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Hepatocellular carcinoma (HCC) has the highest incidence and mortality of any
malignancy in the world. Immunotherapy has been a major breakthrough for HCC
treatment, but immune checkpoint inhibitors (ICIs) are effective in only a small
percentage of HCC patients. In the present study, we screened programmed cell death
protein 1 (PD-1) -negative HCC samples, which are frequently resistant to ICIs, and
identified their methylation and transcription characteristics through the assessment
of differential gene methylation and gene expression. We also screened for potential
targeted therapeutic drugs using the DrugBank database. Finally, we used a LASSO
(least absolute shrinkage and selection operator) regression analysis to construct
a prognostic model based on three differentially methylated and expressed genes
(DMEGs). The results showed that ESTIMATE (Estimation of Stromal and Immune
Cells in Malignant Tumors using Expression Data) scores for the tumor samples were
significantly lower compared to normal sample ESTIMATE scores. In addition, we
identified 31 DMEGs that were able to distinguish PD-1-negative samples from normal
samples. A functional enrichment analysis showed that these genes were involved in a
variety of tumor-related pathways and immune-related pathways, and the DrugBank
screening identified potential therapeutic drugs. Finally, the prognostic model based
on three DMEGs (UBD, CD5L, and CD213A2) demonstrated good predictive power
for HCC prognosis and was verified using an independent cohort. The present study
demonstrated the methylation characteristics of PD-1-negative HCC samples, identified
several potential therapeutic drugs, and proposed a prognostic model based on UBD,
CD5L, and CD213A2 methylation expression. In conclusion, this work provides an
in-depth understanding of methylation in HCC samples that are not sensitive to ICIs.
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INTRODUCTION

Hepatocellular carcinoma (HCC) represents the malignancy with
the highest incidence and fatality rate in the world (especially
in East Asia and Southern Africa), resulting in approximately
800,000 deaths per year (Forner et al., 2018). Although a
variety of treatment methods (e.g., radiotherapy, chemotherapy,
surgical treatment, and liver transplantation) have made great
progress, the prognoses of patients with HCC have not improved
significantly, mainly due to continued difficulty with early
diagnosis, a high rate of recurrence, and limited indicators
(El-Serag et al., 2008; Kawamura et al., 2020; Kudo, 2020b;
Schoenberg et al., 2020). In recent years, immunotherapy has
been a major breakthrough for HCC treatment (Li et al., 2019;
Zhang Q. et al., 2020). With the development and application
of immune checkpoint inhibitors (ICIs) targeting programmed
cell death protein 1 (PD-1) and programmed death-ligand
1, the prognoses for some HCC patients have significantly
improved (Kalathil et al., 2016; Mahn et al., 2020). However,
immune escape and other related mechanisms within the tumor
microenvironment have not been adequately studied, and only
a small proportion of patients respond to immunotherapy
(Sakuishi et al., 2010; Ng et al., 2020). Therefore, it is both urgent
and necessary to further explore immune mechanisms related
to HCC occurrence and development to identify new targets
for immunotherapy.

A well-known epigenetic modification, DNA methylation
occurs mainly in mammalian CpG islands and can regulate gene
transcription to ensure cell-specific programmed gene expression
(Bird, 2002; Oe et al., 2021; Singh and Edwards, 2021). Many
studies have shown that abnormal DNA methylation is related
to the occurrence of various diseases, including cancers (Meng
et al., 2018; Zhang M. et al., 2020). The latest research has
also confirmed that DNA methylation is closely related to tissue
immune status (Lee et al., 2001; Thomas et al., 2012; Ghoneim
et al., 2017). Delacher et al. found that an important feature
of differentiated regulatory T-cell populations and lymphoid
T cells in different tissues was the gain (or loss) of DNA
methylation (Delacher et al., 2017). In addition, the blocking
of DNA methylation has also been reported to maintain the
effector functions of CD8+ T cells during chronic infections
(Ghoneim et al., 2017). Considering this close connection
between DNA methylation and immune function, we reasoned
that this epigenetic modification may be involved in the ICI
process against HCC. However, few studies have extensively
analyzed the relationship between DNA methylation and the
effects of ICIs on HCC.

