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Heterochromatin is defined as regions of compact chromatin

 

that persist throughout the cell cycle (Heitz, 1928). The
earliest cytological observations of heterochromatin were
followed by ribonucleotide labeling experiments that
showed it to be transcriptionally inert relative to the more

 

typical euchromatic regions that decondense during in-
terphase. Genetic studies of rearrangements that place eu-
chromatic genes next to blocks of heterochromatin also
pointed out the repressive nature of heterochromatin
(Grigliatti, 1991; and references therein). The discovery of
the heterochromatin-enriched protein heterochromatin
protein 1 (HP1)* by Elgin and co-workers in the mid-
1980s suggested that the distinct cytological features of
this chromatin may be related to its unique nucleoprotein
composition (James and Elgin, 1986; James et al., 1989).
HP1 immunostaining on polytene chromosomes from

 

Drosophila 

 

larval salivary glands was used to show enrich-
ment of the protein in pericentric heterochromatin. Since
that initial discovery, HP1 homologues have been found
in species ranging from fission yeast to humans where it
is associated with gene silencing (Eissenberg and Elgin,
2000; and references therein). A number of euchromatic
sites of localization were also reported in this original
study. It has been generally assumed that these sites might
constitute euchromatic sites of transcriptional repression
by HP1. Indeed, several genes located at one of these sites
(cytological region 31) have increased transcript levels in
mutants for HP1 (Hwang et al., 2001).

 

In this issue, Piacentini et al. (2003) report the unexpected
association of HP1 with transcriptionally active regions of
euchromatin. Moreover, this article shows recruitment of
HP1 to ecdysone-activated puffs and to the well known heat
shock–induced puffs of polytene chromosomes. The heat

 

shock loci have served as models for transcriptional activation
and the accompanying changes in chromatin organization.

 

The finding that HP1 is recruited to transcriptionally activated

puffs flies in the face of current thinking about HP1 function
as a transcriptional repressor. Wakimoto and co-workers
showed a transcriptional activating function for HP1 in the
expression of genes located in heterochromatin (Hearn et al.,
1991), but this is the first report of a requirement for HP1
for proper expression of euchromatic genes. This association
of HP1 with puffs is shown to be functionally relevant; both
hsp70 transcript and protein levels are reduced in loss of
function mutants for HP1 and elevated in stocks carrying
two extra copies of the HP1-encoding gene as a transgene.

Interestingly, several lines of evidence support a role for

 

RNA in the recruitment of HP1 to puffs. Chromatin immuno-
precipitation experiments suggest an association of HP1 with
hsp70 gene coding sequences rather than their promoters.
Protein–protein interactions with the heat shock transcription
factor HSF are not likely to be involved; HP1 is not recruited

 

to ectopic binding sites for HSF unless transcription is initiated
from those sites. HP1 is also not recruited to puffs induced
by sodium salicylate without accompanying transcription.
Finally, HP1 is released from puffs by treating the heat
shock–induced chromosomes with RNase.

 

RNA has also been implicated in targeting of HP1 to
heterochromatin. Its association with centric heterochromatin
in mammalian cells is RNase sensitive (Maison et al., 2002).

 

Recent studies in 

 

S. pombe

 

 also implicate RNA in HP1

 

targeting to centric heterochromatin. Double-stranded
interference RNA produced from centromeric transposons
direct a lysine 9–specific histone H3 methyltransferase activity
to centromeres that provides a chromatin binding site for
HP1 (Reinhart and Bartel, 2002; Volpe et al., 2002). This
histone modification has been strongly implicated in HP1
association with chromatin, and binding of HP1 to this
modification requires its conserved chromodomain (Bannister
et al., 2001; Jacobs et al., 2001; Lachner et al., 2001;
Schotta et al., 2002).

Interestingly, Piacentini et al. (2003) also show failure of
HP1 mutants lacking the chromodomain to associate with
puffs. This is of interest because an earlier piece of work by
Becker and co-workers showed the chromodomain of the
MOF histone H4 acetyltransferase to confer RNA-binding
activity in the hyperactivation of the X chromosome in

 

Drosophila

 

 males (Akhtar et al., 2000). This suggests dual roles
for the HP1 chromodomain in HP1 targeting, one involving
binding to histones and another involving binding to RNA.
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*Abbreviation used in this paper: HP1, heterochromatin protein 1.
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These dual binding activities for the chromodomain carry
intriguing implications for both how HP1 is recruited to
chromosomes and how it might specify distinct activities at
distinct sites. HP1 is now known to be a highly interactive
protein; it is capable of interacting with a host of proteins
with a range of nuclear activities (Kellum, 2003; and refer-
ences therein). Do RNA sense strands recruit transcriptional
activators to sites of active transcription through HP1, while
RNA double strands specify targeting of a separate class of
HP1 repressing complexes to heterochromatic regions? If
sense RNA strands are capable of recruiting HP1 to euchro-
matic sites, why is recruitment largely restricted to sites of
intense transcriptional activity? Does HP1 affect different
aspects of transcriptional regulation at active versus repressed
sites, or does it have reciprocal effects on a single process?
These are just some of the interesting questions prompted
by these findings.

It is generally assumed that HP1 forms a repressive chro-
matin structure that affects transcription initiation rates at
repressed sites. Nuclease hypersensitivity mapping studies on
transgenes inserted into heterochromatin support this as-
sumption (Wallrath and Elgin, 1995; Cryderman et al.,
1999). However, the majority of studies of HP1 regulation
have relied on phenotypic assays (such as position effect var-
iegation) or measurements of steady state mRNA levels. One
exception to this is the use of a nuclear run-on assay showing
HP1 regulation of transcription initiation rates at cenH
transposons (Volpe et al., 2002). The finding by this study
(Piacentini et al., 2003) that HP1 is associated with gene
coding rather than promoter sequences suggests alternative
mechanisms for HP1 in regulating gene expression. For ex-
ample, it could function in the elongation phase of tran-
scription or even in stabilizing mRNAs. The effects reported
for HP1 gain and loss of function mutants on heat shock
gene mRNA and protein levels in this study are complex and
may suggest roles for HP1 in regulating gene expression after
the initiation of transcription. At 3 h after heat shock induc-
tion, transcript and protein levels were decreased in loss of
function mutants but increased in gain of function mutants.
The reverse was observed 7 h after heat shock. The authors
speculate that the inverse effects of each class of mutation at
the different time points are a result of an autoregulatory
feedback mechanism that is known to respond to heat shock
protein levels in heat shock recovery. It is conceivable that
HP1 functions in this autoregulatory mechanism, and that
HP1 levels affect the speed of recovery from heat shock acti-
vation. Such a role may be more akin to the more generally
held view for HP1 function as a transcriptional repressor.

Regardless of the precise role for HP1 at the heat shock–
induced puffs, the finding that it is associated with transcrip-
tionally active regions and that this association is RNA de-
pendent prompts questions that will certainly add a new

 

dimension to our understanding of HP1 targeting and
function.
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