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Roles of circular RNAs in immune
regulation and autoimmune diseases
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Abstract
Circular RNAs (circRNAs), as a novel class of endogenously expressed non-coding RNAs (ncRNAs), have a high stability
and often present tissue-specific expression and evolutionary conservation. Emerging evidence has suggested that
circRNAs play an essential role in complex human pathologies. Notably, circRNAs, important gene modulators in the
immune system, are strongly associated with the occurrence and development of autoimmune diseases. Here, we
focus on the roles of circRNAs in immune cells and immune regulation, highlighting their potential as biomarkers and
biological functions in autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA),
multiple sclerosis (MS), primary biliary cholangitis (PBC), and psoriasis, aiming at providing new insights into the
diagnosis and therapy of these diseases.

Facts

● CircRNAs are related to various biological processes
in immune cells, as well as immune regulation under
multifarious physiological and pathological
conditions.

● CircRNAs serve as potential biomarkers for the
diagnosis and severity of certain autoimmune
diseases, such as systemic lupus erythematosus
(SLE), rheumatoid arthritis (RA), multiple sclerosis
(MS), primary biliary cholangitis (PBC).

● CircRNAs contribute to the development of
autoimmune diseases by acting as miRNA sponges
to regulate many biological processes, including
DNA methylation, immune response, and
inflammatory response.

● Certain circRNAs, such as cia-cGAS and dsRNA-

containing circRNAs, may act as potential targets for
the treatment of autoimmune diseases.

Open questions

● What is the molecular mechanism by which
circRNAs trigger autoimmune diseases?

● Are circRNAs effective and universal biomarkers for
the diagnosis and severity of autoimmune diseases?

● How autoimmune diseases are linked to circRNAs'
biogenesis, cytoplasmic accumulation and even post-
transcriptional modifications?

● Is there potential for practical clinical applications
based on findings concerning certain circRNAs?

Introduction
Normally, immune cells have receptors that can dis-

tinguish between self (ie, healthy native structures) and
nonself or deviant self (ie, pathogens or tumor antigens),
enabling these cells to discover pathogens or malignantly
transformed cells. At the same time, precise regulation of
certain immune-related genes is essential to an organism’s
ability to generate strong immunity to pathogens while
limiting autoimmunity to self-antigens. Once immuno-
deficiency or immune dysregulation, people may suffer
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from immune system diseases, chronic infections, and
even cancer. Typically, autoimmune diseases are a type of
complex multifactorial diseases with characteristics of the
presence of autoreactive immune cells and specific auto-
antibodies. According to statistics, there are >100 human
diseases in the world that are known as autoimmune or
chronic inflammatory, which are believed to affect 5–10%
of individuals1.
Generally, circular RNAs (circRNAs) are widely studied

non-coding RNA (ncRNA). Although RNA molecules are
traditionally considered to be passive carriers of genetic
information from DNA sequences to protein synthesis,
lots of research has revealed that ncRNAs are critical
participators in the process of gene expression2,3. To date,
accumulated evidence has shown that circRNAs play an
important role in various physiological and pathological
processes, such as cancer4,5, cardiovascular diseases6, and
neuronal diseases7. Intriguingly, circRNAs serve impor-
tant functions in antiviral immunity8. Furthermore, cir-
cRNAs are aberrantly expressed in patients with systemic
lupus erythematosus (SLE), some of which may serve as
new non-invasive biomarkers for this autoimmune dis-
ease9. Therefore, an in-depth study of circRNAs will not
only increase our understanding of the molecular
mechanisms that underlie autoimmune diseases, but also
provide future potential treatment of these diseases. In
this review, we emphasize the potential roles of circRNAs
in certain autoimmune diseases, including SLE, rheuma-
toid arthritis (RA), multiple sclerosis (MS), primary biliary
cholangitis (PBC), and psoriasis.

Biogenesis and functions of circRNAs
Unlike the characteristics of linear RNA molecules,

circRNA has a special structure that is a covalently closed
loop without 5' end caps and 3' Poly (A) tails10,11. This
RNA species was first identified in RNA viruses in 197612

and subsequently discovered in the cytoplasm of eukar-
yotic cells13 and yeast mitochondria14. With the devel-
opment of high-throughput sequencing technology and
microarray technique, plenty of circRNAs have been
successfully discovered in various organisms in nature. In
most cases, circRNAs are produced by “back-splicing”
events of the precursor messenger RNAs (pre-mRNAs), in
which a downstream 5' splice donor is linked to an
upstream 3' splice acceptor via a 3'→ 5' phosphodiester
bond15,16. According to their components, circRNAs are
mainly divided into three types: exonic circular RNAs
(ecircRNAs)17, intronic circular RNAs (ciRNAs)18, and
exon–intron circular RNAs (EIciRNAs)19, among which
ecircRNAs occupy the vast majority.
Previous studies have found that RNA polymerase II

