
ReseaRch aRticle

196 www.blood-science.org

Exosome miRNAs profiling in serum and 
prognostic evaluation in patients with multiple 
myeloma
Teng Fanga,b, Hao Suna,b, Xiyue Suna,b, Yi Hea, Peixia Tangc, Lixin Gonga,b, Zhen Yua,b, Lanting Liua,b, 
Shiyi Xiea,b, Tingyu Wanga, Zhenshu Xuc, Shuhua Yia, Gang Ana, Yan Xua, Guoqing Zhua, Lugui Qiua,b,d,*, 
Mu Haoa,b,*

aState Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell 
Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical 
College, Tianjin 300020, China; bTianjin Institutes of Health Science, Tianjin 301600, China; cHematology Department, Fujian Medical 
University Union Hospital, Fujian Institute of Hematology, Fuzhou 350001, China; dGobroad Healthcare Group, Beijing 100072, China

Abstract 
MicroRNAs (MiRNAs) carried by exosomes play pivotal roles in the crosstalk between cell components in the tumor microenvironment. 
Our study aimed at identifying the expression profile of exosomal miRNAs (exo-miRNAs) in the serum of multiple myeloma (MM) 
patients and investigating the regulation networks and their potential functions by integrated bioinformatics analysis. Exosomes in 
serum from 19 newly diagnosed MM patients and 9 healthy donors were isolated and the miRNA profile was investigated by small 
RNA sequencing. Differential expression of exo-miRNAs was calculated and target genes of miRNAs were predicted. CytoHubba 
was applied to identify the hub miRNAs and core target genes. The LASSO Cox regression model was used to develop the 
prognostic model, and the ESTIMATE immune score was calculated to investigate the correlation between the model and immune 
status in MM patients. The top six hub differentially expressed serum exo-miRNAs were identified. 513 target genes of the six 
hub exo-miRNAs were confirmed to be differentially expressed in MM cells in the Zhan Myeloma microarray dataset. Functional 
enrichment analysis indicated that these target genes were mainly involved in mRNA splicing, cellular response to stress, and 
deubiquitination. 13 core exo-miRNA target genes were applied to create a novel prognostic signature to provide risk stratification 
for MM patients, which is associated with the immune microenvironment of MM patients. Our study comprehensively investigated 
the exo-miRNA profiles in MM patients. A novel prognostic signature was constructed to facilitate the risk stratification of MM 
patients with distinct outcomes.
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1. INTRODUCTION
Multiple myeloma (MM) is an incurable hematological 

malignancy characterized by the clonal expansion of malignant 
plasma cells in the bone marrow.1 Tight crosstalk between the 
bone marrow microenvironment and MM cells plays a pivotal 
role in the development and progression of MM.2–4 Our previ-
ous studies showed that exosomes released by MM cells could 
be taken up by surrounding cells, especially immune cells, pro-
moting MM cell survival, drug resistance, and immune escape.3,4

Exosomes are small extracellular vesicles (EVs) with a 
diameter of 30 to 100 nm, which are produced and actively 
released by living cells. More exosomes are released by malig-
nant compared with normal cells, suggesting that exosomes 
play pivotal roles in the process of signaling transfer between 
malignant and nonmalignant cells, thereby facilitating tumor 
progression.5 Exosomes act as intercellular mediators by 
carrying and releasing active contents, including noncod-
ing RNA (ncRNA), DNA, proteins and lipids.6,7 MicroRNA 
(miRNA) is a type of single-stranded noncoding RNA com-
posed of 20 to 24 nucleotides (nt) that in different ways can 
regulate gene expression at the posttranscriptional level.8,9 It 
has been shown that exosomal miRNA (exo-miRNA) profiles 
were diverse between MM cells and normal counterparts and 
could be used to predict survival in myeloma patients.10,11 Of 
note, miRNAs carried by exosomes are important mediators 
of crosstalk and signal to transfer between the bone marrow 
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microenvironment and myeloma cells.12,13 MiRNAs secreted 
by exosomes are associated with various alterations in the 
MM microenvironment including angiogenesis, activation of 
osteolysis, immune system modulation, and induction of drug 
resistance.14 However, the comprehensive functional network 
and molecular mechanisms of miRNAs and their target genes 
in myeloma progression and poor patient prognosis remain 
poorly understood.

In this study, the serum exo-miRNA expression profiles in 
newly diagnosed (ND) MM patients were investigated. The 
regulatory network between miRNA and mRNA was further 
analyzed, and the hub miRNAs and key mRNAs were clari-
fied. The potential underlying mechanism of exo-miRNAs 
and their target genes involved in MM pathogenesis was also 
investigated. A novel prognostic model based on a 13-core-
genes signature was constructed to further facilitate predict-
ing the clinical prognosis of MM, which was also correlated 
with the immune suppressive microenvironment. Altogether, 
our study furthers our understanding of the exo-miRNA and 
mRNA functional network, and the overwhelmingly complex 
interaction between MM cells and the bone marrow microen-
vironment, which could provide novel promising targets for 
therapeutic strategies.