Previous studies have shown that the expression of PD-1
is closely related to ICI treatment (El-Khoueiry et al., 2017;

Abbreviations: HCC, hepatocellular carcinoma; ICIs, immune checkpoint
inhibitors; PD-1, programmed cell death protein 1; LASSO, least absolute
shrinkage and selection operator; DMEGs, differentially methylated and expressed
genes; ESTIMATE, Estimation of Stromal and Immune Cells in Malignant Tumors
using Expression Data; DMGs, differentially methylated genes; KEGG, Kyoto
Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes; TCGA,
Cancer Genome Atlas; LIHC, liver hepatocellular carcinoma; UBD, Ubiquitin
D; TNF-α, tumor necrosis factor alpha; NF-κB, nuclear factor kappa B; IL-13,
interleukin-13.

Zhu et al., 2018). There have been many studies based on the
expression of PD-1 in the immune microenvironment of liver
cancer to explore its role, but these studies mainly focus on
samples with high PD-1 expression (Tan et al., 2019; Voutsadakis,
2019). Here, we have demonstrated the DNA-methylation
characteristics of PD-1-negative HCC samples and identified
31 differentially methylated and expressed genes (DMEGs)
using combined analyses of methylation, transcriptomes, and
prognostic information in concert with a functional-enrichment
analysis to determine the potential functions of these genes.
Furthermore, we identified potential HCC therapeutic drugs
based on the DrugBank database. Based on these findings, we
used a LASSO (least absolute shrinkage and selection operator)
regression analysis to determine a prognostic model, based on
three of these DMEGs, with good predictive ability. This research
provides new insights for in-depth studies of methylation in
PD-1-negative HCC.

MATERIALS AND METHODS

Data Acquisition and Processing
Data from TCGA was obtained through the TCGA Genomic
Data Commons application programming interface. We
obtained the most current (October 2, 2020) TCGA-LIHC
expression profile data, DNA methylation data, and clinical
follow-up information. Both normal samples (n = 50) and tumor
samples (n = 371) were represented in TCGA data set, and 50
normal samples and 177 tumor samples were also represented
in the DNA-methylation data set. HCC samples with PD-1
expression levels lower than the average found in normal samples
were regarded as PD-1-negative samples. Using this criteria, 177
PD-1-negative samples were identified.

Processing of Gene-Expression Data and
DNA-Methylation Data
Gene expression data from the PD-1-negative samples was
log2-converted and then analyzed for differential expression
using the “limma” package in R software (Phipson et al.,
2016). The p-values were converted to FDR values based
on the Benjamini and Hochberg method. FDR > 0.01 and
log2FC > 1 were considered to be up-regulated gene expression;
FDR > 0.01 and log2FC < 1 were considered to be down-
regulated gene expression.

The same R software package was applied to the DNA
methylation data set from TCGA-LIHC to identify differentially
methylated CpG genes (DMGs). Methylation intensities were
represented by β values, and the threshold for DMG recognition
was FDR < 0.05 and an absolute delta β-value > 0.3. We
subsequently calculated average β-values for different regions,
including the 5′- untranslated region (5′-UTR), first exon, gene
body, 3′-UTR, TSS1500, and TSS200.

Immune Infiltration Analysis
The “ESTIMATE” R software package was used to determine
ESTIMATE scores, stromal scores, and immune scores for both
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FIGURE 1 | Differences in immune infiltration between normal and HCC samples. (A) PD-1 expression differences between normal and HCC samples.
(B) Differences in stromal scores, immune scores, and ESTIMATE scores between normal and HCC samples, ∗∗∗p < 0.001.

the HCC and normal samples (Verhaak et al., 2010). These scores
were used to describe the overall immune-cell infiltration of the
microenvironment.

Identification of DEGs and DMGs
All gene identifications based on differences in FDR < 0.01
were considered to be credible. We then performed a joint
analysis of both DEGs and DMGs and divided the resulting
DMEGs genes into four groups: HypoUp (β-value < -0.3 and
log2FC > 1); HypoDown (β-value < -0.3 and log2FC < 1);
HyperUp (β-value > -0.3 and log2FC > 1); and HyperDown
(β-value > -0.3 and log2FC < 1).