(Pol II) elongation rate is associated with the efficiency
and results of splicing20,21. The fast Pol II elongation may
facilitate reverse complementary sequences across long

flanking introns to pair up for back-splicing, thereby
promoting circRNA formation22. Several possible cir-
cRNA biogenetic pathways, including “complementary
sequence-mediated circularization”, “lariat-driven circu-
larization” and “RNA-binding proteins-mediated circu-
larization”, have been proposed. Liang et al.23 found that
certain introns containing both splice sites and flanking
inverted complementary repeats, such as Alu elements,
were necessary for the circularization of the intervening
exons in cells. In this process, the intronic repeat
sequences must be base-paired with each other to bring
the splice sites close together, thereby facilitating back-
splicing. Notably, when a pre-mRNA has multiple intro-
nic repeat sequences, the competitive pairing between the
repeat sequences result in alternative circularization, thus
affecting the splicing outcomes24. For example, this
alternative circularization can cause a single gene to form
multiple different circRNA transcripts25. Another form of
circRNA generation is associated with exon skipping, in
which a lariat precursor containing one or more skipped
exons is first generated26,27. Then, the lariat removes its
internal intron sequences to generate a mature circRNA
and a double lariat. In some situations, the intervening
introns in the encircled exons are not removed, which
yields the so-called EIciRNA16. In addition, some RNA-
binding proteins including the muscleblind, nuclear factor
90/nuclear factor 110 (NF90/NF110) and alternative
splicing factor Quaking (QKI) were reported to promote
back-splicing events by increasing the interaction between
upstream and downstream introns28–30. CiRNAs are
produced by intron lariats that fail to be degraded and
debranched, and they do not contain linear 3' tails18. To
some extent, these models explain the molecular
mechanisms of circRNA biosynthesis (Fig. 1).
Usually, circRNAs work as molecular sponges for

microRNAs (miRNAs), thereby regulating miRNA target
gene expression31,32. Hansen et al.31 first found that a
highly expressed circRNA (ciRS-7) could be used as a
miR-7 sponge in human and mouse brains. This circRNA
contained >70 conserved binding sites for miR-7, and it
was strongly inhibited miR-7 activity by binding to miR-7,
resulting in elevated levels of miR-7 targets. Subsequently,
increasing evidence showed that various circRNAs could
adsorb miRNAs, thus participating in many physiological
and pathological processes33,34. For example, Hsa_-
circ_0009361 could regulate the expression of adenoma-
tous polyposis coli 2 by binding to miR-582, thereby
inhibiting the progression of colorectal cancer35. Fur-
thermore, a class of EIciRNAs localized in the nucleus
promoted the transcription of their parental genes in cis
through interacting with U1 snRNP, indicating that these
circRNAs could regulate gene expression via specific
RNA–RNA interplay between U1 snRNA and EIciR-
NAs19. Conn et al.36 demonstrated that a circRNA derived
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from the exon 6 of SEPALLATA3 gene bound to its
cognate DNA locus to form an R-loop and thus regulated
the splicing of its cognate mRNA. Notably, the circular
form of long intergenic non-protein-coding RNA p53-
induced transcript could encode an 87 amino-acid reg-
ulatory peptide, which bound to polymerase associated
factor complex (PAF1c) and inhibited the transcriptional
elongation in glioblastoma37. These findings show that
there may be more biological functions of circRNA than
previously predicted.

circRNAs in immunity
circRNAs in immune cells
Indeed, some studies have demonstrated the diverse

biological functions of circRNAs in immune cells.
Hematopoietic stem cells (HSCs) can differentiate into a
variety of progenitor cells, which subsequently generate
all kinds of specialized blood cells, such as red blood cells,
megakaryocytes, myeloid cells, and lymphocytes38. Nico-
let et al.39 found that circRNA showed cell-specific
expression in human hematopoietic progenitors as well
as differentiated lymphoid and myeloid cells. For example,
during hematopoietic differentiation, the expression levels
of circRNA of lymphocytes were the highest, and the high
levels were reflected in abundance rather than variety.
Moreover, circ-FNDC3B showed the highest expression