2. MATERIALS AND METHODS

2.1. Sample collection and ethics statement

Peripheral blood samples were collected from 9 healthy 
donors and 19 NDMM patients. Following routine venipunc-
ture procedures, peripheral blood samples were collected in 
procoagulant tubes, centrifuged at 3500 r/min for 10 minutes 
at 4°C, and the supernatant serum was stored at −80°C until 
testing.

2.2. Exosome isolation

Exosomes were isolated by size exclusion chromatography. 
Briefly, 1 mL of 0.8 μm-filtered serum was diluted 1.5-fold with 
phosphate-buffered saline and further purified using Exosupur 
columns (Echobiotech, China) following the manufacturer’s 
instructions. Fractions were concentrated to 200 μL by 100 kDa 
molecular weight cutoff Amicon Ultra spin filters (Merck, 
Germany). The obtained exosome samples were observed by 
transmission electron microscopy, the particle size distribution 
was measured by nanoparticle tracking analysis using ZetaView 
PMX 110 (Particle Metrix, Meerbusch, Germany), and their 
concentration was determined. The exosomes were also iden-
tified by western blot analysis using rabbit polyclonal anti-
body CD63 (sc-5275, Santa Cruz, CA, USA), CD9 (60232-I-Ig, 
Proteintech, Rosemont, IL), HSP90 (60318-I-Ig, Proteintech, 
Rosemont, IL), Alix (sc-53540, Santa Cruz, CA, USA), TSG101 
(sc-13611, Santa Cruz, California) and calnexin (10427-2-AP, 
Promega, Madison, Wisconsin). The proteins were visualized on 
the Tanon4600 Automatic chemiluminescence image analysis 
system (Tanon, Shanghai, China).

2.3. RNA extraction, small RNA library construction, and 
sequencing

Total RNA was extracted and purified from serum exosomes 
using miRNeasy® Mini kit (Qiagen, Frederick, Maryland, Cat. 
No. 217004) according to the kit instructions. A total amount 
of 0.5 μg RNA per sample was used as input material for the 
RNA sample preparations. Sequencing libraries were generated 
using QIAseq miRNA Library Kit (Qiagen) following the man-
ufacturer’s recommendations and index codes were added to 
attribute sequences to each sample. Library quality was assessed 
on the Agilent Bioanalyzer 2100 and qPCR. The clustering of 

the index-coded samples was performed on the acBot Cluster 
Generation System using TruSeq PE Cluster Kitv3-cBot-HS 
(Illumina, San Diego, California) according to the manufac-
turer’s instructions. After cluster generation, the library prepa-
rations were sequenced on an Illumina Hiseq 2500 platform, 
and single-end 50 nt reads were generated (Beijing Biomarker 
Technologies Co., Ltd, Beijing, China).

2.4. RNA-seq data processing

Raw data of fastq format were first processed through 
in-house Perl scripts. In this step, clean data were obtained 
from raw data by removing reads containing adapters, reads 
containing ploy-N and low-quality reads. Reads were also 
trimmed and cleaned by removing the sequences smaller than 
18 nt or longer than 30 nt. Using Bowtie15 software, the clean 
reads were aligned with the Silva database, GtRNAdb data-
base, Rfam database, and Repbase database, respectively, 
to filter ribosomal RNA (rRNA), transfer RNA (tRNA), 
small nuclear RNA (snRNA), ncRNAs such as small nucle-
olar RNA (snoRNA) and repeated sequences. The remaining 
reads were used to detect known miRNAs by aligning with 
Human Genome (GRCh38) and known miRNAs from miR-
base (release 22). The miRDeep216 was applied to predict the 
new miRNA using the Bayesian model.

2.5. Quantification and differential expression analysis of 
miRNAs

The read count for each miRNA was obtained from the map-
ping results, and FPKM was computed. Differential expression 
of identified miRNAs from miRbase was calculated using the 
edgeR package17 (version 3.30.3). Only miRNAs with FPKM > 
5, P value < .05, and fold change > 1.5 were considered differen-
tially expressed miRNAs (DE-miRNAs)

2.6. Prediction of miRNA target genes and function 
annotation

The potential target genes of sequenced miRNAs were pre-
dicted by MiRanda and RNAhybrid.18 Gene function was anno-
tated based on the Gene Ontology (GO) database. Functional 
enrichment was implemented and visualized using cluster 
Profiler4, ClueGO, and Metascape (https://metascape.org).

2.7. Identification of DEGs

The Zhan myeloma dataset19 (http://lambertlab.uams.edu) 
is a microarray data of gene expression which included bone 
marrow plasma cells from 74 cases of NDMM, and 31 healthy 
donors. Limma package20 (version 3.46.0) was used to iden-
tify differentially expressed genes (DEGs) between MMs and 
healthy donors. For DEGs, the P value was set at <.05.

