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Background: Immunotherapy is a promising anti-cancer strategy in

hepatocellular carcinoma (HCC). However, a limited number of patients can

benefit from it. There are currently no reliable biomarkers available to find the

potential beneficiaries. Methylcytosine (m5C) is crucial in HCC, but its role in

forecasting clinical responses to immunotherapy has not been fully clarified.

Methods: In this study, we analyzed 371 HCC patients from The Cancer

Genome Atlas (TCGA) database and investigated the expression of 18 m5C

regulators. We selected 6 differentially expressed genes (DEGs) to construct a

prognostic risk model as well as 2 m5C-related diagnostic models.

Results: The 1-, 3-, and 5-year area under the curve (AUC) of m5C scores for

the overall survival (OS) was 0.781/0.762/0.711, indicating the m5C score

system had an ideal distinction of prognostic prediction for HCC. The

survival analysis showed that patients with high-risk scores present a worse

prognosis than the patients with low-risk scores (p< 0.0001). We got consistent

results in 6 public cohorts and validated them in Xiangya real-world cohort by

quantitative real-time PCR and immunohistochemical (IHC) assays. The high-

m5C score group was predicted to be in an immune evasion state and showed

low sensitivity to immunotherapy, but high sensitivity to chemotherapy and

potential targeted drugs and agents, such as sepantronium bromide (YM-155),

axitinib, vinblastine and docetaxel. Meanwhile, we also constructed two

diagnostic models to distinguish HCC tumors from normal liver tissues or

liver cirrhosis.
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Conclusion: In conclusion, our study helps to early screen HCC patients and select

patients who can benefit from immunotherapy. Step forwardly, for the less likely

beneficiaries, this study provides them with new potential targeted drugs and agents

for choice to improve their prognosis.
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Introduction

Primary liver cancer is a common gastrointestinal

malignancy and the fourth leading cause of cancer-related

death worldwide, with approximately 782,000 deaths each year

(1). HCC is the most prevalent subtype of primary liver cancer,

as the 5-year overall survival rate is less than 20% (2, 3).

The recent achievement of immune checkpoint blockers

(ICBs) has established immunotherapy as the most promising

cancer treatment strategy. Despite the advancement achieved in

therapeutic modalities for HCC, the overall survival (OS)

remains poor (4). The reason is that many patients are

diagnosed at an advanced stage, an abundance of HCC

patients exhibit hyposensitivity to these therapies, and the

nearly unavoidable drug resistance stands in the way of an

eventual cure (5). There are currently no reliable and validated

biomarkers or methods available to early screen the HCC

patients and correctly forecast clinical responses to

immunotherapy. Therefore, the development of meaningful

diagnosis and treatment response stratification biomarkers for

achieving precision medicine is urgently needed.

The TME is a heterogeneous system that is comprised of

cancer cells, immune cells, extracellular matrix, microvessels,

and a variety of cytokines and chemokines (6, 7). It plays an

important role in the pathogenesis of HCC (8). Patients with the

same pathological stage and grade have considerably diverse

functional hallmarks, which might lead to variable clinical

responses to the same therapy. In particular, substantial TME

heterogeneity makes precision medicine in HCC difficult to

obtain. Thus, displaying TME heterogeneity might disclose

several aspects of HCC biology and expand our understanding

of HCC therapy. In the setting of TME heterogeneity, developing

innovative therapeutic response predictors and therapeutic

targets could be a prospective way to promote precision

medicine in HCC.

According to etiological research, a range of environmental

stresses generates changes in liver RNA, which eventually bring

about changes in the liver epigenome and transcriptome, which

also implies that epigenetic modifications accelerate the onset and

development of HCC (9, 10). Exploring the role of RNA
02
modification in a range of biological processes has recently

emerged as a new research focus (11). The most common

modifications currently include N6-methyladenosine (m6A),

m5C, 5-hydroxymethylcytosine (hm5C), N7-methylguanosine

(m7G), N1-methyladenosine (m1A), and pseudouridine (y)
(12). The role of m6A modification in regulating RNA

processing and functioning has been studied extensively in the

past (13). Evolving data suggest that m5C plays a significant part

in posttranscriptional regulation (14). Furthermore, m5C

modification, characterized by the insertion of a methyl group

at the carbon-5 position of the cytosine base, was discovered to be

copious in mammalian cells (15). m5C regulation is a dynamic

process governed by three key regulators, methyltransferases

(writers), demethylases (erasers), and binding proteins (readers)

(16). Increasing data have demonstrated that m5C modification

emerges as a contributor to shaping TME heterogeneity, as well as

the progression of HCC through interaction with various m5C

regulators (14). In addition, there is growing evidence that

methylation regulators can serve as prognostic and diagnostic

markers for cancer (17). A better knowledge of different m5C

modification patterns in HCC would contribute to the analysis of

HCC diagnosis and prognosis, thus guiding individual clinical

diagnosis and treatment strategies.

The past research on m5C regulators-mediated methylation

modification model in HCC was focused on the effect of a single

TME cell type or single m5C regulator alone on tumor

development, and the overall TME infiltration portrait

mediated by several m5C regulators remains to be

comprehensively recognized. In addition, present predictive

models are limited to predicting the prognosis and the

immunotherapy response but overlook the diagnostic role. And

to better achieve precision medicine, more attention should be

paid to patients who are less susceptible to immunotherapy.

Moreover, existing researches lack real-world cohort validation

and the selected regulators are incomprehensive (18, 19).

