: golden crossover Right panel: death crossover
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In this study, we tried to answer three questions. Does the activity rate of crossover
events show regular or intermittent features? What is the relationship or interconnection
between the event sequences for different stock sectors? Is there a possible mathematical
model that could characterize the inner structure of the crossover event dynamics?

2.3. The Univariate Hawkes Processes

Actually, the arrival of EMA crossovers can be viewed as discontinuous random
processes. Numerous kinds of models have been proposed to investigate the discrete
nature of market pattern arrivals. The Poisson point process is a fundamental case in which
events arrive independently of one another with a constant arrival rate λ. However, due to
a lack of correlation structure, the Poisson point process can hardly capture the stylized
features of markets, such as clustering of stock EMA crossover arrivals in some sectors.
In this sense, the self-excited Hawkes model is a more consistent approach, which can be
regarded as the generalization of the nonhomogeneous Poisson process, where the intensity
λt of arrival events at time t depends on the history of the process Ht according to:

λ(t|Ht) = µ(t) + ∑
ti<t

φ(t− ti), (5)

where the first term µ(t) is a background rate, which accounts for exogenous events that
are independent of history, and the second term represents the triggering effect from the
preceding events at the occurrence time ti, the strength of which is controlled by a triggering
kernel function φ(·).

For our purposes, we first simply introduced the univariate Hawkes process approach
to study the EMA crossover arrivals of stocks within a single sector. We assumed that the
background (triggering) term was exclusively attributed to the exogenous (endogenous)
effect. From another point of view, this univariate Hawkes process can be mapped into
the well-known branching processes. The strength of the endogenity of the process is then
characterized by the branching ratio

∫ ∞
0 φ(s)ds, that is, the average number of events that

are directly triggered by a single event. The branching ratio is also interpreted as a ratio of
the events with endogenous origin to all the events. Therefore, exogenous “mother” events
occur with intensity µ(t) and give rise to endogenous “child” events, which themselves
give birth to more child events.

Via estimation of Hawkes processes parameters, the functional form of the kernel φ(·)
is essential. In empirical studies, one can choose an a priori functional form for the kernel,
depending on some parameters, and then determine the parameters by maximizing the
likelihood over the observed data. In our application, for the endogenous kernel φ(·), we
adopted an exponential kernel that does not resort to rejection sampling. This kernel was
proposed by Dassios and Zhao [2013] and scales linearly to the number of events drawn.

φ(s) = αe−βs, (6)

where α and β are parameters. Especially, the parameter α corresponds to the branching
ratio (magnitude), while β fixes the time scale. It is worth to note here that the power
law function form is also common for the triggering kernel in the context of quantitative
finance, especially in accounting for the long-range memory. In this study, since we only
considered EMA crossovers of some stocks in a fixed short interval, which is lacking in
long-range memory, we chose the exponential form for computational simplicity.

2.4. The Mutual and Multidimensional Hawkes Processes

At this step, we present the main contribution of this study: a potential sector–sector
leading impact mechanism recovered by a multidimensional Hawkes process, which
characterizes the mutual effects between each pair of stock sectors. Actually, this model
was designed to figure out the impact of EMA crossover arrivals within one sector on
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stock activities (EMA crossovers) in another sector. Namely, the crossover activities of one
sector were now not only a self-excited point process but were also influenced by other
sectors. Concretely, when considering a selected stock sector A1, the crossover events in A1
forms the points process, and we assumed that the arrivals of crossover events in other
sectors A2, A3, A4, . . . , AM forms the external events that contribute additional exciting
intensities to the process in A1. In this sense, the crossover process outside sector A1 was
considered to be deterministic in the mutual model. Since we aimed at finding out the
mutual impact among the sectors, it was reasonable to regard the events in other sectors
that could significantly affect the evolution of the selected sector. Generally, the effect of
such external events could be modeled via a separate term in the intensity expression. For
λ(t) in some given sector i, the mutual model can be expressed as:

λi(t) = µi + ∑
ti<t

φi(t− ti) +
M−1

∑
j=1

∑
tj
k<t

φj(t− tj
k), (7)

where µi is still the exogenous intensity, and φi(·) is the endogenous self-exciting kernel
for sector i. The third term, φj(·), is the exogenous kernel that accounts for the external
events’ excitements from sector j, which were assumed to be deterministic and known
in advance. As we said, these special exogenous events increase the rate of immigrants’
arrival via memory kernels φj, which, in general, could be distinguishable both in terms of
the magnitude and the relaxation for each j via using the exponential form. In this way,
both φi(·) and φj(·) were regarded as excitement terms.