level in natural killer cells, while circ-ELK4, circ-MYBL1,
and circ-SLFN12L showed the highest expression in
T cells and natural killer cells. Macrophages are an
essential part of innate immunity and can be induced to
diverse phenotypes under different external stimuli40. A
recent study explored the expression of circRNAs in
macrophages under two different polarization conditions
(M1 macrophages induced by interferon-γ (IFN-γ) and
lipopolysaccharide (LPS), and M2 macrophages induced
by interleukin-4 (IL-4))41. The results showed that 189
circRNAs were differentially expressed in the M1 com-
pared with the M2 macrophages. To further elucidate
the implication of the differentially expressed circRNAs,
the researchers also predicted the miRNAs that inter-
acted with them. For the overexpressed circRNA-010231
in M1, the five miRNA response elements with good
scores were miR-1964-5p, miR-19b-2-5p, miR‑141-5p,
miR-6950-5p, and miR-145a-5p, respectively. These
findings provide new ideas for the roles of circRNAs in
the polarization of macrophages. Recently, Agirre et al.42

found that 1356 new identified circRNAs were expressed
in human humoral immune response, as well as plasma
cells (tonsillar plasma cells and bone marrow plasma
cells) had the highest average expression levels. The
expression of these circRNAs was significantly negatively
correlated with the levels of some RNA-binding proteins

Fig. 1 Formation of circRNAs by pre-mRNA back-splicing events. a The intron complementary repeat sequences or RNA-binding proteins such
as QKI, MBL, and NF90/NF110 promote the back-splicing. b A lariat containing one or more skipped exons is re-spliced to generate a circRNA and a
double lariat, and the circRNA may be an EIciRNAs or an ecircRNA. c CiRNA is generated from the intron lariat
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including adenosine deaminase acting on RNA 1, DEAH
box helicase 9, and heterogeneous nuclear ribonucleo-
protein L, suggesting that these RNA-binding proteins
might be involved in the biogenesis of circRNAs during
terminal B-cell differentiation. Notably, the circRNAs in
human plasma cells were mainly derived from immu-
noglobulin (Ig) genes and represented the combinatorial
clonal state of Ig loci.
Calcitonin gene-related peptide (CGRP) could induce

the expression of IL-6 in macrophages43. In this process,
mmu_circRNA_007893 mediated the IL-6 expression by
working as an endogenous mmu-miR-485-5p sponge.
When macrophages were stimulated by CGRP, mmu_-
circRNA_007893 was significantly increased. However,
after silencing mmu_circRNA_007893, the level of mmu-
miR-485-5p was increased while IL‑6 mRNA expression
was decreased. During the process of immunosenescence,
there was a significant feature that the proportion of CD8
T lymphocytes lacking CD28 expression would be
increased44. Wang et al.45 discovered that cir-
cRNA_100783 in ageing human CD8+ T cells might
function as a new biomarker for CD28-related CD8+ T-
cell ageing. By further investigating the circRNA_100783-
targeted miRNA-mRNA network, they observed that
circRNA_100783 might be mainly related to alternative
splicing events, the production of splice variants and the
expression of phosphoprotein. Interestingly, circANRIL
has been shown to disrupt pre-rRNA processing and
ribosome biogenesis by binding to pescadillo homolog 1
in vascular smooth muscle cells and macrophages, leading
to the nucleolar stress and activation of p53, which in turn
induced apoptosis and inhibited proliferation46.
By measuring the expression profiles of circRNAs in 20

human tissues that were highly correlated with diseases,
Maass et al.47 demonstrated that many circRNAs showed
tissue-specific expression and could be closely related to
the clinical phenotypes and mechanisms of human dis-
eases. At the same time, they found that immune-related
components, toll-like receptor 6 (TLR6), and myosin 1 F
(MYO1F), could produce circRNAs in neutrophils, sug-
gesting that the circRNAs were likely to be involved in
neutrophil immune responses. In addition, Li et al.48

found that a W chromosome-linked circRNA was
female-biased expression in a kind of flatfish (half-
smooth tongue sole) and tended to be expressed in some
immune tissues, especially head kidney and spleen.
Importantly, the expression of this circRNA in spleen
was significantly upregulated after infection, indicating
that it might be related to the immune response. In
summary, circRNAs actively participate in various bio-
logical processes in immune cells, such as differentiation,
polarization, immune response, senescence, and apop-
tosis (Table 1).
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circRNAs in immune regulation
In recent years, increasing evidence linked circRNAs to