2.8. Construction of the exosomal miRNA-mRNA network

Among the previously described DE-miRNAs, the top 6 
hub exosomal miRNAs with high confidence were identified 
by plug-in CytoHubba of Cytoscape v3.7.2 using the MCC 
algorithm. Target genes of DE-miRNAs were selected accord-
ing to the following criteria: (a) mRNA should be targeted by 
miRNAs; (b) the levels of mRNAs were negatively correlated 
with miRNA expression; (c) the target genes present differential 
expression in MM cells. The Metascape database was applied to 
assess the protein–protein interaction (PPI) network and func-
tional modules. The top 40 genes with high confidence were 
identified as core target genes calculated by the PPI network 
with CytoHubba according to the degree score. Furthermore, 
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we also used Cytoscape to visualize the interactions between the 
hub miRNAs and target genes.

2.9. Establishment of a 13-core-gene signature

The effect of core genes on overall survival (OS) of MM 
patients was evaluated by univariate Cox regression. The least 
absolute shrinkage and selection operator (LASSO) Cox regres-
sion model was then used to narrow down the candidate genes 
and to develop the prognostic model. Multivariate Cox analysis 
was performed to obtain the risk score formula for hub genes. 
The prognostic risk score was calculated as follows: Risk score 
= exp(miRNA1) × β(miRNA1) + exp(miRNA2) × β(miRNA2) 
+ …… + exp(miRNAn) × β (miRNAn) (where “exp” is the 
miRNA expression level and “β” is the regression coefficient 
obtained from the multivariate Cox analysis). Based on the 
above formula, the risk score of each patient was calculated. 
The “survival,” “survminer,” and “timeROC” R packages were 
employed to perform 1-, 3-, and 5-year receiver operating char-
acteristic (ROC) curve analyses. In addition, the Kaplan–Meier 
method was used to calculate the OS rate for patients of the 
low-risk and high-risk groups, and the log-rank test was per-
formed to compare survival differences between the two groups. 
Optimal cutoff points were calculated with R packages “sur-
vminer” using the maximally selected rank statistics.

2.10. Tumor cell characteristics in MM patients with 
diverse 13-core-gene signatures

MM patients in the GEO dataset GSE2658 cohort were strat-
ified into 2 subgroups by the 13-core-gene signature according 
to the optimal cutoff point calculated with survminer. The 
DEGs between the low- and high-score groups were screened 
by limma package according to |log2FC| ≥ 1 and P value <.05. 
Gene set enrichment analysis (GSEA) between the 2 groups was 
performed using the Java implementation of GSEA software 
(version 4.0). The Broad Institute GSEA website (www.broad.
mit.edu/gsea) provides detailed information on the computa-
tional method. The “gsva” package was used to conduct the sin-
gle sample GSEA (ssGSEA) to calculate the scores of UAMS-70 
genes and 56 drug-resistance genes. Statistical analyses of scores 
between the two groups used the unpaired Wilcoxon test.

2.11. Immune status analysis

The ESTIMATE immune scores21 were used to analyze 
the infiltration levels of immune cells in MM patients with 
GSE136324.22 The association between the gene signature 
and immune features was tested with Pearson correlation. The 
expression of HLA family genes was analyzed in different risk-
group MM patients from GSE2658.

2.12. Statistical analysis

Data analyses were performed with R language and GraphPad 
Prism 8.0 Software. Statistical significance was set at P < .05. *P 
< .05, **P < .01, and ***P < .001.

3. RESULTS

3.1. The exosomal miRNA profile of MM patients by RNA 
sequencing

From peripheral blood samples collected from 9 healthy 
donors and 19 MM patients (Fig. 1A), exosomes from human 
serum were identified by their morphology, diameter, concen-
tration, and the presence of exosome-enriched protein markers 
such as CD9, CD63, and TSG101. Electron microscopic images 

(Supplemental Fig. 1A, http://links.lww.com/BS/A58) showed 
that EVs were cup-shaped structures with a diameter of about 
100 nm. Nanoparticle tracking analysis (Supplemental Fig. 1B, 
http://links.lww.com/BS/A58) revealed that the isolated EVs had 
a median diameter of 85.1 nm. Furthermore, these EVs were 
positive for CD9, CD63, and TSG101 proteins, but negative for 
calnexin (Supplemental Fig. 1C, http://links.lww.com/BS/A58), 
which is consistent with the standard for exosome isolation.23

According to small RNA data, a total of 2588 hsa-miRNAs were 
identified in the serum exosome samples of the 19 MM patients and 
9 healthy donors. Through assessing the expression levels of serum 
exo-miRNAs in MM patients compared with healthy donors, we 
found 313 DE-miRNAs (|Log2FC|>1 and P value < .05). Among 
them, 158 were up-regulated, and 155 were down-regulated in 
MM patients. The volcano map showed the 313 DE-miRNAs 
(Fig. 1B). The top 10 up-regulated and down-regulated miRNAs 
are listed in Supplemental Fig. 1D, http://links.lww.com/BS/A58.