Analogously, for each sector i, one can obtain a similar mutual equation like Equation (7).
Considering there was a total of M sectors, an M-dimensional Hawkes point process
N(t) = (Ni(t)), i ∈ [1, M] for every i can be defined. By combining both the internal and
external terms, the i-th component of its intensity function λi(t) is a linear regression of the
past jumps of N(t), i.e.,

λi(t) = µi +
M

∑
j=1

∑
tj
k<t

φ
ij
E(t− tj

k), (8)

where µi is the exogenous intensity and φE = φ
ij
E(·), 1 ≤ i, j ≤ M is the Hawkes excitement

kernel matrix, where each φ
ij
E(·) is a real positive function. Alternatively, the matrix

convolution form of Equation (9) simply rewrites:

λ(t) = µ + φE ∗ dNs. (9)

As described in [11,25], the stability condition of this multidimensional Hawkes
process is decided by the L1 norm matrix of kernel φE. Namely, if the L1 norm matrix,

||φL|| = (||φij
E ||1), 1 ≤ i, j ≤ M, (10)

has a spectral radius strictly smaller than one, then the process Nt admits a version with
stationary increments.

Similarly, we also specified the functional form of φ
ij
E as the exponential kernel. As we

discussed in the univariate part above, the exponential kernel gives good results for the
excitement component, that is,

φ
ij
E = αije−βijt. (11)

We note here that the norm of φ
ij
E indicates the mean number of events of type i

triggered by an event of type j, which can be used as as an indicator for estimating the
impacts from sector j working on sector i.
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3. Results and Discussion
3.1. Single Sector

We estimated the best parameters for each stock sector separately by maximizing the
log likelihood. The whole time interval was divided into N time windows of equal length
w. As we mentioned in the data section before, time stamps were normalized into (0,100),
and w ∗ N = 100 should be satisfied. Further, since there was a total of three-year daily
data, the time window also had a corresponding real time length meaning, i.e., if the time
window is designed to represent three months, then w should be set as 100/12 since there
are twelve three-month time windows in three years. In this way, we could obtain a set
of optimal parameters for each sector with a given time window length w as in Table 3.
Basically, the log-likelihood function of the univariate Hawkes process of given parameters
θ based on the data D[S,T] = {ti}n

i=1 of n events in an observation interval [S, T] is given as

logL(θ|D[S,T]) =
n

∑
i=1

logλ(ti|Ht)−
∫ T

S
λ(t|Ht)dt (12)

where log represents the natural logarithm throughout the article. Further, it was necessary
to determine the best time window length w for studying the first-crossover events. In
fact, the likelihood values can be considered as a score for ranking the performance of each
w. Higher scores correspond to a better fitting effect to the Hawkes model. In this way,
various likelihood values corresponding to various values of w ranging from 1 to 10 were
calculated through the estimation process. Results for different stock sectors indicate that,
for most sectors, w = 2 or w = 3 should be a favorable choice, which is shown in Figure 5.
In the following discussion, we prefered to set w = 3, since three month is also one quarter
in the financial cycle, which has distinct economical meanings.

1 2 3 4 5 6 7 8 9
w

3

4

5

6

7

8

Sc
or
e Ene

Mat
CD
CS
HC
Fin
IT
Uti
Ind

Figure 5. Score function for different values of w and different sectors.