As a result, we took the mRNA expression levels of 18 m5C

regulators into consideration to assess their comprehensive

relevance to diagnosis, TME heterogeneity, drug sensitivity, and

therapeutic opportunities and identified robust risk signatures for

HCC prognosis. Then, we (I) constructed 2 diagnostic and a
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prognostic model based on comprehensive 18 m5C regulators;

(II) built an m5C score to predict immunotherapy response, and

(III) determined potential drugs in HCC (Figure 1).
Methods and materials

Data collection and processing

The TCGA data included TCGA-LIHC and other TCGA

digestive cancers (TCGA-COAD, TCGA-READ, TCGA-STAD,

TCGA-CHOL, and TCGA-PAAD) with clinical information were

obtained from the Genomic Data Commons (GDC) Data Portal

(https://portal.gdc.cancer.gov/). ICGC-LIRI-JP datasets were

downloaded from the International Cancer Genome Consortium

(ICGC) Data Portal (https://dcc.icgc.org/). GSE14520 datasets

were obtained from Gene Expression Omnibus databases

(GEO). The IMvigor210 cohort (20) data were obtained from

the “IMvigor210CoreBiologies” R package. Riaz et al. Cell 2017

(GSE91061) (21) and Lauss et al. Nat Commun 2017 (GSE100797)

(22) were gathered from the TIDE website (http://tide.dfci.

harvard.edu/) with a detailed clinical information and gene

expression data. The transcripts per kilobase million (TPM)

values of gene expression were used for further analysis.
Unsupervised clustering for 18
m5C regulators

Sum up to 18 m5C regulators were selected to identify different

m5C clusters by m5C regulators. Based on the gene expression data

of these m5C regulators in the training cohort (TCGA-LIHC

cohort), we used an unsupervised cluster algorithm via the R

package “ConsensuClusterPlus”. The R package “NbClust” and

Silhouette algorithm were applied to verify the optimal cluster

number further. Principal component analysis (PCA) and tSNE

were used to visualize different clusters in two-dimensional.
Identifying DEGs between m5C cluster

We distinguished the DEGs between two m5C clusters via

the “DESeq2” R package. The DEGs were defined as adjusted p-

value< 0.05 and |log2FoldChange| > 1. A total of 1267 DEGs

between two m5C clusters were extracted for further analysis.
Functional enrichment for DEGs

To explore the functions of DEGs, enrichment analysis

of these genes was conducted by R package “clusterprofiler”

R package, based on the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Gene Ontology (GO) databases. False
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discovery rate (FDR)< 0.25 and p-value< 0.05 were considered

statistically significant.
Gene set variation analysis

To investigate the differential pathway of m5C clusters, the

gene set variation analysis “GSVA” R package was used to

perform GSVA. The gene sets of hallmarks were downloaded

from the MSigDB database for GSVA analysis. The adjusted p-

value< 0.05 was considered statistically significant.
Gene signature identification and
establishment of the prognostic risk
model

We performed the prognostic analysis for DEGs in two m5C

clusters using a univariate Cox regression. As a result, 142 DEGs

with a significant prognosis while a p-value ≤ 0.0001 were extracted

for further analysis. The prognostic risk model was constructed by

using the “glmnet” and “My.stepwise” R package based on LASSO

and stepwise Cox method. Finally, we obtained a 6-gene-based

prognostic risk model to calculate each patient’s risk score by

weighting the Cox regression coefficients. The formula is as follows:

RiskScore =  o

i
Coefi*   expri

RiskScore = coefficient of each modeled gene * expression of

eachmodeled gene, where “ i “ represents the modeled gene, “Coef

“ represents the coefficients of regression, and “ expr “ represents

the expression of gene.We verified the prognostic risk model in

validation cohorts. The time-dependent receiver operating

characteristic (ROC) curves were used to evaluate the prognostic

prediction accuracy of the risk model and the area under the curve

(AUC) was measured by the R package “survivalROC”.
Estimation of TME characterization

To explore the correlation between the prognostic risk

model and the immune cell infiltration level, we use the

CIBERSORT algorithm to assess the infiltration abundance of

22 immune cells. And we obtained collected 20 inhibitory

immune checkpoints from Auslander’s study (23). The Tumor

Immune Dysfunction and Exclusion (TIDE) and IPS algorithms

were used to evaluate tumor immune escape status. To compare

the TME characterization of two different clusters, first, the R

package “IOBR” was used to analyze the TME pathway via the

single-sample gene set enrichment analysis (ssGSEA) (24, 25)

algorithm. Meanwhile, a set of gene signatures that represent a

non-inflamed TME, and tumor therapy-associated response

were collected from Jiao Hu’s study (26).
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Drug sensitivity and
potential compounds

Broad Institute-Cancer Cell Line Encyclopedia (CCLE)

project (https://portals.broadinstitute.org/ccle/) contained 1019

cancer cell line RNA expression profile data. Drug sensitivity data
Frontiers in Immunology 04
of cancer cell lines were obtained from the Genomics of Drug

Sensitivity in Cancer (GDSC2, https://www.cancerrxgene.org/)

and the PRISM Repurposing dataset (19Q4, released December

2019, https://depmap.org/portal/prism/). The GDSC2 contains

809 cell lines and sensitivity data for 198 compounds, and the

secondary PRISM contains 499 cell lines and drug susceptibility
FIGURE 1

The workflow of our study.
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data for 1448 compounds. All three of these drug datasets provide

the area under the dose-response curve (area under the curve —

AUC) values as a measure of drug susceptibility, and lower AUC

values indicate increased susceptibility to compound responses.

The drug susceptibility of the TCGA-LIHC cohort was estimated

via the R package “oncoPredict”.

Connectivity Map (CMap) analysis was a complement to

further investigate the therapeutic potential of drugs in HCC.