3.2. Target gene prediction and pathway involvement 
analysis

A total of 9564 target genes of the 313 differentially expressed 
miRNAs were predicted by MiRanda and RNAhybrid. The 
main biological processes, molecular function, and pathway 
analyses by GO analysis are summarized in Figure 1C, which 
shows these target genes were mainly involved in the protea-
some-mediated ubiquitin-dependent protein catabolic process, 
regulation of protein stability, and regulation of DNA metabolic 
processes. To identify critical DE-miRNAs, Cytoscapev3.6.1 was 
used to map the miRNA-mRNA regulatory network of miRNA 
and its target genes, and CytoHubba was applied to screen the 
hub miRNAs. Of note, the top 6 hub miRNAs were identified 
according to the MCC score, including three up-regulated miR-
NAs: hsa-miR-4728-5p, miR-455-3p, and hsa-miR-6779-5p, as 
well as three down-regulated miRNAs: hsa-miR-124-3p, hsa-
miR-615-3p, and hsa-miR-7106-5p (Fig. 1D).

3.3. Exosomal miRNA-mRNA regulatory network analysis

To elucidate the function of the exo-miRNAs, the miR-
NA-mRNA regulatory network was analyzed. The Zhan 
myeloma mRNA datasets containing “Multiple Myeloma versus 
Normal” in the Oncomine database included 74 MM patients 
and 31 normal individuals, and a total of 2463 DEGs were 
obtained (Supplemental Table 1, http://links.lww.com/BS/A59). 
Then, target genes of the 6 hub miRNAs mentioned above were 
predicted by MiRanda and RNAhybrid analysis (Supplemental 
Table 2, http://links.lww.com/BS/A59). One thousand four hun-
dred eighty-two target genes of three up-regulated miRNAs 
(hsa-miR-4728-5p, miR-455-3p, and hsa-miR-6779-5p), and 
2891 target genes of three down-regulated miRNAs (hsa-miR-
124-3p, hsa-miR-615-3p, and hsa-miR-7106-5p) were identi-
fied. On account of the wide regulation of miRNA on mRNA 
expression, we focused on the target genes that met the fol-
lowing criteria: (a) mRNA should be targeted by miRNAs; (b) 
the levels of mRNA were negatively correlated with miRNA 
expression; (c) the target genes presented differential expression 
in MM cells according to the Zhan myeloma microarray data. 
Therefore, 513 genes (93 up-regulated and 420 down-regu-
lated) were identified as the core mRNAs targeted by the 6 hub 
exo-miRNAs (Fig.  2A and Supplemental Table 3, http://links.
lww.com/BS/A59). Taken together, these results identified prom-
ising miRNAs and their target genes for further analysis. The 
PPI network between these 513 core genes was constructed by 
STRING (Fig. 2B). Gene module analysis was used to further 
identify critical gene modules (Fig. 2C). According to the gene 
module score, we noted that mRNA splicing, cellular response 
to stress, and deubiquitination, which are involved in the patho-
genesis of MM, were the top three modules of the core mRNAs 

www.broad.mit.edu/gsea
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targeted by hub exo-miRNAs (Fig. 2D). Genes in each module 
are listed in Supplemental Table 4, http://links.lww.com/BS/A59.

3.4. Functional analysis of core mRNAs targeted by hub 
exo-miRNAs

According to the PPI network of the 513 core genes targeted 
by exo-miRNAs, the CytoHubba analysis was further applied to 
screen pivotal genes among the network, and the top 40 target 
genes were defined by the degree method, including IL6, MDM2, 
PSMD2, and RPL23 (Supplemental Table 5, http://links.lww.
com/BS/A59). Next, the miRNA-mRNA regulatory network of 
the 6 hub miRNAs and the 40 core target genes were analyzed 
by Cytoscape (v3.6.1, Fig.  3A). Pathway enrichment analysis 

by ClueGO indicated that the 40 core target genes were mainly 
involved in protein folding chaperoning, positive regulation of 
transcription of nucleolar large rRNA, negative regulation of pro-
teolysis and positive regulation of miRNA metabolic process, as 
shown in Figure 3B. Of note, immune-related pathways were also 
significantly enriched, including cellular response to IL-4 and pos-
itive regulation of IL-8 production (orange and green, Fig. 3B).

3.5. Clinical significance of the 40 core target genes in MM

Next, we further analyzed the clinical significance of the core 
target genes in MM patients. The univariate analysis identified 
that 30 genes correlated with patient survival. Among them, 25 
genes—examples included CCT5, CDKN2A, CDK4, CCT7, 