Overall, we argue that the univariate Hawkes model with the exponential kernel
provides a nice description of the empirical data for individual stock sectors. Based on the
conclusion in [13], the Hawkes process is stationary if

n =
∫ ∞

0
φ(τ)dτ < 1. (13)
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Here, the quantity n is the fraction of the average intensity induced by the self-exciting
part. As n became close to 1, most of the activity could be regarded to be induced by the un-
derlying self-exciting factors, whether they hence appeared to be endogenously generated.

Table 3. Optimal parameters for each sector.

Golden Crossover

Sectors Ene Mat CD CS HC Fin IT Uti Ind

µ 0.317 1.509 1.252 0.700 0.709 0.303 1.498 0.495 2.092

α 0.512 0.609 0.709 0.667 0.720 0.595 0.661 0.590 0.619

β 0.544 0.707 0.712 0.692 0.730 0.634 0.696 0.607 0.632

n 0.941 0.861 0.996 0.964 0.986 0.938 0.950 0.972 0.979

Death Crossover

Sectors Ene Mat CD CS HC Fin IT Uti Ind

µ 0.349 1.328 1.371 0.728 0.847 0.323 1.274 0.626 1.858

α 0.351 0.648 0.616 0.614 0.614 0.469 0.679 0.492 0.631

β 0.366 0.649 0.669 0.637 0.653 0.482 0.711 0.516 0.666

n 0.959 0.998 0.921 0.963 0.940 0.973 0.955 0.953 0.947

3.2. Multiple Sectors

Similar to Equation (12), the log likelihood function of our multidimensional model
can also be analytically derived. In this sense, we could estimate a set of parameters in
Equation (11). Concretely, for each sector in the data set, the multidimensional model was
calibrated referring to a time window of length w = 3 as we discussed in the univariate
case. First, the exogenous intensity µi of each sector was investigated through the multi-
dimensional model. In Table 4, we show the µi values together with the average number
(activity) of golden and death crossover events in each sector. Compared with the µi values
obtained in the univariate model (refer to Table 1), the updated exogenous intensity in the
multidimensional model appeared to be much smaller for each sector. We argue that this
means the crossover dynamics may be dominated by the triggering term, which is also
consistent with our hypothesis.

The set of parameter pairs (αij, βij) can be estimated by executing regression of the
multidimensional model on the real data set. After that, one could gain the norm matrix
||φL|| defined in Equation (10), in which the matrix element φ

ij
E indicates influence diver-

gences for individual sectors. As illustrated in Figure 6, we present the norm matrix ||φL||
for both golden and death crossover cases in the heat map manner. The triggering impact
of sector i indexed in the horizontal axis and on sector j indexed on the vertical axis is
identified by distinguishable colors. This triggering impact matrix actually provides a land-
scape of the price-trend-inducing relationship between nine stock sectors in the Chinese
A-share market. For instance, in the golden crossover heat-map, the financial sector, in most
cases, had a stronger triggering effect on other sectors, which means the golden crossover
of financial stocks might, in large probability, cause several cascading golden crossovers
in other sectors. While, in the death crossover case, the energy sectors seemed to play a
leading fall-down role, that is, the death crossovers of energy stocks may possibly induce
price down crossovers in other sectors. Figure 6 also shows that the matrix is asymmetric,
which reveals an additional correlation structure than the Pearson correlation coefficient
matrix presented in Figure 4. It is interesting to see that although the financial sector had
a strong impact on other sectors, it was not strongly self-excited in the golden crossover
case, while, for the death crossover, the IT sector showed a considerable self-excited signal
among all the sectors, which is also consistent with the exogenous intensity µ = 0.686
(largest) of IT calculated in Table 4. This indicates a cascading fall down of price is likely to
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happen within the IT sector. In Table 5, the average impact of each sector on the other ones
is detailed.

Table 4. The µi values of univariate model and multidimensional model together with the average number (activity) of
golden and death crossover events in each sector.