Functional Enrichment Analysis
We used the “clusterProfiler” package in R software to perform
a gene ontology functional enrichment analysis and a KEGG
pathway-annotation analysis of the DMGs, DEGs, and DMEGs to
identify the important biological processes and pathways related
to these differentially expressed genes (Yu et al., 2012).

Screening for Potential Target Drugs
We screened the DrugBank database1 to identify potential drugs
capable of up-regulating DMEGs. NetworkAnalyst 3.02, a web-
based visual analysis platform for analyzing and interpreting
systems-level gene expression data, was used to analyze protein-
drug interactions from the DMEGs based on the DrugBank
database (Zhou et al., 2019). The HCC-drug proximity was
calculated using the following formula:

d(S,T) = 1
∑

t ∈ Tmins ∈ S(d(s, t) + ω)

where S represents the DMEGs; D represents the degree of BPH-
related gene-set nodes in the PPIs; T represents the drug-target

1https://www.drugbank.com/
2http://www.networkanalyst.ca/

gene set; the distance d (s,t) represents the shortest path between
the s node and the t node; and ω is the weight of the target gene.
If the target gene was a gene in the BPH-related gene set, the
calculation method was ω = -ln(D+ 1), otherwise ω = 0.

Analysis of DMEG-Related Prognostic
Signature Genes
For DMEGs, we used the Principal Component Analysis method
to distinguish between HCC and adjacent samples. Linear
Discriminant Analysis was used to classify the samples using
DMEG expression-profile data and methylation data, and the
leave-one-out cross-validation method was used for verification.

To determine relationships between DMEG expressions and
prognoses, we first randomly divided the PD-1-negative samples
into two groups: a training set (n = 88) and a validation
set (n = 89). For the DMEG-expression and clinical-survival
data, we performed 1000 LASSO regression analyses, using 10-
fold cross-validation, summarized the dimensionality reduction
results each time, and then counted the number of times each
probe appeared per 100 times.

RESULTS

PD-1 Expression in HCC and Normal
Tissue Samples, and Their
Microenvironment Characteristics
A differential-expression analysis indicated that the expression
of PD-1 in HCC samples was significantly higher compared
to its expression in normal samples (Figure 1A). As expected,
stromal and immune scores based on the ESTIMATE (Estimation
of Stromal and Immune Cells in Malignant Tumors using
Expression Data) analysis were both significantly reduced in
HCC samples compared to normal samples (Figure 1B). These
results indicate that stromal and immune infiltrations in the
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FIGURE 2 | Identification and characteristics of genes with differential DNA methylation in PD-1 negative HCC samples. (A) A volcano map of methylation
differences of the gene body, TSS200, and TSS1500 regions in PD-1 negative HCC samples. (B) The differentially methylated genes in these three regions were
mostly hypomethylated. (C) A Venn diagram of hypermethylated genes in the three regions. (D) A Venn diagram of hypomethylated genes in the three regions.
(E) Gene ontology functional-enrichment analysis and KEGG annotation analysis of differentially methylated genes. The most-intense red color represents the
smallest FDR, and dot size is proportional to enrichment number.

tumor microenvironment were significantly inhibited, which
is consistent with previous studies (Binnewies et al., 2018;
Ruf et al., 2021).

Gene Analysis for Differential DNA
Methylation
To identify differentially methylated genes, we analyzed TSS200
[transcription start site (TSS) to 200 nucleotides upstream of the

TSS], TSS1500 (200 to 1500 nucleotides upstream of the TSS),
and gene body methylation levels in both the PD-1-negative
HCC and normal samples. The results indicated a total of 1,700
differentially methylated genes in the HCC samples. Specifically,
52 hypermethylated and 775 hypomethylated genes were
identified in gene body regions, 150 hypermethylated and 407
hypomethylated genes were identified in TSS200 regions, and 90
hypermethylated and 606 hypomethylated genes were identified
in TSS1500 regions (Figure 2A). The number of hypomethylated
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FIGURE 3 | Identification and characteristics of the DEGs based on PD-1-negative HCC samples. (A) A volcano map of the DEGs. (B) A differential-expression heat
map of the normal and HCC samples. (C) KEGG annotation analysis of the DEGs. (D) Gene ontology biological-function enrichment analysis of the DEGs. (E) DEG
analysis for gene ontology cell-component enrichment. (F) Molecular function enrichment analysis of the DEGs.