Figure 1. Distinct exosomal miRNA profiles in MM and healthy donors. (A) Serum exosomes from peripheral blood were collected from 9 healthy donors and 
19 MM patients for miRNA sequencing. (B) Volcano plot illustrating miRNAs (DE-miRNAs) in serum exosomes differentially expressed between MM patients 
and healthy donors. (C) Bubble plot showing GO-enriched pathways of DE-miRNA target genes. (D) Table displaying top six hub DE-miRNAs calculated by the 
miRNA-mRNA regulatory network with CytoHubba. DE = differentially expressed, GO = gene ontology, MM = multiple myeloma.
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HSPA9, CHD4, and HIST2HBE—were negatively correlated 
with patient survival. Five genes, RPL3, ACTB, EEF2, RPL23, 
and PIK3CA, were positively correlated with patient survival in 
GEO dataset GSE2658 (Fig. 4A). These survival-related genes 
were further investigated as to whether they could be used for 
prognostic stratification in patients. To avoid potential over-fit-
ting, 13 core genes (which included CCT7, RPL23, CCT3, 
MARS, and PI3KCA) were optimized among 30 survival-related 
genes through LASSO Cox regression analysis, and a prognostic 
model based on them was developed (Fig. 4B and C). The risk 
score calculation formula was: risk score = (0.209*CCT7 exp.) 
+ (−0.030*RPL23 exp.) + (0.019*CCT3 exp.) + (0.090*MARS 
exp.) + (−0.158*PIK3CA exp.) + (0.257*IL6 exp.) + 
(0.0015*CCT5 exp.) + (0.252*CDKN2A exp.) + (0.321*GART 
exp.) + (0.022*GAPDH exp.) (0.0567*HNRNPC exp.) + 

(−0.010*RPL3 exp.) + (0.176*MDM2 exp.). Time-dependent 
ROC analysis was applied to evaluate the sensitivity and spec-
ificity of the 13-core-gene signature model, and the area under 
the ROC curve (AUC) was 0.672 for 1-year, 0.728 for 3-year, 
and 0.744 for 5-year survival, respectively (Fig.  4D). The 
Kaplan–Meier survival analysis in two independent myeloma 
patient cohorts (GSE2658 and GSE136337) revealed that the 
OS was notably shorter in the high-score than in the low-score 
group (HR = 4.2, P < .0001; HR = 1.7, P < .014; Fig. 4E and F). 
Additionally, we validated the prognostic significance of 13 gene 
models in another four datasets, including two GFP datasets 
(GSE9782; GSE4452), one outside RNA-seq dataset (MMRF), 
and our center’s own RNA-seq dataset. Kaplan–Meier sur-
vival analysis revealed that the OS was notably shorter in the 
high-score than in the low-score group (GSE9782: HR = 2.07, 

Figure 2. Functional modules of hub DE-miRNAs. (A) Venn plots showing the screening process of hub miRNAs and core target mRNAs. (B) PPI network of 
core target mRNAs with eight functional modules. (C) Table showing eight functional modules of core target mRNAs. (D) Interaction networks displaying detailed 
top three functional modules of core target mRNAs. DE = differentially expressed, PPI = protein–protein interaction.
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P = .0003; GSE4452: HR = 8.24, P < .0001; MMRF: HR = 
2.07, P < .0001; Our center’s RNA-seq: HR = 2.31, P < .0015; 
Supplemental Fig. 2A–D, http://links.lww.com/BS/A60).

These results showed that the 13-core-gene signature could 
be used to predict the OS of patients with MM.

3.6. Functional enrichment analysis of the 13 core genes

Owing to the prognostic stratification by the 13-core-gene 
signature identified above, 2 groups of MM patients with 
diverse outcomes were recognized. Between the 2 groups of 
patients, a total of 2144 up-regulated and 2694 down-regulated 

genes were identified in their myeloma cells (Fig.  5A). GSVA 
data showed significantly enriched pathways related to cell 
proliferation and protein homeostasis in the high-score group, 
including G2M checkpoint (NES = 2.38, P < .0001, FDR < 
0.0001), E2F targets (NES = 2.35, P < .0001, FDR < 0.0001) 
and unfolded protein response (NES = 1.66, P = .04, FDR = 
0.031). Interestingly, pathways related to metabolism were 
also up-regulated in high-score patients, including glycolysis 
(NES = 2.09, P < .0001, FDR = 0.001), fatty acid metabolism 
(NES = 1.90, P < .0001, FDR = 0.007), and oxidative phos-
phorylation (OXPHOS) (NES = 1.97, P = .002, FDR = 0.003). 
These findings indicated a relatively active metabolic status of 

Figure 3. Exosomal hub miRNA-mRNA network in MM. (A) Regulatory network of 6 hub miRNAs and 40 core target genes. MiRNAs are labeled by red rectan-
gles, while core genes are blue. (B) Network displaying enriched pathways identified by ClueGO of 40 core target genes. MM = multiple myeloma.

http://links.lww.com/BS/A60
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tumor cells in these high-score patients (Fig.  5B). Zhan et al 
previously reported the molecular classification of myeloma 
UAMS-7, which divided patients into seven subgroups: CD1, 
CD2, HY, LB, MF, MS, and PR.24 Our study indicated that the 
patients identified in our high-score group were consistently 
distributed in the high-risk subgroups of UAMS-7, including 
MF, MS, and PR (Fig.  5C). Previous studies demonstrated a 
70-high-risk gene set (UAMS-70) and a 56-drug-resistance gene 
set were associated with poorer outcomes in MM.25,26 Here, we 
examined the expression of these malignant genes within two 

groups of patients with diverse 13-core-gene signatures. The 
patients in the high-core group displayed higher 70 high-risk 
gene set (UAMS-70) and 56 drug-resistance gene set expression. 
These findings supported the conclusion that the patients with 
high scores of the 13-core-gene signature had poorer outcomes 
(Fig. 5D and E).