Golden Crossover

Sectors Ene Mat CD CS HC Fin IT Uti Ind

Activity
(events/day) 0.741 4.897 4.559 1.927 2.388 0.834 4.833 1.204 7.317

µ 0.029 0.69 0.428 0.013 0.001 0.232 0.858 0 2.092

Single µ 0.317 1.509 1.252 0.7 0.709 0.303 1.498 0.495 2.092

Death Crossover

Sectors Ene Mat CD CS HC Fin IT Uti Ind

Activity
(events/day) 0.726 4.692 4.369 1.868 2.273 0.791 4.617 1.195 7.14

µ 0.165 0.208 0.52 0.193 0.342 0.032 0.686 0.019 0.77

Single µ 0.349 1.328 1.371 0.728 0.847 0.323 1.274 0.626 1.858

Additionally, the condition for stationarity of Equation (9) was also verified by check-
ing the eigenvalues of the norm matrix ||φL||. For both the golden and death crossover
cases, the eigenvalues of the corresponding matrix were presented in the complex plane.
It was demonstrated that all the eigenvalues were located within the unit circle on the
complex plane, as illustrated in Figure 7, which ensured the stationarity of the data.
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Figure 6. The heat map of golden and death crossovers. Left panel: golden crossover. Right panel: Death crossover.

Table 5. The average impact of each sector on the other ones.

Sectors Ene Mat CD CS HC Fin IT Uti Ind

Golden case mean 0.101 0.064 0.141 0.128 0.126 0.405 0.125 0.025 0.026

Death case mean 0.234 0.044 0.11 0.033 0.107 0.061 0.219 0.047 0.07
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Figure 7. The spectral circle of the eigenvalues of both golden and death crossover matrices. Left panel: golden crossover. Right panel:
death crossover.

3.3. Strategy

As previously outlined, one of the motivations for this study was to build a profitable
trading strategy based on the triggering structure revealed by our multidimensional model.
To make a preliminary attempt, we utilized the triggering impact of sector A (leader sector)
on sector B (audience sector) to generate buy and sell signals on sector B during stock
trading. From the golden crossover heat-map, it can be seen that the financial sector has a
considerable triggering impact on the material sector; thus, we took the financial sector as
the leader one and the material sector as the audience one. The trading period was the same
as the previous one used above, i.e., due to regulations in the Chinese stock market, one can
only execute long operations on the stocks. The trading signals can be generated as follows:
for the buying signal, once the number of golden EMA crossovers of the leading sector
within one day exceeds a certain threshold ∆B, we will, before the close of the day, buy all
the stocks that have not encountered their first golden EMA crossovers. Similarly, for the
long selling signal, if the number of death EMA crossovers of stocks in the leader sector
exceeds a certain threshold ∆S, we will sell the holding stocks that have not encountered
their first death EMA crossover at the close of the day. To avoid fluctuation risk, another
technical indicator, moving average convergence divergence (MACD) , was also used. If
the MACD value of the stock becomes smaller than 0, the long selling operation is also
executed. A detailed list of trade rules can be found in Table 6. To avoid fluctuation risk,
one common technical indicator, MACD [30], was also introduced here. If the MACD value
of the stock becomes smaller than 0, the long selling operation is also executed. Without
loss of generality, we numerically tested various values from 2015 to 2018 and finally set
the threshold ∆S = ∆B = 4 to achieve the maximal profit. Typical transaction costs for a
round trip (purchase and sale) of a stock were set as 0.05%, which is the same in the real
market trading case. In order to better verify the results we found, we not only conducted
the backtesting from 2015 to 2018, but we also conducted the backtesting in 2019 and 2020
with the same strategy and parameter settings for 2015–2018.



Entropy 2021, 23, 1411 13 of 16

Table 6. The details of strategy.

Signal Operation

The number of golden EMA
crossovers of the leading

sector within one day exceeds
a certain threshold ∆B

Buy stocks without any
EMA golden crossovers
when the signal arrives

The number of death EMA
crossovers of the leading

sector within one day exceeds
a certain threshold ∆S

Sell stocks in long
position without any

EMA death crossovers
when the signal arrives

MACD of the stock in
long position is smaller than 0

Sell the corresponding stock

The returns for the trading strategy described above are illustrated in Figure 8. The
result of net value revealed that this strategy can generate significant profits during the six-
year evaluation period. To evaluate trader performance, we compared the daily portfolio
value of our strategy with the buy-and-hold strategy on the index of the audience sector in
our six-year evaluation period.