We first analyzed differential expression genes between the

TCGA-LIHC tumor and normal samples. And 150 up-

regulated genes and 150 down-regulated genes were submitted

to the CMap website (https://clue.io/query). The CMap analysis

yielded a connectivity score for each perturbation, a negative

score represents a gene expression pattern of a certain

perturbation that is oppositional to the disease-specific

expression pattern, suggesting a potential therapeutic effect of

this perturbation in this disease.
Xiangya cohort

55 fresh hepatocellular carcinoma tissues and part of paired

normal liver tissues were collected from Xiangya hospital and

immediately frozen in liquid nitrogen. A retrospective cohort was

created, with a total of 55 patients enrolled as of September 1,

2021. After the follow-up period, the clinical characteristics were

obtained, and survival analysis and multivariate Cox regression

were performed. This study was reviewed and approved by the

Xiangya Hospital Medical Ethics Committee of Central South

University (No.201806928), and got consent from all participants.
Quantitative reverse-transcription PCR

The AG RNAex Pro Reagent (AG21102, Accurate Biology,

Changsha, China) was used to extract total RNA from 55 fresh

hepatocellular carcinoma tissues and part of paired normal liver

tissues according to the manufacturer’s instructions. Before

reverse transcription to cDNA, genomic DNA is eliminated by

treatment for 2 min at 42°C with gDNA Clean Reagent. Evo M-

MLV RT Kit (AG11705, Accurate Biology, Changsha, China) was

used to synthesize the complementary RNA. The SYBRR Premix

Pro Taq HS qPCR Kit (AG11708, Accurate Biology, Changsha,

China) was utilized to achieve real-time quantification. The 2-

△△CT approach was applied to assess the relative expression

levels of target genes, which were normalized by GAPDH. The

PCR primers are listed in Supplementary Table S6.
Immunohistochemical staining

The protein expression levels of Programmed death-ligand 1

(PD-L1; also called B7-H1 or CD274) and cytotoxic T-
Frontiers in Immunology 05
lymphocyte antigen-4 (CTLA4) were estimated via

immunohistochemical (IHC) staining. Briefly, after

deparaffinization and rehydration, antigen retrieval was

performed by heating the slides in EDTA buffer (G1203;

Servicebio, Wuhan, China). Then the slides were treated with

3% hydrogen peroxide (Annjet, Shandong, China) for 25 mins to

eliminate endogenous peroxidase and blocked with 3% BSA

(G5001; Servicebio) for 30 minutes at room temperature to

decrease nonspecific binding. The slides were then incubated

overnight at 4°C with rabbit anti-CD274 (PDL1) and anti-

CTLA4 primary antibodies at a dilution of 1:200 and 1:300,

respectively (CD274: catalog no. Ab205921, Abcam, UK;

CTLA4: catalog no. ab237712, Abcam, UK). Next, the slides

were incubated with Goat Anti-rabbit IgG/HRP secondary

antibody (G1215; Servicebio) for 50 minutes at 37°C. The

DAB solution was used for coloration, and hematoxylin was

used for counterstaining.

Immunostaining of CD274 (PDL1) and CTLA4 were

defined on a scale of 0 to 3 in which 0 means no staining, 1

means mild staining, 2 means medium staining, and 3 means

intense staining. The percentage score of stained cells were also

calculated on a scale of 1 to 4 in which 1 represents (0–25%), 2 =

(26–50%), 3 = (51–75%) and 4 = (76– 100%). To obtain the final

score, the intensity score and percentage score were added to

reach the final score ranging from 0 to 7.
Statistical analysis

Correlations between variables were explored with Pearson

correlation coefficients. Continuous variables were compared

between two groups through the Wilcoxon rank-sum test.

Survival analysis including Kaplan-Meier and Cox regression

analysis was performed by “survival” R package. The optimal

cut-off value in training cohort TCGA-LIHC and validation

cohorts were determined by the “surv_cutpoint” function in the

“survminer” R package. Unless otherwise stated, P-value< 0.05

was regarded as statistically significant. The whole work was

conducted in R 4.1.2 software.
Result

The landscape of expression and genetic
variation of m5C regulators in HCC

We collected 18 m5C regulator genes from previous studies

(27–31). The multi-omics landscape of these 18 m5C regulator

genes was summarized from the TCGA-LIHC cohort (Figure 2).

Most of the m5C regulator genes were significantly differentially

expressed in tumor and normal tissues. For instance, ALKBH1,

ALYREF, DNMT1, DNMT3A, DNMT3B, NOP2, NSUN2,

NSUN3, NSUN4, NSUN5, TET1, TET2, TET3, TRDMT1, and
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YBX1 were up-regulated in HCC, while DNMT3L, NSUN6, and

NSUN7 were down-regulated (Figure 2A). We then explored the

comprehensive correlations and prognostic value of m5C

regulators in the TCGA-LIHC cohort (Figure 2B). The
Frontiers in Immunology 06
univariate Cox regression analysis further demonstrated that

most of these m5C regulator genes played a risk factor role in

HCC (Figure 2C). Then we found out that these genes had

widespread copy number variations (CNVs) (Figure S1) but
B C

D E

A

FIGURE 2

The landscape of expression and genetic variation of m5C regulators in HCC. (A) The expression profiles of m5C regulator genes in tumor
tissues and normal tissues in TCGA-LIHC cohort. (* p<0.05, *** p<0.001, ns: no significant difference). (B) The interactions of 18 m5C regulator
genes and their prognostic value. (C) Univariate Cox regression analysis of the 18 m5C regulator genes in patients from TCGA-LIHC cohort. (D)
The mutation frequency of 18 m5C regulators in 364 patients from the TCGA-LIHC cohort. (E) Metascape enrichment network visualization of
18 m5C regulators. Cluster annotations were shown in the color code.
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infrequent mutations (Figure 2D). For example, ALYREF,

DNMT3A, DNMT3B, DNMT3L, NOP2, NSUN2, NSUN4,

NSUN5, NSUN6, NSUN7, TET1, and TRDMT1 focused on

copy number amplification, whereas ALKBH1, DNMT1, TET2,

and YBX1 preferred deletion, which suggests that CNVs’

dominant role in the regulation of m5C relative to mutation.