genes in these regions was far greater than the number
of hypermethylated genes, especially for gene body regions
(Figure 2B). A set-distribution analysis of the results showed that
six hypermethylated genes were represented in all three of the
regions, with 206 genes represented in only one of the regions,
and that 40 hypomethylated genes were represented in all three
of the regions, with 1162 genes represented in only one of the
regions (Figures 2C,D), suggesting that DNA methylation levels
are region-specific. The functional enrichment analysis showed
that these differentially methylated genes (DMGs) were mainly
enriched in 11 biological processes, four cellular components,
four molecular functions, and two Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways (including mRNA binding,

structural constituents of the epidermis, and mRNA binding
involved in posttranscriptional gene silencing) (Figure 2E).

Functional Enrichment Analysis of
Differentially Expressed Genes (DEGs)
Gene-expression profile data from 177 PD-1-negative tumor
samples and 50 normal samples were used to determine
differential gene expression. The screening criteria were false
discovery rate (FDR) < 0.01 and log2FC (fold change) > 1.
A total of 2249 differentially expressed genes (DEGs) were
identified, of which 1659 were up-regulated in tumors and 590
were down-regulated (Figure 3A). A unsupervised hierarchical
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FIGURE 4 | Identification and expression patterns of DMEGs. (A) A Venn diagram of the DEGs and the DMGs in gene body regions. (B) A Venn diagram of the
DEGs and the DMGs in TSS200 regions. (C) A Venn diagram of the DEGs and the DMGs in TSS1500 regions. (D) Distribution of the four DMEG expression modes
in the three regions. (E) A histogram of the four DMEG regulatory modes in the three regions.

cluster analysis showed that these DEGs could distinguish
between tumor and normal samples (Figure 3B). We performed
a functional-enrichment analysis of these genes, and the results
showed that a variety of tumor and immune-related pathways
were enriched (e.g., cell cycle, DNA replication, complement
and coagulation cascades, complement activation, and humoral
immune responses) (Figures 3C–F).

Identification of DMEGs
Given the importance of both methylation and transcription in
HCC occurrence and development, we jointly analyzed DMGs
and DEGs to more fully explore the relationship between these
two processes with the idea that genes demonstrating both
differential DNA methylation and expression may play crucial
HCC roles (Hu et al., 2020). A set-distribution analysis showed
that 11 DMEGs were identified in gene body regions, 18 DMEGs
were identified in TSS200 regions, and 15 DMEGs were identified
in TSS1500 regions (Figures 4A–C). In addition, the extent
to which these genes showed both differential methylation
and expression is shown in Figure 4D. The observation that
most of these DMEGs were hypomethylated in tumors is

consistent with previous reports (Fabianowska-Majewska et al.,
2021). Interestingly, several DMEGs (e.g., TBX15, REG1A, and
HBB) were found in all three regions, indicating that these
genes may have transcriptional differences caused by differential
methylation. Previous reports have shown that TBX15 expression
can be used as a prognostic marker for HCC (Morine et al., 2020),
and HBB has been reported to play a key role in prostate cancer
differentiation and in a variety of important biological pathways
(e.g., iron metabolism) (Chen and Sun, 2021; Lin et al., 2021).
Based on the present expression data, we identified four different
regulatory gene sets in the three DNA regions, for a total of 31
DMEGs (Figure 4E).