From previous studies, we know that reversible epigenetic 
RNA processes, such as m6A, m5C, m1A, and m7G modi-
fication, play prominent roles in various biological processes, 
including myeloma occurrence and immune regulation in 

Figure 4. Construction of prognostic 13-core-gene signature based on core target genes. (A) Dot plot showing the relation of core target genes with MM 
patient OS. (B) LASSO coefficient profiles of the 30 risk factors. (C) 11 risk factors were selected using LASSO Cox regression analysis. The dotted vertical 
lines were drawn at the optimal scores by minimum criteria. (D) The ROC plot showing the accuracy of predicting 1-, 3-, and 5-year OS of MM patients by 
13-core-gene signature. (E) Kaplan–Meier analysis of the 13-core-gene signature in MM patients from GSE2658. (F) Validation of the 13-core-gene signature 
in MM patients from GSE136324. LASSO = least absolute shrinkage and selection operator, MM = multiple myeloma, OS = overall survival, ROC = receiver 
operating characteristic.
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hematological malignancy.27,28 Of note, we found that the level 
of m6A modification genes (ELAVL1, HNRNPA2B1, HNRNPC, 
LRPPRC, RBM15, YTHDC1, and YTHDF2), m5C modifica-
tion genes (ALYREF, NSUN2, and NSUN3), m1A modification 
genes (ALKBH3 and YTHDF2) and the m7G modification gene, 
METTL1, were significantly increased in patients with high 
13-core-gene signature scores, while the expressions of m6A 
modification gene, YTHDC1, and m5C modification genes, 
NSUN4 and NSUN6, were significantly increased in the low-
score group (Fig. 5F).

3.7. Analysis of immune status

Immune escape is a hallmark of malignancies, including MM. 
Given that immune-related terms were significantly enriched in 
the 40 core target genes identified above, we speculated that the 
13-core-gene signature model could reflect the immune state of 
myeloma patients. Here, the tumor immune microenvironment 
was assessed using the immune score, ESTIMATE score, and 
stromal score. As Figure 6A shows, these immune scores were 
negatively correlated with the 13-core-gene signature score, 

indicating a stronger immune cell infiltration level in low-score 
than in high-score patients. In addition, tumor purity score was 
positively correlated with the 13-core-gene signature score, 
suggesting a higher tumor cell burden in high-score patients 
(Fig.  6B). The HLA genes that are found on the surfaces of 
tumor cells participate in antigen processing and presentation 
in antitumor immunity. Our data showed that the HLA fam-
ily genes, including HLA-A, HLA-B, HLA-C, HLA-D, HLA-E, 
HLA-F, HLA-G, HLA-DRB6, HLA-DQB1, HLA-DQB2, HLA-
DPB1, HLA-DPB2, HLA-DPA2, HLA-DOB, and HLA-DMB, 
showed a comprehensively significant decrease in MM cells of 
high-score group patients (Fig.  6C). These findings indicated 
that the 13-core-gene signature model was correlated with aber-
rant immune status in MM patients.

4. DISCUSSION
Circulating miRNAs are generated by two main mechanisms: 

cell death by apoptosis or necrosis, leading to the release of miR-
NAs bound to Argonaute (AGO) proteins, and an active process 
by secretion of exosomes containing miRNAs.29 Thus, exosomal 

Figure 5. Difference between two groups of MM patients distinguished by 13-core-gene signature. (A) Volcano plot displaying DEGs between MM patients in 
different groups identified by 13-core-gene signature. (B) GSEA plots illustrating significantly enriched pathways in high-score patients identified by 13-core-
gene signature. (C) Stacked bar plot showing the distribution of UAMS-7 groups for MM patients in different groups identified by 13-core-gene signature. (D) 
Heatmap showing the expression of 70 high-risk genes in different groups of MM patients identified by the 13-core-gene signature (left). Boxplot displaying 70 
high-risk gene scores calculated by GSVA in different groups of MM patients (right). (E) Heatmap (left) and boxplot (right) showing the expression of 56 drug 
resistance-related genes in different groups of MM patients distinguished by 13-core-gene signature. (F) Boxplots showing different profiles of m6A, m5C, m1A 
and m7G modification in different groups of MM patients from GSE2658. DEG = differential expression gene, GSVA = gene set variation analysis, MM = multiple 
myeloma.
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miRNAs could represent a more specific molecular biomarker 
than cell-free miRNAs. Currently, there is a trend toward using 
serum exosomal cargo, including miRNAs, as promising nonin-
vasive biomarkers for prognosis prediction in numerous diseases 
as a result of their accessibility and the stabilized level for detec-
tion.30,31 In addition, several studies have demonstrated that miR-
NAs (exo-miRNAs) play critical roles in communication between 

cells, especially in the pathogenesis of malignancies.11,32 In our 
study, 313 serum exo-miRNAs differentially expressed between 
MM patients and healthy donors were clarified. The number of 
DE-miRNAs identified in our study was far more than reported 
by Manier et al.10 GO analysis of target genes of differential 
miRNAs showed that these target genes are mainly involved in 
critical biological processes related to MM pathogenesis such as 

Figure 5. Continued
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the proteasome-mediated ubiquitin-dependent protein catabolic 
process, and regulation of protein stability, indicating the indis-
pensable roles of these miRNAs in MM pathogenesis. Because 
of the limited scale of patients in our study, the levels of these 
exo-miRNAs, especially the top six hub exo-miRNAs, need to be 
further confirmed on a larger scale.