immune regulation under multifarious physiological and
pathological conditions, including anti-infection immu-
nity49,50, tumor immunity51,52, the activation of inflam-
mation53, and even organ transplantation54. Through
next-generation sequencing technology, Ma et al.55 found
that 123 circRNAs were differentially expressed in Mock-
and transmissible gastroenteritis virus (TGEV)-infected
porcine intestinal epithelial cell line. Furthermore, Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis
suggested that the mRNAs in circRNA-miRNA-mRNA
regulatory network were most significantly involved in
inflammation and immune response, including retinoic
acid-inducible gene-I (RIG-I)-like receptor, tumor
necrosis factor (TNF), NOD-like receptor (NLR), TLR,
and nuclear factor-κB (NF-κB) pathway. Of note,
ssc_circRNA_009380 could promote the activation of NF-
κB pathway via interacting with miR-22, thereby mediat-
ing TGEV-induced inflammation. Analogously, another
study analyzed the circRNA expression profiles and
circRNA-associated competing endogenous RNA
(ceRNA) network of early HIV infection (EHI) patients56.
The results indicated that 1365 circRNAs were abnor-
mally expressed in HARRT-naive EHI patients in contrast
to healthy controls, and the targeting mRNAs among the
ceRNA networks were mainly related to inflammatory
response, immune response and defense response to virus
infection. Actually, circRNAs were closely related to the
immune factors NF90/NF110 in viral infection29. Speci-
fically, NF90/NF110 enhanced pre-mRNA back-splicing
by stabilizing the intron complementary sequence pairs in
the nucleus and interacted with mature circRNAs to form
complexes in the cytoplasm. After viral invasions, NF90/
NF110 in the nucleus were transported to the cytoplasm,
and then the levels of circRNAs were reduced. At the
same time, NF90/NF110 could be released from the
complexes and subsequently suppressed viral replication
by binding to viral mRNAs.
Meaningfully, Fu et al.57 found that 171 circRNAs were

dysregulated in peripheral blood mononuclear cells
(PBMCs) of patients with active tuberculosis (TB). Of
these, circRNA_103017, circRNA_101128, and cir-
cRNA_059914 were expected to serve as new biomarkers
for active TB. What’s more, circRNA_101128 could
contribute to the pathogenesis of TB by regulating
miRNA let-7a. In LPS-stimulated mouse macrophages,
Ng et al.58 observed that one circRNA, mcircRasGEF1B,
was regulated by TLR4 pathway. Moreover, the knock-
down of mcircRasGEF1B reduced the expression of
mature intercellular adhesion molecule-1 (ICAM-1) via
modulating the stability of ICAM-1 mRNAs. Note-
worthily, ICAM-1 was related to the pulmonary

neutrophil recruitment in LPS-induced airway disease59,
and could also suppress the polarization of M2 macro-
phages through the blockade of efferocytosis in tumor
microenvironment60, implicating its various roles in
innate immune response.
A recent study showed that hsa_circ_0005105 could

facilitate the expression of inflammatory cytokines by
regulating the miR-26a-targeted nicotinamide phosphor-
ibosyltransferase, which provided a new target for the
treatment of osteoarthritis (OA)61. In contrast to non-
lesional skin of severe acne patients, Liang et al.62 dis-
covered that up to 538 circRNAs were aberrantly
expressed in adjacent lesional skin, and these circRNAs
were mainly connected with the biological pathways such
as inflammation, metabolism, and immune response. In
addition, has_circ_0020397 could promote the expression
of telomerase reverse transcriptase and programmed
death-ligand 1 (PD-L1) by binding to miR-138, thereby
regulating the viability, apoptosis and invasion of color-
ectal cancer cells63. Studies have shown that PD-L1 is
closely related to tumor escape from immune control64,65,
so has_circ_0020397 may promote tumor development by
regulating tumor immunity. These findings demonstrate
that circRNAs are crucial participants in immune reg-
ulation (Fig. 2). Hence, it is foreseeable that dysregulation
of these functions is very likely to be involved in the
development of autoimmune diseases.

circRNAs in autoimmune diseases
Autoimmune diseases, mainly characterized by a

damaged immune system and the loss of immune toler-
ance to self-antigens, are a group of heterogeneous con-
ditions66. Although the molecular mechanisms are still
largely unknown, increasing evidence indicates that the
complex interplay of environmental factors and epigenetic
dysregulation facilitate the pathogenesis of these diseases
in genetically susceptible individuals67,68. As described
above, circRNAs are closely associated with the immune
system. Meanwhile, recent studies have demonstrated
that circRNAs are not only involved in the pathogenesis of
autoimmune diseases, but also represent non-invasive
biomarkers for them (Fig. 3).