To better understand the potential functions of these
genes in HCC, an in-depth chromosome (chr) distribution
analysis was carried out (Figure 5A). We found that chr7,
chr18, and chrX had the most DMEGs. Interestingly, the
methylation patterns of the DMEGs in adjacent chromosomal
gene regions were roughly consistent, suggesting that these
genes may have cooperative expression patterns and functions.
In order to verify gene effectiveness, we used the expression
profiles of these 31 DMEGs and the methylation data from

Frontiers in Cell and Developmental Biology | www.frontiersin.org 6 August 2021 | Volume 9 | Article 708819

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-708819 August 9, 2021 Time: 10:32 # 7

Zhu and Guo A Novel Prognostic Model in HCC

FIGURE 5 | Characteristics of DMEGs and drug distance. (A) DMEG distributions on chromosomes. (B) Principal component analysis of DMEG expression and
methylation in the three DNA regions. (C) Construction of the linear discriminant model based on the expression profiles and methylation levels of DMEGs for
predicting the ROC curves for HCC and normal samples. (D) The results of KEGG pathway-annotation and gene ontology enrichment analyses for the DMEGs, with
different colors representing different pathways, and the lines indicating relationships between genes and pathways. (E) A drug distance-density plot for the
differentially methylated and expressed gene set.

the DMEGs in each of the three regions to construct a
linear judgment classification model. The results showed that
these DMEGs could effectively distinguish PD-1-negative HCC
samples from normal samples (Figure 5B). The corresponding
receiver operating characteristic (ROC) curve analysis showed

an area-under-the-curve (AUC) value ≥0.99 (Figure 5C). The
functional enrichment analysis showed that DMEGs were mainly
enriched in amyloid and apoptotic-cell clearance, as well as in
the activation of signaling pathways, such as mitogen-activated
protein kinase pathways (Figure 5D).
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Identification of Potential Target Drugs
Based on PD-1-Negative DMEGs
A DMEG protein-drug interaction analysis was performed using
the NetworkAnalyst 3.0 tool based on the DrugBank database,
and 6 genes were found to interact with drugs (Table 1). Among
them, cystic fibrosis transmembrane conductance regulator
(CFTR) and hemoglobin subunit beta (HBB) proteins had
the most drug interactions: 12 with HBB (e.g., pentaerythritol
tetranitrate, and 4-carboxycinnamic acid) and 7 with CFTR (e.g.,
colforsin, crofelemer, and lonidamine). Some of these identified
drugs may be effective against HCC.

Based on these drug-target pairs from DrugBank, as well as the
string key protein-protein interaction (PPI) network (threshold
score was set at 600), we calculated drug-HCC proximities. For
both our DMEGs as samples, and for randomly selected genes
as samples, we found that the number of drugs was significantly
reduced when drug distance was less than 0.8 (Figure 5E). This
suggests that when HCC-drug proximity is less than 0.8, the drug
may have a targeted impact on the disease.

Molecular Docking Analysis Verifies the
Affinity of Candidate Drugs
Considering the accuracy of molecular docking, we chose
SRD5A2 with a moderate molecular weight as a representative
to perform molecular docking analysis in order to clarify the
binding model between drug candidates and gene targets. We first
downloaded the 3D model of SRD5A2 protein (PDB ID: 7BW1)
from the PDB database for molecular docking experiments
(Figure 6A). Autodock Vina molecular docking results show
that the compound can bind tightly to the active site of the
SRD5A2 protein, with a molecular docking score of -6.5kcal/mol
(Figure 6B). In addition, we found that the compound could
generate favorable hydrogen bonds with the important amino
acid residues GLU57, GLN56 and TYR91 in the SRD5A2 protein,
as shown in Figure 6C. The above results suggest that the
drug Azelaic acid can interact closely with the SRD5A2 protein,
thereby affecting the activity of the SRD5A2 protein. Meanwhile,
we used molecular dynamics simulation to further evaluate the
stability of the protein model combined with the drug, and used
the RMSD method to estimate the stability of the protein model
(Figure 6D). During the 100ns molecular dynamics simulation,
we can find that the protein-backbone is maintained in a
relatively stable state as a whole, indicating that the protein is
relatively stable during the molecular dynamics simulation.