Metascape (32) is a web tool for gene annotation and analysis,

the enrichment analyses of 18 m5C regulators are displayed

in Figure 2E.
Clustering of HCC based on 18
m5C regulators

A total of 371 samples from TCGA-LIHC were defined as the

training cohort, and further divided into k clusters (k = 2~6) via

the “ConsensusClusterPlus” R package. We found out that k = 2

was the best number of clusters according to the CDF curve of the

consensus score (Figures S2A, B). The Silhouette algorithm and

“NbClust” R package further confirmed the result (Figures S2C,

D). The principal component analysis and tSNE method of 18

m5C regulator gene expression showed significant separation

between two clusters (Figures S2E, F). Finally, 248 patients were

classified as Cluster 1, and the rest 123 patients were classified as

Cluster 2. Compared to Cluster 1, the Kaplan-Meier analysis

showed a worse OS and progression-free survival (PFS) in

Cluster 2 (Figures S2G–H, log-rank test, p< 0.001).
Clinical characteristics of gene set
enrichment between clusters

To further explore the differences between the two clusters,

we compared the clinical characteristics between the two

clusters. The result obtained shows that showed Cluster 2 had

a higher proportion of advanced disease stage, tumor stage, and

histologic grade (Figures 3A–C, Fisher’s exact test, p< 0.01). We

then analyzed the differentially expressed genes (DEGs) by using

the “DESeq2” R package, a total of 1267 DEGs between two m5C

clusters were obtained according to the adjusted p-value less

than 0.05, and the absolute value of log2 fold change less than 1.

Next, these DEGs were used for biological functional enrichment

analysis. These DEGs were primarily enriched in stromal and

catabolic as well as metabolic pathways (Figures 3D, E), such as

small molecule catabolic process (GO term), response to

xenobiotic stimulus (GO term), organic acid catabolic process

(GO term), complement and coagulation cascades (KEGG

pathway), metabolism of xenobiotics by cytochrome P450

(KEGG pathway), and drug metabolism - cytochrome P450

(KEGG pathway). Further GSVA analysis on hallmark

pathway analysis (Figure 3G) revealed that patients in Cluster

2 exhibited an obvious enrichment of pathways involved in cell

cycle, DNA repair, and carcinogenic activation pathways for
Frontiers in Immunology 07
example WNT-b-Catenin signaling, TGF-b signaling, PI3K-

AKT-MTOR signaling, MYC targets, etc. Moreover, we found

out that Cluster 2 had a higher expression of immune

checkpoints than Cluster 1 (Figure 3F). Our analysis also

revealed that Cluster 2 had a significantly increased TIDE

score and Exclusion score but decreased Dysfunction score

(Figure 3H), which suggests that these patients in Cluster 2

may have an immune evasion mechanism.
Construction of the prognostic
risk model

We constructed a prognostic risk model to quantify the risk for

each patient based on our m5C clustering. After univariate Cox

regression, 142 DEGs with a significant prognosis at a p-value ≤

0.0001 were analyzed by the LASSO regression algorithm in the

TCGA-LIHC cohort (Figures 4A, B). In stepwise variable selection

procedures, the Cox regression algorithm was used to filter the

variables further. Finally, a total of 6 candidate genes including

CBX2, SOCS2, LCAT, PBK, KRT17, and FTCD (Figures 4C, D)

were selected to construct the prognostic risk model. The patients in

the training cohort TCGA-LIHCwere separated into low- and high-

m5C score groups by the optimal cut-off value calculated by the

“surv_cutpoint” function in the “survminer” R package. In the

training cohort, TCGA-LIHC (Table S1), the Kaplan–Meier analysis

revealed that the high-m5C score group had a significantly worse OS

and PFS than the low-m5C score group (Figures 4E, G).Multivariate

Cox analysis of the training cohort revealed that the m5C score can

be an independent prognostic factor (Figure S3). The 1-, 3-, and 5-

year AUC of m5C scores for OS was 0.781/0.762/0.711 (Figure 4F),

and for PFS, the 1-, 3-, and 5-year AUC was 0.724/0.629/0.657

(Figure 4H). Likewise, in the validation cohorts ICGC-LIRI-JP and

GSE14520, our risk model still had a stable prognostic capability, the

high-m5C score patients manifested a significantly worse OS than

the low-m5C score patients (Figure 4I, Figure S4A), and the 1-, 3-,

and 5-year AUC were 0.717/0.694/0.755 and 0.619/0.622/0.627

(Figure 4J and Figure S4B).
Assessment of immune
microenvironment characterization
with the prognostic risk model

To investigate the role of our risk model in the immune

microenvironment of HCC, we looked into the correlation among

the m5C score and expression level of immune checkpoints,

immune cells infiltration, TIDE, and IPS scores in the training

cohort TCGA-LIHC. The relative expression of most of the 20

immune checkpoints was significantly elevated in the high- m5C

score group (Figure 5A). To further analyze the correlations

between the immune microenvironment and our prognostic

risk model, we used the CIBERSORT algorithm to calculate 22
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G H

FIGURE 3

Clinical Characteristics Gene Sets Enrichment between clusters. (A-C) The clinical characteristics included Neoplasm Disease Stage. (A), Cancer
Tumor Stage (B), and Neoplasm Histologic Grade (C) between two m5C clusters(Chi-square test, p< 0.01). (D, E) The top 10 significant GO
analysis terms (D) and KEGG pathways (E) of DEGs in two clusters. (F). The relative expression levels of 20 immune checkpoints in two m5C
clusters. (* p<0.05, ** p<0.01, *** p<0.001, ns: no significant difference). (G). HALLMARK pathway enrichment analysis of two m5C clusters by
GSVA. (H). The relative distribution of TIDE was compared between two m5C clusters.
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FIGURE 4

