
Semi-automated NMR Pipeline for Environmental Exposures: 
New Insights on the Metabolomics of Smokers versus Non-
smokers

Morris A. Aguilar, John McGuigan
Huck Institutes of the Life Sciences, The Pennsylvania State University, 512 Wartik, University 
Park, PA 16802, USA

Molly A. Hall, Ph.D.,M.S.
512A Wartik Laboratory, University Park, PA 16801, USA

Abstract

Environmental exposure pathophysiology related to smoking can yield metabolic changes that 

are difficult to describe in a biologically informative fashion with manual proprietary software. 

Nuclear magnetic resonance (NMR) spectroscopy detects compounds found in biofluids yielding 

a metabolic snapshot. We applied our semi-automated NMR pipeline for a secondary analysis of 

a smoking study (MTBLS374 from the MetaboLights repository) (n = 112). This involved quality 

control (in the form of data preprocessing), automated metabolite quantification, and analysis. 

With our approach we putatively identified 79 metabolites that were previously unreported in 

the dataset. Quantified metabolites were used for metabolic pathway enrichment analysis that 

replicated 1 enriched pathway with the original study as well as 3 previously unreported pathways. 

Our pipeline generated a new random forest (RF) classifier between smoking classes that 

revealed several combinations of compounds. This study broadens our metabolomic understanding 

of smoking exposure by 1) notably increasing the number of quantified metabolites with 

our analytic pipeline, 2) suggesting smoking exposure may lead to heterogenous metabolic 

responses according to random forest modeling, and 3) modeling how newly quantified individual 

metabolites can determine smoking status. Our approach can be applied to other NMR studies to 

characterize environmental risk factors, allowing for the discovery of new biomarkers of disease 

and exposure status.
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1. Introduction

Cigarette smoke (CS) is made of harmful constituents that cause many diseases.1 

Additionally, there are many indicators that CS exposure has led to increased medical 

costs and loss of productivity over a lifespan.2 The thousands of reactive oxidative 

species (ROS) generated from burning cigarettes are found in the gaseous state and are 

responsible for CS related pathogenesis.3 The ROS damage epithelial cell linings by 

disrupting oxidative-sensitive metabolism and triggering DNA damage.4 The effects of CS 

on immunity can be both pro-inflammatory and suppressive.5 CS derived ROS can lead to 

neuronal damage6, atherosclerosis, increases predisposition of cardiovascular events7 and 

inhibit tumor suppressive mechanisms.1 Metabolomic interrogations of CS exposure may 

help investigators further understand the pathogenesis of several diseases strongly associated 

with CS exposure. Metabolomics studies the small molecules from biological samples that 

can reveal metabolic changes following environmental exposures.8,9 With respect to the 

genome, transcriptome, and proteome, metabolomics generally involves the small molecule 

compounds that are metabolized by enzymes; the metabolome can act synergistically with 

other “-omic” layers as well.10 Unlike other “-omics,” metabolomics reveals biochemical 

states and best represents the molecular phenotype.8 Additionally, metabolomic studies 

of disease can reveal new biomarkers, understudied pathways, and prognosis measures to 

improve risk stratification.11,12

A previous metabolomic study of CS that incorporated NMR and MS data derived from 

human blood serum found metabolites associated with chronic obstructive pulmonary 

disease, cardiovascular disease and cancer.6,7,13 This study by Kaluarachchi et al. is unique 

because it is the only study to date that used 1D 1H NMR on human blood serum for CS 

exposure from which 3 metabolites were reported.13 The raw NMR data for this human 

blood serum CS exposure study (n = 112) is publicly available on the MetaboLights 

repository as MTBLS374.8,13 The raw MTBLS374 data was originally analyzed with 

proprietary software to identify and quantify metabolites.

Although commercial software are popular, they often lack advanced editing, require 

iterative steps, and involve arbitrary adjustments based on subjective user judgement.14 

Previous studies indicate that this manual method is prone to false positive metabolite 

identification that increases as more metabolites are quantified.15,16 The NMR analysis 

described here incorporates several R and Python packages to aid in the detection of 

additional metabolites that were previously unreported. We created novel random forest 

classification (RF) models from the quantitative metabolite data and the unprofiled spectra 

to classify smoking status. Furthermore, our RF classification decision trees reveal the 

statistical importance of the detected biomarkers, and findings were supported by pathway 

enrichment analysis.

Here we demonstrate how an environmental exposure like smoking and its metabolic effects 

can be quantified and modeled with NMR data via open source packages. With our pipeline, 

we quantified 79 previously undetected metabolites in this dataset. With the metabolite 

quantification data generated from our pipeline, we developed 2 high fidelity models that 

classified between the smoking classes. Our pipeline increases transparency of user set 
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analysis parameters and unifies existing open source packages for spectral processing and 

multivariate analyses.