Prognostic Genetic Signature of DMEGs
in PD-1-Negative Samples
We used a LASSO regression analysis to reduce the
dimensionality of the expression and prognostic data for these
DMEGs, and obtained a combined maximum frequency for three
probe genes (Figure 7A; ENSG00000073754, ENSG00000123496,
and ENSG00000213886). The trajectories for these three genes
with different lambdas are shown in Figure 7B, and the
standard-deviation distribution of the different lambdas is shown
in Figure 7C. The survival-model results demonstrated that,
with a median cutoff, the high-expression group was significantly

TABLE 1 | The interaction between DMEGs and drugs.

Gene Gene type Drug count Drug example

CFTR HyperDown 7 Colforsin; Crofelemer;
Lonidamine

HBB HypoDown 12 4-Carboxycinnamic Acid;
Pentaerythritol tetranitrate; 2-
[(2-methoxy-5-methylphenoxy)
methyl] pyridine

IL13RA2 HypoDown 1 AER001

MARCO HypoDown 2 Titanium dioxide; Silicon dioxide

S100A12 HypoDown 1 Amlexanox

SRD5A2 HyperDown 3 Azelaic acid; Dutasteride;
Finasteride

different from the low-expression group using these three genes,
indicating a highly effective model (Figures 7D–F). According to
the LASSO analysis, the determination formula was:

RiskScore = −0.253 × ENSG00000073754 + 0.111 ×

ENSG00000213886 − 0.843 × ENSG00000123496

Detailed information about these three genes is presented in
Table 2. Both CD5L and CD213A2 were determined to be HCC
protective factors, and UBD was determined to be a risk factor.

According to the above formula, we calculated the risk score
for each sample and determined corresponding survival status
and expression changes for the three different signature genes
as risk values increased (Figure 8A). We found that most
of the training-set samples had higher risk scores, and that
samples with high-risk scores had worse prognoses. In addition,
UBD expression was found to increase with increasing risk-
score values, while CD5L and CD213A2 expressions decreased
with increasing risk scores. Furthermore, we conducted ROC
analyses for the prognostic classification of risk scores, and the
prognostic prediction classification efficiencies for 1 year, 3 years,
and 5 years were 0.64, 0.74, and 0.94, respectively (Figure 8A).
These data indicate that this model was highly predictive for long-
term survival. In addition, based on risk-score value z-scores,
we divided the samples into high- and low-risk groups. The
survival curves showed very significant differences between these
groups (log rank P = 0.0011), in which 57 of the samples were
classified as high-risk and 19 samples were classified as low-
risk. We also conducted an analysis of the validation set using
the same model and coefficients as for the training-set analysis.
The validation results showed that the expression trends of
these three signature genes were consistent with the training set
(Figure 8B). Compared to the low-risk group, the overall survival
rate in the high-risk group was worse, but this difference was not
statistically significant.

In order to further verify the effectiveness of this gene-
signature model, we applied it to all PD-1 low-expression samples
in the Cancer Genome Atlas (TCGA) and GSE10141 HCC
data set. Similar to the previous results, most of these samples
had higher risk scores that related to lower survival status
(Figure 8C). The ROC analysis showed that the AUC values at 1,
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FIGURE 6 | SRD5A2- Azelaic acid molecular docking analysis. (A) 3D model of SRD5A2 protein structure. (B) 2D interaction diagram of Azelaic acid and SRD5A2
protein. (C) The binding domain of Azelaic acid and SRD5A2 protein, in which hydrogen bonds are shown in green and hydrophobic interactions are shown in pink.
Amino acid residues are displayed as steel blue. (D) The curve of the RMSD value of the protein backbone during molecular dynamics in 100ns.

3, and 5 years were 0.63, 0.65, and 0.82, respectively (Figure 8C).
At the same time, the overall survival rates for the high-risk
group and the low-risk group were also significantly different
(P = 0.0016, Figure 8C). The GSE10141 data set results showed
that more samples were identified as having lower-risk scores,
and that the 1-year, 3-year, and 5-year AUC values were 0.78, 0.78,
and 0.67, respectively (Figure 8D). In addition, the prognoses
for the high-risk group and the low-risk group were significantly
different (P = 0.00099). These differences in prognostic scores and
expression levels may have been due to the batch effect on the
different platforms.