Construction of the prognostic risk model. (A, B) The least absolute shrinkage and selection operator (LASSO) regression was performed,
calculating the minimum criteria. (C). Coefficients plot of six selected genes. (D). Differential expression of six selected genes in tumor and
normal tissues in TCGA-LIHC cohort. (*** p<0.001). (E, F) Kaplan-Meier analysis for OS (E) and time-dependent ROC curve (F) of the risk score
in the TCGA-LIHC cohort. (G, H) Kaplan-Meier analysis for DFS (G) and time-dependent ROC curve (H) of the risk score in the TCGA-LIHC
cohort. (I, J) Kaplan-Meier analysis for OS (I) and time-dependent ROC curve (J) of the risk score in the ICGC cohort.
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types of immune cells, Figure 5B shows the correlation between

the m5C score and immune infiltration cells. The m5C score

displayed a significantly positive correlation with macrophages

(M0), activated memory CD4 T cells, follicular helper T cells, and

Eosinophils (p< 0.01), and a significantly negative correlation with
Frontiers in Immunology 10
resting memory CD4 T cells, resting NK cells, monocytes,

macrophages (M2), and resting mast cells (p< 0.01). Not only

CIBERSORT, but we also used TIMER and MCPcounter to

analyze immune cell infiltration in high and low-risk groups,

the result were displayed in Figure S5. Additionally, we also
B

C

D E F G H

A

FIGURE 5

Assessing immune microenvironment characterization with the prognostic risk model. (A) The relative expression levels of 20 immune
checkpoints in the High- and Low- m5C score group.(* p<0.05, ** p<0.01, *** p<0.001, ns: no significant difference). (B) The correlations
between the m5C score and immune cell infiltration were estimated by using the CIBERSORT algorithm. (C) The correlations between the m5C
score and immune checkpoints expression. (D) Immunoinhibitory cytokines expression between High- and Low- m5C score groups. (E–H)
TIDE (E) Exclusion (F) Dysfunction (G) and MDSC score between High- and Low- m5C score groups. (H) Relative distribution of tumor mutation
load in High- versus Low- m5C score groups. (* p<0.05, ** p<0.01, *** p<0.001, ns: no significant difference).
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analyzed the correlation between the expression of immune

checkpoints and our risk model score. Most of the immune

checkpoints had a significantly positive correlation with the

m5C score (Figure 5C). We hypothesized that the m5C score

might be related to immune evasionmechanisms, so we compared

the TIDE and IPS scores between the low- and high- m5C score

groups. The patient in the high-m5C score group had a higher

inhibitory immune checkpoints expression level, TIDE and

Exclusion score, and a lower Dysfunction score (Figuress 5D–G,

p< 0.001). Myeloid-derived suppressor cells (MDSC) (33) are a

group of cells defined by their T cell immunosuppressive

functions. We found out that the high-m5C score group also

presented a higher MDSC score (Figure 5H, p< 0.001), which

further suggests that the high-m5C score group may be in an

immunosuppressed state. IPS was significantly elevated in the

low-m5C score group (Figure S5, p< 0.001). These findings
Frontiers in Immunology 11
indirectly demonstrate that our risk model had a valuable

relevance in the immune microenvironment of HCC.

To further explore the correlation between TME and our risk

model, we also analyzed the TME pathway and several

therapeutic signatures with our m5C score. The result obtained

shows a significant positive correlation between the m5C score

and most TME and therapeutic pathways (Figures 6A, B).

Growing evidence has displayed an association between

somatic mutations in tumor genomes and response to

immunotherapy (34–36). We found that though there was no

notable difference in the total mutation frequency between the

two m5C score groups, the high-m5C score group exhibited

more TP53 mutation than the low-m5C score group (42% versus

15%, Fisher’s exact test, p< 0.001) (Figures 6C, D). Recent

research has revealed that TMB may act as a biomarker of

response to immune checkpoint inhibitors (37–40). We then
B

C D E

A

FIGURE 6

Assessing tumor microenvironment characterization with the prognostic. (A). The correlations between the m5C score and the enrichment
scores of TME pathways. (B) The correlations between the m5C score and the enrichment scores of immunotherapy- predicted pathways.
(C, D) The mutational landscape between High- (C) and Low- (D) m5C score groups. (E) Relative distribution of tumor mutation load in High-
versus Low- m5C score groups. (* p<0.05).
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compared the TMB between the two m5C score groups and

found out that the high-m5C score group had a higher TMB than

the low-m5C score group (p< 0.05) (Figure 6E).
Assessing the association of
potential drug sensitivity with
the prognostic risk model

To extend our model for clinical translation, we further

explored the possible association of the m5C score with potential
Frontiers in Immunology 12
drug sensitivity. We performed analyses of GDSC2 and PRISM

drug sensitivity databases in an attempt to find new potential

compounds associated with the m5C score (Figure 7A). By

correlation analysis, we screened the compounds in these two

drug sensitivity databases that were negatively correlated with

m5C scores, and the absolute value of the Pearson’s correlation

coefficient obtained > 0.3. Also a significantly different AUC

(Wilcoxon test, p< 0.05) was observed between the two groups of

high- and low-m5C scores (Tables S2, S3). The top 10 associated

compounds with m5C scores in two drug databases are

presented in Figure 7B. Although these 20 candidate
B

C D E

F G

A

FIGURE 7

Assessing the association of potential drug sensitivity with the prognostic risk model. (A) Venn diagram for summarizing included compounds
from GDSC and PRISM datasets. (B) Top 10 associated compounds with m5C score in two drug databases (GDSC2, PRISM). (C) Identification of
the most promising therapeutic agents for high m5C score patients according to the evidence from multiple sources, 10 GDSC-derived agents
and 10 PRISM-derived agents were shown on the left and right of the diagram, respectively. (D-G) Differential drug response AUC analysis of 4
selected compounds (Wilcoxon test, *** p< 0.001).
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compounds showed increased drug sensitivity in patients with

higher m5C scores, the above analyses alone can not lead to the

conclusion that these chemicals had a therapeutic effect on HCC.

Thus, we used the CMap analysis to find compounds in which

gene expression patterns were oppositional to the HCC-specific

expression patterns. If CMap scores< −1, it represents that these

compounds might bring therapeutic benefits to HCC. Secondly,

we calculated fold-change differences in the mRNA expression

levels of candidates’ drug target genes between tumor and

normal tissue, and a higher fold change value indicated a

greater potential for a candidate agent for HCC treatment.