MiRNAs carried by the exosomes released from various cell 
types including MM cells are involved in multiple types of cell–
cell interactions. In addition, multiple miRNAs have been shown 
to modulate the expression of genes critical for MM pathogen-
esis. For instance, miR-15a and miR-16 were down-regulated 
by the IL-6 secretion from bone marrow stem cells (BMSC) 

Figure 6. Correlation between 13-core-gene signature and immune status. (A) Fitted curves showing Pearson’s correlation between 13-core-gene scores and 
the stromal scores, the immune score and the ESTIMATE score in MM patients from GSE136324. (B) Fitted curves showing Pearson’s correlation between 
13-core-gene scores and the tumor infiltration in MM patients from GSE136324. (C) Boxplots showing different expressions of HLA family genes in different 
groups of MM patients from GSE2658. MM = multiple myeloma.
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and promoted drug resistance in MM cells.32 Furthermore, 
loss of miR-29 family members increases proteasome activa-
tor complex subunit 4 (PSME4) expression and PSME4 levels 
to elevate proteasome activity and render cells therapeutically 
resistant to proteasome inhibitors,33 miR-21 inhibits STAT3, 
which mediates RANKL gene activation. Inhibition of miR-
21 restores the RANKL/osteoprotegerin ratio in MM-derived 
BMSCs and impairs the resorbing activity of mature osteoclasts, 
which contributes to myeloma bone disease.34 According to the 
literature, the top six hub miRNAs observed in our study have 
been reported to play important roles in the occurrence and pro-
gression of malignancies, including MM. Liu et al reported that 
miR-615 was a tumor suppressor by targeting protein kinase 
C beta (PRKCB) and exerting antimyeloma activity, and the 
miR-615-3p/PRKCB axis could regulate the sensitivity of MM 
cells to proteasome inhibitor.35 Chen et al reported that miR-
124 was down-regulated in MM cells and caused overexpres-
sion of the target gene growth factor receptor-bound protein 2, 
which promoted MM cell survival and growth.36 Furthermore, 
these miRNAs are also involved in many kinds of solid tumors. 
MiR-455 was reported to function as an oncomiR in esopha-
geal squamous cell carcinoma progression through activating 
the Wnt/β-catenin and transforming growth factor-β/Smad 
pathways.37 MiR-4728 was reported to be an important tumor 
suppressor miRNA that controls MAPK signaling through tar-
geting mammalian STE20-like protein kinase 4 (MST4), reveal-
ing the significance of miR-4728 as a potential prognostic factor 
and target for therapeutic intervention in cancer.38

The ubiquitin-proteasome system is known to be critical 
for MM cell survival, which maintains the protein homeosta-
sis of MM cells.39 The dynamic process of ubiquitination and 
deubiquitination efficiently modulates protein stabilization and 
degradation.40,41 As expected, we found that the target genes of 
the top six hub miRNAs were mainly enriched in the deubiq-
uitination process signal pathway, which indicates the reliability 
of the results demonstrated in this study. Moreover, we found 
that target genes were enriched in the mRNA splicing path-
ways. Alternative splicing allows pre-mRNA to be processed 
into different mature mRNAs, thereby expanding the cellular 
proteome.42 Recent studies highlighted that splicing process 
alterations have prognostic value and act as a hallmark of can-
cer progression.43,44 Splicing alterations are often linked to the 
frequent occurrence of mutations in genes encoding either core 
components or regulators of the splicing machinery. Recent 
reports indicate that splicing machinery is markedly de-reg-
ulated in MM and represents a biomarker of disease aggres-
siveness.45 Our results suggest that the top six hub exosomal 
differential miRNA target genes include those encoding either 
core components or regulators of the splicing machinery like 
SF3B2, SF3B3, and U2AF2, this suggests that tumor cells might 
alter the expression level of genes encoding splicing machinery 
by secreting exosomal miRNA, thereby altering the patterns 
of alternative mRNA splicing. Michael et al reported that high 
numbers of novel splice loci were associated with adverse sur-
vival of MM patients, and the enumeration of patterns of alter-
native splicing has the potential to refine MM classification and 
assist in the risk stratification of patients,46 which supports our 
findings.