DISCUSSION

With the development of ICIs, immunotherapy has become the
new focus of attention in the field of tumor treatments (Bersanelli
et al., 2021). However, only a small proportion of HCC patients
actually respond to ICIs, and one of the important reasons for
this may be HCC expression of PD-1 and the infiltration of CD4+
and CD8+ T cells (Sia et al., 2017; Kurebayashi et al., 2018; Kudo,
2020a). Previous studies have shown that DNA methylation can
affect the immune status of the tumor microenvironment and
tumor responses to ICIs, and that a lack of DNA methylation
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FIGURE 7 | Prognostic gene signatures related to DMEGs. (A) LASSO-regression frequencies for each combination of genes. (B) Change-coefficient trajectories for
each of the three probe genes using different lambdas. (C) The distribution of standard deviations in this model under different lambda conditions. (D) Kaplan-Meier
curves for the CD5L high- and low-expression groups. (E) Kaplan-Meier curves for the CD213A2 high- and low-expression groups. (F) Kaplan-Meier curves for the
UBD high- and low-expression groups.

TABLE 2 | LASSO identifies 3 prognostic-related DMEGs.

ENSG id Gene symbol P value HR Low 95% CI High 95% CI

ENSG00000073754 CD5L 0.005001056 0.7130075 0.5630112 0.9029655

ENSG00000123496 CD213A2 0.019657250 0.3175769 0.1211487 0.8324900

ENSG00000213886 UBD 0.021742632 1.2143576 1.0287460 1.4334583

is related to immune-evasion characteristics (Duruisseaux et al.,
2018; Jung et al., 2019). Therefore, it is of instructive significance
to investigate the changes in DNA methylation in PD1-negative
HCC samples on the loss of the anti-tumor effect of ICIs and to
further search for other therapeutic targets.

Here, using the Liver Hepatocellular Carcinoma (LIHC)
cohort from TGCA, we found that stromal-score, immune-
score, and ESTIMATE-score values for tumor samples were
significantly lower compared to normal samples, and that
PD-1 expression was higher compared to normal samples.
These differences highlight the immunosuppressive state in

these tumors. Using PD-1-negative samples for screening, we
identified DEGs and DMGs in three DNA regions, and a
functional enrichment analysis showed that they were related
to tumor immunity and cancer-related cell pathways (Hu et al.,
2020). As there is evidence that DMEGs play a key role in
tumorigenesis, we conducted a joint DEG-DMG analysis and
identified 31 gene candidates. We then divided these DMEGs
into four groups based on modes of expression. Interestingly,
most DMEGs demonstrated hypomethylation. Consistent with
these results, studies have shown that overall demethylation and
hypomethylation of both oncogenes and metastasis-promoting

Frontiers in Cell and Developmental Biology | www.frontiersin.org 10 August 2021 | Volume 9 | Article 708819

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-708819 August 9, 2021 Time: 10:32 # 11

Zhu and Guo A Novel Prognostic Model in HCC

FIGURE 8 | Characteristics of prognostic gene signatures based on 3 DMEGs. (A) Training-set relationships between risk scores, survival status, and gene
expressions for the three DMEGs and prognostic-signature ROC analysis and Kaplan-Meier curves. (B) Validation-set relationships between risk scores, survival
status, and gene expressions for the three DMEGs and prognostic-signature ROC analysis and Kaplan-Meier curves. (C) The total TCGA-LIHC-set PD-1 negative
samples relationships between risk scores, survival status, and gene expressions of the three DMEGs and prognostic-signature ROC analysis and Kaplan-Meier
curves. (D) The GSE10141-set PD-1 negative samples relationships between risk scores, survival status, and gene expressions of the three DMEGs and
prognostic-signature ROC analysis and Kaplan-Meier curves.

genes are characteristics common to almost all cancers, including
HCC (Zhao et al., 2020; Fabianowska-Majewska et al., 2021).
The chromosomal distribution of these genes showed that
DMEGs in adjacent gene regions had similar expression
patterns, suggesting that adjacent regions may be regulated
by the same methylases/demethylases. In addition, these 31
DMEGs could distinguish between tumor and normal samples
based on methylation and expression levels, indicating their
potential importance.