circRNAs in SLE
SLE is a chronic autoimmune disease that predominately

affects women of childbearing age. Its main features are
the autoreactive B and T lymphocytes as well as the
overproduction of antibodies targeting self-antigens69.
Unfortunately, SLE can result in multi-organ pathologies
and a wide range of clinical manifestations, including
arthritis, central nervous system disease, renal disease and
skin disease70. Although SLE is immune-mediated, the
pathogenic mechanisms are still not fully understood.
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T-cell circRNAs in SLE
Recently, 127 differentially expressed circRNAs were

identified in T cells of SLE patients, and a downregulated
circRNA, hsa_circ_0045272, was further verified by
quantitative PCR71. Mechanism research revealed that the
knockdown of this circRNA significantly upregulated the
early apoptosis and enhanced the production of IL-2 in
activated Jurkat cells. Zhang et al.72 supported that
hsa_circ_0012919 was aberrantly upregulated in CD4+

T cells of SLE patients. Meanwhile, the downregulation of
hsa_circ_0012919 increased the expression of DNA
methyltransferase 1 (DNMT1), whereas reduced the
expression of CD70 and CD11a in CD4+ T cells from
inactive and active SLE patients. The inhibition of hsa_-
circ_0012919 also rescued the DNA hypomethylation of
CD70 and CD11a in CD4+ T cells of SLE patients, which
could be reversed by downregulation of DNMT1. Strik-
ingly, this circRNA could regulate the expression of
regulated on activation, normal T cell expressed and

secreted (RANTES) and Kruppel-like factor 13 (KLF13)
by bonding to miR-125a-3p. It has been confirmed that
migration rate of basophils to RANTES and monocyte
chemotactic protein 1 (MCP-1) is remarkably increased in
SLE patients, which is possibly associated with tissue
damage in SLE73. KLF13 could positively regulate
RANTES and was related to the expression of IL-4 in
CD4+ T cells74.

PBMC circRNAs in SLE
Wang et al.75 found downregulation of circIBTK and

upregulation of miR-29b in PBMCs of SLE patients, both
of which were correlated with anti-double-stranded DNA,
SLE Disease Activity Index (SLEDAI) score and comple-
ment component 3 (C3) level. Importantly, circIBTK
could inhibit the DNA demethylation and activation of
protein kinase B (AKT) by binding to miR-29b in SLE.
Many studies have shown that AKT signaling pathway can
regulate the functions of immune cells, and its

Fig. 2 CircRNAs in immune regulation. NF90/NF110 enhance back-splicing by stabilizing the intron complementary sequence pairs in the nucleus
and are exported to the cytoplasm to suppress viral replication after viral infection. The exogenous circRNA induces innate immune response by
activating RIG-I, whereas the endogenous circRNA binds to different RNA-binding proteins that reflect its endogenous biogenesis. hsa_circ_0005105
facilitates the expression of inflammatory cytokines by regulating the miR-26a targeted NAMPT. has_circ_0020397 promotes the expression of PD-L1
by binding to miR-138, thereby participating in tumor immunity. In addition, mcircRasGEF1B induced by LPS is involved in anti-bacteria immunity by
modulating the stability of ICAM-1 mRNAs
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dysregulation leads to the progression of SLE. For
instance, AKT could coordinate IL-2 signaling and T-cell
antigen receptor to hold the expression of adhesion
molecules, cytolytic effector molecules, as well as cytokine
and chemokine receptors in cytotoxic T cells76. Another
research showed that hsa_circ_0049224 and has_-
circ_0049220 were underexpressed in PBMCs of inactive
and active SLE patients77. Moreover, the levels of these
two circRNAs were negatively correlated with SLEDAI
and the degree of SLE severity, which indicated that they
might be regarded as markers for the activity and severity
of SLE.

Plasma circRNAs in SLE
In addition, hsa_circ_400011, hsa_circ_102584, hsa_-

circ_101471, and hsa_circ_100226 were abnormally
expressed in plasma of SLE patients9. Through bioinfor-
matics analysis, the researchers discovered multiple MREs
of hsa_circ_100226, including hsa-miR-24-3p, hsa-miR-
875-3p, hsa-miR-138-5p, hsa-miR-620, and hsa-miR-145-
3p. Among them, decreased miR-138 could enhance NF-
κB activation via suppressing the expression of p65 in the
chondrocytes, triggering the inflammatory response78.
Moreover, miR-138-5p regulated extracellular matrix
catabolism and inflammation, thereby affecting the pro-
gression of OA79. Interestingly, the upregulated cir-
cRNA_002453 level in plasma of lupus nephritis (LN)
patients was related to the severity of renal involvement80.
Although the level of circRNA_002453 had no significant

correlation with disease activity, it was positively asso-
ciated with renal SLEDAI score and 24-hour proteinuria.

circRNAs in RA
RA is a prevalent autoimmune disorder characterized by

generalized inflammation in multiple joints, which always
results in serious cartilage and bone erosion as well as
articular deformation81. Rheumatoid factor (RF), anti-
carbamylated protein (anti-CarP), and anti-cyclic citrul-
linated peptide-2 (anti-CCP2) are the most well-known
autoantibodies in this disease82.