Additionally, our data identified that 13 core genes among 40 
core target genes could be efficiently applied to predicting clin-
ical outcomes in myeloma. The risk model had AUCs of 0.672, 
0.728, and 0.744 for predicting 1-, 3-, and 5-year OS, respec-
tively, indicating high accuracy and reliability. Moreover, OS 
was significantly lower in the high-score than in the low-score 
group, which confirmed its predictive efficiency. Metabolism-
related pathways, including glycolysis, fatty acid metabolism, 
and oxidative phosphorylation (OXPHOS), were significantly 
up-regulated in the high-score group. Previous research demon-
strated that increased fatty acid synthesis, glycolysis, and 

OXPHOS are necessary for ensuring that enough energy is 
available for rapid cell proliferation in MM.47 Our study further 
validated that aberrant metabolic status may affect patient clin-
ical outcomes. Moreover, the high-score patients identified by 
the 13-core-gene signature displayed higher 70 high-risk gene 
set (UAMS-70) scores, as well as the 56 drug-resistance genes set 
score, which might partly explain their inferior outcomes. RNA 
modification, including m6A, m5C, m1A, and m7G, is a revers-
ible epigenetic RNA process, that is required for cancer-cell sur-
vival, and targeting this pathway has been proposed as a new 
therapeutic strategy.28,48 In our study, the expression of various 
modification genes was analyzed within the high- and low-score 
groups, and aberrant expression status of m6A, m5C, m1A, 
and m7G RNA methylation regulators in MM was identified. 
Previous research reported that four m6A regulators (ZC3H13, 
HNRNPA2B1, HNRNPC, and ZC3H13) based on prognostic 
risk score can accurately predict the survival of MM patients, 
indicating the indispensable role of RNA methylation in MM 
progression.28 Our results also showed that HNRNPA2B1 and 
HNRNPC were up-regulated in high-score MM patients. The 
biological functions of several RNA modification genes in MM 
have been investigated by other researchers. HNRNPA2B1, an 
m6A reader, was elevated in MM patients and negatively cor-
related with favorable prognosis; it potentially acts as a thera-
peutic target of MM.49 YTHDF2, another m6A reader, was also 
increased in MM patients and associated with poor outcomes. 
YTHDF2 was reported to bind to the m6A modification site 
of STAT5A to promote its mRNA degradation, while STAT5A 
suppressed MM cell proliferation by occupying the transcrip-
tion site of MAP2K2 to decrease ERK phosphorylation. The 
YTHDF2/STAT5A/MAP2K2/p-ERK axis plays a key role in 
MM proliferation, and targeting YTHDF2 may be a promising 
therapeutic strategy.50 Consistently, the 2 genes were up-regu-
lated in our patients in the high-score group. These results fur-
ther support the value of our risk score model and imply the 
potentially significant roles of RNA modification-related genes 
in MM.

The evolution of MM depends on an immunosuppressive 
milieu that fosters immune escape and tumor progression.51 
In the present study, a striking finding was that these 40 
core target genes were significantly enriched in the cellular 
response to interleukin-4 and interleukin-8 pathways related 
to tumor immunity, providing an insight that MM cells may 
regulate a variety of immune cellular components in the bone 
marrow microenvironment through exosomes carrying miR-
NAs; this partly explains the suppressive immune state in the 
bone marrow. Our results indeed suggest that the 13-core-
gene signature model based on the 40 core target genes was 
highly correlated with the status of the immune microenvi-
ronment, and patients in the low-score group had higher infil-
tration levels of immune cells. Furthermore, patients in the 
high-risk group displayed lower HLA family gene expression. 
Tumors have developed different strategies to evade immune 
surveillance, for example altering the expression of classical 
and nonclassical HLA molecules.52–54 Based on our results, 
we hypothesize that the exosomal miRNAs could regulate 
the expression of HLA molecules of MM cells, and affect 
the infiltration of immune cells in the bone marrow micro-
environment. Among the top six hub miRNAs, miR-124 has 
been reported to be a critical modulator of tumor immunity 
by directly targeting signal transducer and activator of tran-
scription 3 (STAT3), a key component mediating immuno-
suppression in the tumor microenvironment.55 A recent study 
reported a therapeutic approach that uses lipid nanoparticles 
to deliver miR-124, which targets STAT3, to very high levels 
in the immune compartment in vivo. This therapeutic method 
stimulated antitumor immune responses without significant 
toxicity, significantly prolonged survival in murine intracere-
bral glioma models, and induced immunological memory that 
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is protective of tumor rechallenge.56 Our results suggest that 
miR-124 was down-regulated in MM serum exosomes, and 
it showed the highest CytoHubba score, indicating its critical 
role in MM pathology. However, further study is required to 
understand the overwhelmingly complex immune regulation 
network in the bone marrow microenvironment of myeloma 
mediated by exosome miRNA and their target genes, which 
might provide promising therapeutic targets.

5. CONCLUSION
In the present study, the expression profile of exo-miRNAs 

in the serum of MM patients has been evaluated. Through 
presenting a bioinformatics analysis of exo-miRNAs and their 
target genes, we identified 6 hub miRNAs and 40 core target 
genes, which provide potential therapeutic targets and a deeper 
understanding of the pathogenesis of MM. A 13-core-gene-
based prognostic risk score was constructed, which can assist in 
accurately predicting the survival of MM patients. In addition, 
the risk score is closely associated with the aberrant immune 
infiltration level, which complements current prediction models.
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