Finally, a comprehensive literature search was performed in

PubMed to find out the experimental and clinical evidence of

candidate compounds for treating HCC. All results were

presented in Figure 7C (Table S4). Four compounds, including

Sepantronium bromide (YM-155), axitinib, vinblastine, and

docetaxel, which had strong in vitro and silico evidence, were

thought to be the most promising therapeutic candidates in

HCC patients with high m5C scores. Differences in the

sensitivity of these four drugs between the high- and low-m5C

score groups were displayed in Figure 7D-G. Our results can

provide some reference for further clinical translation.
Validation of risk score in IMvigor210
cohort and other TCGA digestive cancers

To validate the feasibility of our prognostic risk model in

immunotherapy and other GI tumors, we applied our model to

three immunotherapy cohorts that included IMvigor210, Riaz,

et al. Cell 2017 (GSE91061), and Lauss et al. Nat Commun 2017

(GSE100797), and the other five additional TCGA digestive

cancer cohorts that also included TCGA-CHOL, TCGA-

PAAD, TCGA-STAD, TCGA-COAD, and TCGA-READ. We

then found out that our prognostic risk model can distinguish

between the high and low-risk groups with a completely different

OS or PFS in three immunotherapy cohorts, and TCGA-CHOL,

and TCGA-PAAD cohort (Figures S6A–E, log-rank test, p<

0.05), but showed no significant difference in TCGA-STAD,

TCGA-COAD, and TCGA-READ (Figures S6F–H) cohorts.
Constructing diagnostic models by six
candidate genes

To increase the probability of early detection of HCC, we

developed a tumor diagnostic model by these six genes of our

prognostic risk model. 50 HCC tumor samples and 50 paired

normal tissues from TGCA-LIHC as the training cohort, 247

HCC tumor samples and 241 normal tissues from GSE14520 as

the validation cohort to verify the reliability of the model. The

tumor diagnostic model was formulated as follows: logit (P-

HCC) = 6.906 - 0.494 * SOCS2 expression level - 1.250 * LCAT
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expression level – 0.493 * FTCD expression level + 0.602 *

KRT17 expression level + 1.950 * PBK expression level + 7.243 *

CBX2 expression level. The results obtained are shown in

Figures 8A–F. The AUCs of the training cohort and the

validation cohort are 0.99 (Figure 8B) and 0.960 (Figure 8E),

the diagnostic model achieved 94% sensitivity and 100%

specificity in the training cohort (Figure 8C) and 93.9%

sensitivity and 90.9% specificity in the validation cohort

(Figure 8F). Meanwhile, we also constructed 2 diagnostic

models of HCC tumors and liver cirrhosis. The training

cohort GSE63898 contained 228 HCC samples and 168 liver

cirrhosis samples, and the validation cohort GSE25097

contained 268 HCC samples and 40 liver cirrhosis samples.

The tumor diagnostic model was formulated as follows: logit (P-

HCC) = -2.534 – 1.240 * SOCS2 expression level - 1.320 * LCAT

expression level + 0.335 * FTCD expression level – 1.911 *

KRT17 expression level + 4.422 * PBK expression level + 2.006 *

CBX2 expression level. The results obtained are shown in

Figures 8G–L. The AUCs of the training cohort and the

validation cohort are 0.973 (Figure 8H) and 0.929 (Figure 8K),

the diagnostic model achieved 91.7% sensitivity and 97.0%

specificity in the training cohort (Figure 8I) and 86.6%

sensit ivi ty and 92.5% specificity in the val idat ion

cohort (Figure 8L).
Validation of the prognostic risk model in
Xiangya HCC cohort

In the Xiangya HCC cohort (Table S5), the prognoses were

approximately the same as those seen in the training set. Survival

analysis verification testified that the prognostic risk score model

was a great independent prognostic factor in HCC (Figures 9A–

C). The expression of 6 candidate genes in HCC and paired

normal liver tissues, CBX2, PBK, and KRT17 were higher in

tumors than in normal tissues. On the contrary, FTCD, LCAT,

and SOCS2 were lower in tumors than in normal tissues (Figure

S7, p< 0.05).

To evaluate the predictive value of the prognostic risk score

model on immunotherapy response, we selected CD274 and

CTLA4, two immune checkpoints approved for clinical

treatment, for further verification of the model. We collected

pathological tissues from the 55 patients in the Xiangya HCC

cohort. The tissues were used to make paraffin sections and for

immunohistochemical staining. The results obtained show that

higher CD274 and CTLA4 expression in the high prognostic risk

score group compared to that of the low prognostic risk score

group, a finding in line with the results of our bioinformatics

analysis (Figures 9D–G). Our research provides further

verifications that patients with a low prognostic risk score could

benefit from immunotherapy to a higher degree than those with a

high prognostic risk score. Hence, a prognostic risk score can be

utilized as a potential biomarker for immunotherapy response.
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FIGURE 8

Constructing Diagnostic Models by six candidate genes. (A-F) Diagnostic model of HCC and normal tissues.Heatmaps of six genes expression
between HCC and normal tissues in the training (A) and validation (D) testing cohorts.Receiver operating characteristic (ROC) curves and the
associated areas under curves (AUCs) of the diagnostic prediction models in the training (B) and validation (E) testing cohorts.Confusion
matrices were built from the diagnostic model prediction in the training (C) and validation (F) testing cohorts. (G-L) Diagnostic model of HCC
and cirrhosis tissues.Heatmaps of six genes expression between HCC and cirrhosis tissues in the training (G) and validation (J) cohorts.Receiver
operating characteristic (ROC) curves and the associated areas under curves (AUCs) of the diagnostic prediction models in the training (H) and
validation (K) cohorts. Confusion matrices were built from the diagnostic model prediction in the training (I) and validation (L) cohorts.
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FIGURE 9

Validation of the prognostic risk model in Xiangya HCC cohort. (A) Progression-free survival time in high- and low- m5C score groups in
Xiangya HCC cohort. (B) Time-dependent ROC curve (H) of the risk score in Xiangya HCC cohort. (C) Multivariate Cox regression analysis of PFS
in Xiangya HCC cohort. (D–G) The expression level of CD274 (D, E) and CTLA4 (F, G) in high- and low- m5C score groups in the Xiangya HCC
cohort. (*p < 0.05, **p < 0.01, ***p < 0.001, ns, no significant difference).
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Discussion

Advanced HCC has a poor prognosis. There are some

reasons behind it. Firstly, the diagnosis is often delayed. Many

patients are diagnosed at an advanced stage. Then, due to the

tumor heterogeneity, a large proportion of patients develop

varying degrees of drug resistance. Immunotherapy, while

powerful, does not work for everyone (41). Therefore, it is a

critical challenge to detect early-stage HCC and find the best-

personalized treatment in the field.