PBMC circRNAs in RA
Latest studies revealed that the levels of hsa_-

circ_0058794 and hsa_circ_0092285 were markedly
increased in PBMCs of patients with RA, and the levels of
hsa_circ_0038644 and hsa_circ_0088088 were
decreased83. Actually, hsa_circ_0038644 was spliced from
the protein kinase C beta gene, which was related to the
activation of NF-κB84. Furthermore, the expression of
ciRS-7 was significantly upregulated in RA patients, and it
could reduce the inhibitory effect of miR-7 on mamma-
lian target of rapamycin (mTOR) by inhibiting the func-
tion of miR-785. As the phosphatidylinositol-3-kinase/
AKT/mTOR (PI3K/AKT/mTOR) signaling pathway
played an important role in synoviocyte proliferation and
inflammatory responses86,87, ciRS-7 might be involved in
the development of RA by regulating mTOR.

Other cell type circRNAs in RA
hsa_circ_0001859 was one of the differentially expres-

sed circRNAs in synovial tissues of RA patients88.
Mechanism studies found that this circRNA could pro-
mote activating transcription factors 2 expression and
increase inflammatory activity by targeting miR-204/211.
Furthermore, nuclear factor E2-related factor 2 (Nrf2), a
potential therapeutic target for rheumatic diseases, could
regulate many biological processes such as inflammation,
immune response and cartilage and bone metabolism in
the body89. By analyzing the circRNA expression profiles
in the substantia nigra and corpus striatum of Nrf2-
knockout mice, Yang et al.90 found that mmu_-
circRNA_34132, mmu-circRNA-015216 and mmu_-
circRNA_017077 were involved in the Nrf2-mediated
neuroprotection against oxidative stress. Notably, the
authors also uncovered that four mRNAs, Atp6v0a1,
Atp6v0b, Atp6v0c, and Atp6v0e2, were enriched in RA
pathway in the circRNA-miRNA-mRNA interaction net-
work. Atp6v0c and Atp6v0e2 were potentially regulated
by mmu_circRNA_017077 via binding to mmu-miR-346-
3p, and Atp6v0e2 and Atp6v0a1 were potentially regu-
lated by mmu_circRNA_34132 via binding to mmu-miR-
346-3p as well. These results supported that mmu_-
circRNA_34132 and mmu_circRNA_017077 might

Fig. 3 Roles of circRNAs in autoimmune diseases. CircRNAs
contribute to the development of autoimmune diseases by regulating
various biological processes, such as DNA methylation, immune
response, and inflammatory response. Furthermore, circRNAs may be
used as potential biomarkers for the diagnosis and severity of
autoimmune diseases. The overexpression of cia-cGAS can suppress
IFN expression in TREX1-deficient BMDMs. The overexpression of
dsRNA-containing circRNAs alleviate the aberrant PKR activation
cascade in SLE patient-derived cells
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participate in the Nrf2-mediated development of RA by
serving as molecular sponges for mmu-miR-346-3p.

circRNAs in MS
MS is a chronic disease of the central nervous system

(CNS), and diffuse immune mechanisms as well as neu-
rodegeneration are the underlying pathological processes
in this disease. The peripheral immune response targeting
the CNS occurs mainly in the early stage of MS, whereas
immune process within the CNS dominates the pro-
gressive stage91. Most patients will develop permanent
disability during the course of their disease, creating a
huge burden for individual, family and society levels92.
Through the further characterization of Gasdermin B

alternative splicing and back-splicing profiles, Cardamone
et al.93 found that alternative splicing isoforms and an
identified ecircRNA, containing exons 4 and 5, were sig-
nificantly dysregulated in PBMCs of relapsing-remitting
MS patients, which suggested that the abnormal RNA
metabolism was involved in the pathogenesis of this dis-
ease. Metastasis associated lung adenocarcinoma tran-
script 1 (MALAT1) was an long non-coding RNA
(lncRNA) that could regulate alternative splicing and has
been shown to be associated with MS94. A systematic
study found that the level of MALAT1 was upregulated in
MS patients95. Meanwhile, 1114 alternative splicing
events were significantly modulated and 49 circRNAs
were differentially expressed in MALAT1-knockdown
Jurkat T cells, a relevant cellular model for MS. Besides,
the RNA-binding protein motif analysis showed a parti-
cular enrichment for the QKI in the exons modulated by
MALAT1. Remarkably, QKI has been reported to regulate
the formation of circRNAs30. These data indicate that
MALAT1 dysregulation may lead to the development of
MS by affecting splicing and back-splicing events.