Figure 8 shows the daily return of the two strategies over the assessment period. The
daily earnings were calculated based on the earning performance of the previous trading
day. Compared with the change of −6.5% in the material index, our strategy yielded a
remarkable return of 188.80% in 2015–2018, and our strategy also achieved fantastic returns
in 2019–2020. If we hedge with the index of the material sector, the net curve can be
smoother and higher. With reasonable conditions, the proposed quantitative pair trading
strategy is quite promising to find the leader relationship of the two sectors.

Figure 8. Daily return of the two strategies over the assetment period.
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4. Conclusions

In this study, we introduced a Hawkes-process approach to the description of the
novel leading relationship between nine sectors in Chinese A-share market, in line with
the first crossover of the exponential moving average of the close price in a fixed interval.
The leading relationship is very important and might reveal the sensitivity of sectors to
the market activity. We first performed statistical measurements for a crossover event
sequence that was similar to a spike train in neuronal activities and then considered
the unconditional Hawkes modeling, i.e., we only considered a single sector. We found
that the criticality parameters seem to be pretty insensitive to the change of the tick size,
while the parameters of the kernel showed an abrupt change around it, and we obtained
the best length of interval by comparing the score of each sector. We then considered
our main original contribution, namely, the introduction of a new leading relationship
between nine sectors in the Chinese A-share market. First, we chose the leading sector
by the matrix of the norms of the kernel. Then, in both cases, we showed that the model
with the leading sector kernel(s) outperformed the simple Hawkes model with only the
endogenous kernel. We also noted that, once the leading sector term was introduced, the
model obtained a better fitting. This suggests that, in the presence of localized exogenous
excitation, a Hawkes model that does not consider leading-triggered non-stationarity
could overestimate. Finally, we also designed and implemented a quantitative pair trader,
utilizing the excitation influence of te leader sector on the audience sector, which achieved
remarkable excess returns comparing with the benchmark.

An important limitation of our model is that, as it was presented, it treats equally all the
MA crossover bursts. If there is an extremely great MA crossover bursting in the estimation
interval, and this burst has different characteristics that lead to very different impacts, the
model is expected to average the differences or to be influenced by the most relevant ones.
Today, machine learning and deep learning is very popular in stock forecasting, [40,41] both
have successfully applied machine learning methods for stock predictability and achieved
fantastical and valuable results. Our model may also provide potential machine learning
features for stock predictability. For example, according to our model, one can use the
number of crossovers, the intensity of excitation, the duration of excitation, etc. to extend
the features pool.

Despite being focused on financial market data, the approach presented in this study
could be useful in the analysis and modeling of other complex systems. In fact, the
presence of exogenous and endogenous drivers of the activity is ubiquitous in other
systems monitored in continuous time. Our model can be possibly applied into bond
convergence trading. Actually, convergence trading is a trading strategy consisting of two
positions: buying one asset forward and selling a similar asset forward (going short the
asset) for a higher price. For example, we can sell the 30-year US treasury bond short and
buy the 29½-year US treasury bond. Compared with stocks, we can regard the rise in bond
price to a certain level as a golden crossover and the decline in bond price to a certain level
as a death crossover. There may also be some mutual excitation mechanism between the
golden crossovers or the death crossovers of different bonds. The 30-year bonds generally
trade at a premium over the 29½-year bonds, because they are more liquid—there is a
liquidity premium. Once a newer bond is issued, this liquidity premium will generally
decrease or disappear. Therefore, the rise of the 29½-year US treasury bond prices (golden
crossover) may excite the decline in the 30-year US treasury bond prices (death crossover).
Actually, our model can be modified to figure out the impact of death crossovers’ arrivals
within one bond on golden crossovers in another bond. Describing the different source of
excitation as correlated point processes is in general quite complicated, and the Hawkes
approach proposed here could be a useful method to model, fit, and evaluate the leading
relationship between the several drivers of generic stochastic dynamics.
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