The protein-drug interaction analysis provided another
perspective for evaluating the potential therapeutic effects
of DMEGs on HCC. Conductance regulator and HBB were
identified as the DMEGs having the most drug interactions.
Conductance regulator encodes chloride ion and bicarbonate
ion channels and has been implicated in a variety of cancers.
It has also been identified as a molecular biomarker for early

HCC diagnosis (Hogan, 1999; Moribe et al., 2009). Hemoglobin
subunit beta has also been reported to be a diagnostic biomarker
in cancers (Shi et al., 2018). Here, we found that these genes
interacted with a variety of drugs, including the commonly
used anti-tumor drug Lonidamine, a mitochondrial hexokinase
inhibitor, which can inhibit the glycolysis of tumor cells. The
drugs identified using the analysis above may provide alternative
ways to treat HCC. In addition, we found that when the
drug-DMEG distance was less than 0.8, drug interactions were
significantly reduced, suggesting that 0.8 may represent an
important threshold. With distances <0.8, the corresponding
drugs may have more precise targeting effects for HCC treatment.

In order to evaluate the predictive power of these DMEGs
for HCC prognosis, we used a LASSO regression to determine
a prognostic model for HCC based on three genes (UBD,
CD5L, and CD213A2) that can modulate immune responses.
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Ubiquitin D (UBD), a ubiquitin-like protein modifier, binds
to target proteins by covalent bonding and then causes
them to be degraded by the 26s proteasome (Guarascio
et al., 2020). Studies have shown that UBD can regulate
the activation of the tumor necrosis factor alpha (TNF-
α) -induced, and lipopolysaccharide-mediated, innate immune
response central mediator nuclear factor kappa B (NF-κB), by
promoting TNF-α-mediated ubiquitinated-I-κB-α proteasome
degradation (Kawamoto et al., 2019). We speculate that increased
UBD expression may promote an immune response in the
tumor microenvironment, which suppresses tumor growth.
The cysteine-rich inflammatory regulator CD5L has been
shown to promote proliferation and activate autophagy in
HCC by binding heat shock-A5 proteins (Armengol et al.,
2013; Sanjurjo et al., 2015; Aran et al., 2018). Consistent
with previous studies, the present results show that CD5L
expression is a risk factor for HCC and may help researchers
to reinterpret its role from the new perspective of methylation
and immunity. CD213A2 has been shown to bind to interleukin-
13 (IL-13) and activate its immunomodulatory function (Tabata
and Khurana Hershey, 2007); however, no direct tumor-
related role has been found, so further study of CD213A2
and its effects on HCC, including through methylation and
immunity, is warranted.

The tumor’s response to ICIs largely depends on the state
of the tumor microenvironment. As mentioned above, the
lack of DNA methylation is related to the immune evasion
characteristics of the tumor microenvironment. Here, we
explored the DNA methylation characteristics and potential
functional pathways of PD1-negative HCC patients, and
identified the genes that play a key role in this process. These
genes participate in the tumor immune microenvironment
through possible DNA methylation regulation and further
affect the anti-tumor effect of ICIs. We have proposed
a model for determining PD-1-negative HCC prognoses
based on these three genes. This model was clearly able
to divide PD-1-negative HCC samples into high- and
low-risk groups, with clear trends for DMEG expressions,
and significantly different prognoses between these two
groups. The use of an independent verification queue also
confirmed its effectiveness. Therefore, further exploring the
role of these hub genes in this process will help guide
researchers to have a deeper understanding of the PD1-
negative tumor microenvironment. These hub genes are

also expected to become potential targets for enhancing the
efficacy of ICIs.

CONCLUSION

The present research has revealed the methylation/transcription
characteristics of PD-1-negative HCC samples and identified
potential therapeutic targets and drugs. Most importantly, we
have demonstrated the effectiveness of a prognostic model for
HCC based on three DMEGs. These results provide insights
into potential treatment strategies for HCC that are not
sensitive to PD-1 inhibitors and into mechanisms by which
methylation may affect HCC.
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