To our knowledge, this study is the first to (I) construct one

prognostic and two diagnostic models based on comprehensive

18 m5C regulators; (II) build an m5C score to predict

immunotherapy response, and (III) find the potential targeted

drugs for patients who are less susceptible to ICBs. The past

researches on m5C regulators-mediated methylation

modification model in HCC need to be refined. This study

used 18 m5C regulators to construct models that better improved

the predictive accuracy of early diagnostic, immune contexture,

and characterizations in HCC and validated the model by

Xiangya real-world cohorts and three immunotherapy cohorts,

and two TCGA digestive cancers cohorts to strengthen the

persuasion. More importantly, our study represents a step

toward individualized chemotherapy and immunotherapy for

patients with HCC and provides new potential drugs for those

ICB-insensitive patients.

6 candidate genes have been reported in HCC. It was

reported that CBX2 overexpression occurs in a wide range of

human tumors, including lung cancer, HCC, breast cancer, and

so on. Previous studies presented that it could promote HCC

progression via the phosphorylation of YAP (42). SOCS2 is

reported to be highly expressed in HCC, associated with the N6-

methyladenosine (m6A) in tumor pathogenesis and progression

(43). According to past studies, LCAT (44) and FTCD (45) were

expressed low, while PBK and KRT17 were overexpressed in

HCC (46). All these findings were consistent with our results.

We applied the prognostic model to immunotherapy and other

GI tumor cohorts and found out that our prognostic risk model

can distinguish between high and low-risk groups with a

completely distinct OS or PFS in three immunotherapy

cohorts, TCGA-CHOL, and TCGA-PAAD cohorts. These

results indicate that our prognostic model has wider feasibility.

Most HCCs develop in stages, starting with chronic

hepatitis, cirrhosis, and dysplastic nodules (DN) and ending

with HCC. Radiological and pathological exams are the most

common methods for early detection of HCC. Cirrhosis and tiny

nodules, however, are becoming more difficult to be

characterized, according to the latest findings (47). To

circumvent these limitations, molecular markers that can

objectively and precisely characterize HCC need to be

identified. Two diagnostic models including SOCS2, LCAT,

FTCD, KRT17, PBK, and CBX2 expression were proved to

accurately separate HCC from normal and liver cirrhosis
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samples in this study. This result shows indications that the

model can enhance the early detection rate of HCC and is

beneficial to early clinical management in patients with HCC,

therefore improving patients’ prognosis and lowering the risk of

relapse. Our findings pave the way for the use of biomarkers

such as SOCS2, LCAT, FTCD, KRT17, PBK, and CBX2 in the

early detection of HCC patients.

The immune microenvironment provides strategies for

immunotherapy and its characteristics are closely associated

with immunotherapy efficacy (48). In our study, the high-m5C

score group has a higher immune checkpoints expression level

and a higher TMB, but a probably worse prognostic in

immunotherapy response. These findings project a different

opinion contrary to some previous studies and they

demonstrate that the analysis of immune checkpoints or TMB

only is insufficient to achieve accurate outcome prediction (49),

just like we don’t have to test the immune checkpoints

expression level and TMB before administrating to the

patients with immunotherapy in all cancers according to

clinical guidelines. The Tumor Immune Dysfunction and

Exclusion (TIDE) algorithm is a wildly applied computational

method to comprehensively evaluate the ICB therapy efficacy in

tumors. Immunophenoscore (IPS) is of significant value in

predicting response to anti-CTLA-4 and anti-PD-1 regimens,

by quantifying the determinants of tumor immunogenicity and

depicting the intratumoral immune landscapes and cancer

antigenomes. The high-m5C score group has a higher TIDE

and Exclusion score, MDSC score and lower Dysfunction score

and IPS score. We could speculate that these patients in the

high-m5C score group may have an immune evasion

mechanism. Accordingly, patients with a low m5C score have

a greater chance to benefit from ICB therapy.

Since patients in the high-m5C score group are insensitive to

the ICB therapy, are there any other options for them? Greater

attention should be paid to patients who are less susceptible to

immunotherapy. By correlation analysis, the top 10 associated

compounds with m5C scores in two drug databases are obtained.

Although these 20 candidate compounds showed increased drug

sensitivity in patients with higher m5C scores, the above analyses

alone can not lead to the conclusion that these chemicals had a

therapeutic effect on HCC. Thus, we used the CMap analysis to

find compounds in which gene expression patterns were

oppositional to the HCC-specific expression patterns.

Secondly, we calculated fold-change differences in the mRNA

expression levels of candidates’ drug target genes between tumor

and normal tissue. Finally, a comprehensive literature search was

performed in PubMed to find out the experimental and clinical

evidence of candidate compounds for treating HCC. Four

compounds, including Sepantronium bromide (YM-155),

axitinib, vinblastine, and docetaxel, which had strong in vitro

and silico evidence, were thought to be the most promising

therapeutic candidates in HCC patients with high m5C scores.

YM-155 is a small imidazolium-based agent that works as a
frontiersin.org

https://doi.org/10.3389/fimmu.2022.951529
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.951529
surviving inhibitor. In HCC cell lines, YM155 could suppress

proliferation and induce cell cycle arrest and apoptosis, giving

rise to DNA damage by dysregulating genes related to cell-cycle

checkpoints regulation. Moreover, in a mouse model, YM155

demonstrated significantly better efficacy than sorafenib.