circRNAs in other autoimmune diseases
Psoriasis is an inflammatory disease that mainly affects

the skin and joints, and its pathophysiological character-
istics are abnormal proliferation of keratinocytes and
infiltration of immune cells in the dermis and epidermis96.
Recently, Liu et al.97 discovered six downregulated and
123 upregulated circRNAs in skin mesenchymal stem
cells (S-MSCs) of psoriatic lesions. Pathway analysis
observed that the significantly downregulated mRNAs in
the lesions mainly enriched in Janus kinase-signal trans-
ducer and activator of transcription (JAK-STAT) signal-
ing, which was reported to participate in immune
regulation98. Of these, a circRNA chr2:206992521|
206994966 could affect the activity of T lymphocytes in
local lesions by regulating the secretion of certain cyto-
kines, including IL-6, IL-11, and hepatocyte growth fac-
tor97. In addition, hsa_circ_0061012, hsa_circ_0003689,
chr4:121675708|121732604, and hsa_circ_0003718 were

abnormally expressed in psoriatic lesions and might
promote disease progression by interacting with miRNAs
associated with psoriasis99,100.
PBC is a cholestatic, autoimmune-mediated liver disease

that slowly progresses to portal fibrosis and biliary cir-
rhosis101. By carrying out the circRNA expression profiles,
Zheng et al.102 found 22 aberrantly expressed circRNAs in
plasma of PBC patients. It was worth noting that the level
of hsa_circ_402458 was higher in PBC patients not treated
with ursodeoxycholic acid (UDCA) than in those treated
with UDCA. At the same time, the authors showed that
hsa_circ_402458 might target two miRNAs, hsa-miR-943,
and hsa-miR-522-3p. For miR-522-3p, it might be an
effective target for regulating chronic inflammatory dis-
order103. Therefore, it can be speculated that hsa_-
circ_402458 may function as a miRNA sponge to regulate
inflammation-related signaling pathways, thus contribut-
ing to the development of PBC.
In addition, by studying the circRNA expression profiles

in atrial tissues from patients with persistent atrial fibril-
lation (AF) with rheumatic heart disease, Hu et al.104

predicted the potential roles of the differentially expressed
circRNAs. The results suggested that 51 circRNAs were
upregulated, and 57 circRNAs were downregulated in AF
tissues compared with controls, respectively. Gene
Ontology (GO) analysis revealed that the most sig-
nificantly enriched biological process term was muscle
contraction, the most significantly enriched cellular com-
ponent term was muscle myosin complex, and the most
significantly enriched molecular function term was muscle
alpha-actinin binding. Meanwhile, KEGG pathway analysis
indicated that the main involved pathways were dilated
cardiomyopathy and hypertrophic cardiomyopathy.

circRNAs as potential biomarkers in autoimmune diseases
Owing to their stability, abundance, and evolutionary

conservation, as well as their differential expression in
patients with autoimmune diseases, circRNAs are likely to
be potential biomarkers for these diseases. circPTPN22
derived from protein tyrosine phosphatase nonreceptor
type 22 (PTPN22) was downregulated in the PBMCs of
patients with SLE105. Importantly, the receiver operating
characteristic (ROC) curve analysis showed that
circPTPN22 had good diagnostic value for SLE. The
downregulation of circPTPN22 was strongly negatively
correlated with the SLEDAI scores, suggesting that this
circRNA might be a biomarker for SLE diagnosis and
disease severity. Zhang et al.106 observed that hsa_-
circRNA_407176 and hsa_circRNA_001308 were down-
regulated in both PBMCs and plasma of patients with
SLE. Also, these two circRNAs in plasma and PBMCs
might be candidate biomarkers for SLE, and their com-
bination could improve the diagnostic efficiency. Even
more, the level of hsa_circRNA_001308 was associated
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with C reactive protein and anti-sjögren’s syndrome-
related antigen A in plasma, as well as leukopenia in
PBMCs. Analogously, hsa_circ_0003090 and hsa_-
circ_0057762 in whole blood could differentiate the
patients with SLE from the healthy controls, indicating
that these two circRNAs might have potential value for
SLE diagnosis107.
By the analysis of ROC curve, Ouyang et al.108 found