However, its therapeutic efficacy has only been moderate so

far (50). By identifying potential YM155-responsive patients, the

current study shed fresh light on how to improve the therapeutic

efficacy of YM-155, and therefore on how to deliver precision

medicine for HCCs. Axitinib is a potent and selective vascular

endothelial growth factor receptors 1-3 inhibitor that has been

extensively used as the first-line treatment in several anticancer

regimens. In clinical trials, it contributes to remarkable longer

PFS and TTP and a higher clinical benefit rate, with acceptable

adverse effects in patients with advanced HCC (51). Gemcitabine

and docetaxel for HCC seem to have potential benefits, as

measured by OS, but their toxicity is an unignorable issue

(52). Vinblastine has been widely known as a prominent agent

in cancer chemotherapy. And it was reported to sustain

antitumor activity by co-targeting mTOR and the microtubule

in HCC (53). However, their association with HCC progression

or m5C modification is still unknown. In addition, the high m5C

score group has a lower AUC, which means that this group of

patients is more sensitive to the predicted drugs. Since patients

in the high-m5C score group have a poorer prognosis and are

less likely to benefit from ICB therapy. We can presume that the

predicted drugs may offer new options to patients in the high

m5C score group who are less susceptible to immunotherapy.

This study investigates the expression level of 18 m5C

regulators and survival data from TCGA. After univariate Cox

regression and LASSO regression, a total of 6 candidate genes

were obtained, including CBX2, SOCS2, LCAT, PBK, KRT17,

and FTCD. Using the 6 candidate genes, 2 diagnostic and a

prognostic models were established and they displayed a great

predictive accuracy of early diagnostic, prognostic, immune

contexture, and drug sensitivity in HCC. The prognostic

model showed that patients with a high m5C score had a

poorer prognosis and shorter survival time when compared to

patients with a low m5C score. The AUC in the training set,

validation set, and real-world cohort are most above 0.7. All of

these results suggest that both the prognostic model and the

diagnostic model are powerful predictive factors in HCC. In

addition, the high m5C score group has a higher (I) inhibitory

immune checkpoints expression level (such as IL-10、TGF-b、
IL-4, and IL-35), (II) TIDE and Exclusion score (III) MDSC

score, and a lower (I) Dysfunction score and (II) IPS score,

which suggests that patients with a high m5C score have a higher

chance to experience an immune evasion state and may have a

worse response to immunotherapy. For further clinical

translation, potential targeted drugs for high m5C score

samples can be designed. Our research suggests that the

diagnostic model plays a significant role in early diagnosis and

the m5C score is an independent prognostic factor for HCC
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patients. Furthermore, the m5C score can serve as a potential

biomarker that helps screen the best beneficiaries of

immunotherapy and helps to find potential targeted drugs.

However, there are some limitations to our study. Firstly, due

to the time constraints and budget limits, our research failed to

thoroughly investigate the fundamental mechanism of m5C

regulators involved in HCC, and further experimental and

clinical validations are in need to facilitate the clinical application

of our findings. Secondly, we were unable to directly assess the

relationship between the m5C score and the response of HCC

patients to immunotherapy because of the lack of overall clinical

information in the datasets involved. Thirdly, the sample size of the

Xiangya HCC cohort should be further enlarged in the future.
Conclusion

To conclude, by integrating expression data from TCGA,

GEO, and a real-world cohort, we successfully identified 6

candidate genes and constructed 2 diagnostic models that show

great performance in early screening of HCC and an m5C score

model that enable effective prediction of the prognosis of HCC

patients. Patients with low m5C scores are more sensitive to ICBs

and thus can experience a better life quality with a satisfactory

prognosis. On the other hand, our study provided patients with

high m5C scores with potential therapeutic targets and agents,

which could significantly improve their prognosis. Overall, this

research has shed fresh light on individualized prognostic

methods as well as the integration of tailored prognosis

prediction for precision medicine.
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SUPPLEMENTARY FIGURE 1

The CNV of m5C regulator genes in TCGA-LIHC.

SUPPLEMENTARY FIGURE 2

TClustering of HCC based on 18m5C regulators. (A). The consensus score
matrix of all samples when k = 2. A higher consensus score between two

samples indicates they aremore likely to be grouped into the same cluster
in different iterations. (B). The cumulative distribution functions of the

consensus matrix for each k (indicated by colors). (C-D). The best number

of clusters k = 2, calculated by Silhouette algorithm (C) and R package
“NbClust” (D). (E). PCA plot by the expression of 18m5C regulator genes in

the two m5C clusters. The blue dots represented Cluster1, and the red
dots represented Cluster2. (F). tSNE plot by the expression of 18 m5C

regulator genes in two m5C clusters. The blue dots represented Cluster1,
and the red dots represented Cluster2. (G, H) Kaplan-Meier analysis for OS

(G) and PFS (H) of two m5C clusters in the TCGA-LIHC cohort.

SUPPLEMENTARY FIGURE 3

Multivariate Cox analysis of training cohort TCGA-LIHC.

SUPPLEMENTARY FIGURE 4

(A, B) Kaplan-Meier analysis for OS (A) and time-dependent ROC curve (B)

of the risk score in the GSE14520 cohort. (C, D) Kaplan-Meier analysis for

RFS (C) and time-dependent ROC curve (D) of the risk score in the
GSE14520 cohort.

SUPPLEMENTARY FIGURE 5

Immune cell infiltration by CIBERSORT(A), TIMER(B) and MCPcounter(C)
between high- and low-m5C score groups.

SUPPLEMENTARY FIGURE 6

Immunophenoscore (IPS) between high- and low- m5C score groups.

SUPPLEMENTARY FIGURE 7

Validation of risk score in immunotherapy cohorts and other TCGA
digestive cancers. (A-H) Kaplan-Meier curves for patients with high- and

low- m5C scores in three immunotherapy cohorts IMvigor210 cohort (A),

Riaz et al., Cell 2017 (B), Lauss et al., Nat Commun 2017 (C), and other
TCGA digestive cancer cohorts included TCGA-PAAD (D), TCGA-CHOL

(E), TCGA-STAD (F), TCGA-COAD (G), and TCGA-READ (H).

SUPPLEMENTARY FIGURE 8

Differential expression of six selected genes in HCC and adjacent non

tumor liver tissues in Xiangya HCC cohort.
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