that circRNA_104871 in PBMCs was a strong predictor
for RA. Likewise, another study found that hsa_-
circ_0044235 was significantly decreased in peripheral
blood of patients with RA109. Meaningfully, according to
the risk score based on hsa_circ_0044235, the researchers
could effectively distinguish the patients with RA from
those with SLE. Iparraguirre et al.110 indicated that
circ_0035560 and circ_0005402 were underexpressed in
peripheral blood leukocytes of MS patients and might
function as dependable biomarkers for this disease.
Interestingly, these two circRNAs were derived from
annexin A2 (ANXA2), whose linear form was also
downregulated in MS patients. Increasing evidence has
shown that ANXA2 is involved in many autoimmune
diseases, including antiphospholipid syndrome and LN,
suggesting that circ_0035560 and circ_0005402 may be
associated with the development of MS111,112. In sum-
mary, these studies provide a theoretical basis for the
clinical application of circRNAs in autoimmune diseases.

Conclusion and future perspectives
Indeed, increasing evidence has identified that cir-

cRNAs are active participants in multiple stages of
immune-cell development and immune regulation. Fur-
thermore, circRNAs may not only be diagnostic bio-
markers for human autoimmune diseases, but also
represent the disease activity or severity. More impor-
tantly, circRNAs contribute to the development of auto-
immune diseases by acting as miRNA sponges to regulate
many biological processes, including DNA methylation,
immune response, and inflammatory response (Table 2).
Therefore, elucidating the roles of circRNAs in the setting
of autoimmune disease will be a promising field.
Recently, Chen et al.113 found that the purified exo-

genous circRNA could induce innate immune response
and confer a protective effect on viral infection by acti-
vating RIG-I. Further exploration indicated that cells
could distinguish between self-nonself circRNAs based on
the introns that produced them, and the reason might be
that mature human circRNAs always bound to different
RNA-binding proteins that reflect their endogenous spli-
cing and biogenesis. In this regard, we speculate that the
abnormal circRNAs in vivo, like foreign circRNAs, are
involved in autoimmune diseases by activating the
immune signaling. Interestingly, Xia et al.114

demonstrated that a novel circRNA, cia-cGAS, could
protect dormant long-term-hematopoietic stem cells
from cyclic GMP-AMP synthase (cGAS)-mediated
exhaustion by suppressing the enzymatic activity of cGAS
under homeostatic conditions. Meanwhile, the binding
affinity of cia-cGAS for cGAS was stronger than that of
self-DNA, thereby inhibiting cGAS-mediated generation
of type I IFNs to maintain dormant HSCs. Three-prime
repair exonuclease 1 (TREX1) was a major 3ʹ→ 5ʹ DNA
exonuclease, whose dysregulation has been associated
with some autoimmune diseases115,116. Conspicuously,
the overexpression of cia-cGAS could suppress IFN
expression in TREX1-deficient bone marrow derived
macrophages (BMDMs), indicating that cia-cGAS could
restrain autoimmune signaling in TREX1-deficient
cells114. Thus, cia-cGAS might act as a potential target
for the treatment of autoimmune diseases by antagonizing
cGAS. Recently, Liu et al.117 found that endogenous cir-
cRNAs tended to form 16-26 bp intra-molecular RNA
duplexes and inhibited double-stranded RNA (dsRNA)-
activated protein kinase (PKR) activity by preferentially
binding to PKR. The activity of RNase L in PBMCs
derived from SLE patients was enhanced, accompanied by
reduced circRNA expression and augmented PKR phos-
phorylation. Importantly, overexpression of dsRNA-
containing circRNAs could strongly attenuate the aber-
rant PKR activation cascade in SLE patient-derived cells,
suggesting that circRNAs might serve as potential targets
for the treatment of autoimmune diseases.
However, several important questions merit further

resolution. To date, we have detailed the close relation-
ship between autoimmune diseases and circRNAs, but
little is known about the molecular mechanisms that
trigger the pathogenesis. CircRNAs that act as endogen-
ous miRNA sponges have been studied widely, but few
circRNA/miRNA interactions have been experimentally
validated in immunity61,63,118. It is suggested that
exploring other mechanisms may improve the functional
description of circRNAs in immunological contexts.
Furthermore, circRNAs can exert potential biomarkers
for various autoimmune diseases. Nonetheless, in many
studies, the sample size of patients is relatively small, or
the sample source has some limitations, which may affect
the validity and universality of the conclusions that cir-
cRNAs can serve as biomarkers. Moreover, in-depth
studies of circRNAs’ biogenesis, accumulation in the
cytoplasm, and even post-transcriptional modifications
may increase our understanding of their biological
functions.
In conclusion, continued investigation into circRNAs

may yield more discoveries in the pathogenesis of auto-
immune diseases and broaden the spectra of diagnosis
and therapy for these diseases in the future.
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