2. Methods

2.1. Data Set

The MTBLS374 dataset that was used for this study was acquired from the MetaboLights 

repository and contains 1D 1H NMR spectra of human blood serum from 112 

participants.8,13 The original study also incorporated mass spectroscopy and lipoprotein 

fraction data in addition to NMR data to identify biochemical differences in smoking 

classes.13 They found that the metabolites they detected indicated that smoking exposure 

impacted glutathione, bilirubin and lipids. The authors suggested that their metabolic 

enrichment pathways were related to chronic obstructive pulmonary disease, cardiovascular 

diseases, and cancer.13 There were 55 (27 females, 28 males) smoker class samples and 57 

(28 female, 29 male) never smoker class samples. The participants were from Hamburg, 

Germany who had a body mass index (BMI) within a healthy range and no clinical history 

of heart, lung diseases and chronic diseases. The MTBLS374 data set sample labels were 

limited to gender and smoking status (smoker/never smoker) due to adherence of participant 

privacy policies; however, the original study included BMI, age, and drug intake in their 

confounding analysis. The 1H 1D NMR spectroscopy data was generated with the Carr-

Purcell-Meiboom-Gill pulse sequence with the following parameters: relaxation delay of 4 s, 

a mixing time of 0.01 s, a spin–echo delay of 0.3 ms, 128 loops and a free induction 3.067 

s of decay acquisition time, total of 32 scans recorded into 96 thousand data points with a 

spectral width of 20 ppm.13

2.2. Pipeline

The innovation of the pipeline lies in its capability of extracting metabolomic data 

from raw data NMR data in a semi-automated fashion (i.e., the arduous task of 

metabolite identification/quantification has been made automated, yet some parameter 

choices are still needed by the user). Open-source packages are unified to promote analysis 

reproducibility for the complex multistep analytical process of quantifying metabolic effects 

of environmental exposures. Typically, proprietary graphical user interface (GUI) software 

requires one set of software to edit the raw data to remove instrumental artifacts, a separate 

GUI application for metabolite quantification, and a separate statistical analysis software. 

These software do not record the repetitive and arbitrary user decisions to manipulate 

the data which is not conducive to analysis reproducibly. The proprietary software offers 

limited automation tools thereby constraining the user to iterative processes. The pipeline 

we describe here addresses the multiple steps data processing (Figure 1) and analysis 

challenges in environmental exposure metabolomics. We uploaded scripts to this pipeline 

to GitHub (github.com/HallLab/MTBLS374_smoking_study_secondary_analysis). We will 

describe the application of our pipeline to cigarette smoke exposure below.

2.2.1 Preprocessing and Spectral Analysis—Before metabolites are identified and 

quantified, the first step in our pipeline is to preprocess the NMR data (i.e., data editing 

to enhance signal-to-noise ratio and minimize instrumental artifacts). This preprocessing is 
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accomplished with the PepsNMR14 R package. A user may set parameters before bulk 

preprocessing of NMR data. The raw NMR data was first pre-processed (Figure 1a) 

so that the NMR data can be interpreted by subsequent analysis packages. The NMR 

spectra were zero-filled, Fourier transformed, zero phase corrected, first phase corrected, 

warping, binning, and normalized semi-autonomously by using the PepsNMR presets.14 We 

corrected for pH-induced chemical shifts with the warping and binning functions provided 

by PepsNMR. The NMR spectra were normalized with constant sum normalization which 

is recommended for sera.14 The regions corresponding to the water peak at 4.5 – 5.1 ppm 

were removed. The resulting output was preprocessed NMR data (Figure 1b) that can be 

utilized as input for subsequent analyses. Data clustering was observed with multivariate 

principal components analysis (PCA) analysis including samples who were categorized as 

smoking classes, and quality control class. The pre-processed binned spectral data was also 

used to generate random forest classification models with k-fold (k=10) validation with the 

Scikit-learn (0.22.1) python package.17

2.2.2 Identification and Quantification—The binned spectral data were tested for 

significant spectral differences between the smoking classes. Between classes, each 

corresponding bin had a non-normal distribution thus warranting the Wilcoxon Rank Sum 

Test and Bonferroni adjustment (α =0.05) (Figure 1c).18 The spectral positions of the 

significant bins (Figure 1c) were cross referenced from a pure metabolite standard from 

HMDB to build a list of compounds that rDolphin19 (a profiling tool for 1H-NMR-based 

studies) automatically detects and quantifies within the preprocessed NMR data according to 

metabolite multiplicity and chemical shifts (Figure 1d).

2.2.3 Analysis—The metabolite identification and quantification data output from 

rDolphin (Figure 1e) were used for t-tests and as features to train a second random forest 

classifier with k-fold (k=10) validation. The metabolite data was piped to the MetaboAnalyst 

R package (3.0.3) for data transformation such as normalization by sum, log transform and 

pareto scaling for t-tests (Figure 1f).20 Finally, the transformed metabolite data were used 

for metabolic pathway enrichment based on ontologies from the Kyoto Encyclopedia of 

Genes and Genomes (KEGG) Pathway Data Base and conducted via MetaboAnalyst. The 

enrichment analysis had 2-fold filter criteria.

3. Results

A PCA was conducted on the pre-processed NMR spectral data to reveal clustering patterns 

based on smoking status and gender (Figure 2). Results from the PCA with the smoking 

classes indicate that the clusters overlap more so than the gender-based classes. PC1 and 

PC2 explain 77.0% and 13.3% of the variance for the gender and smoking status groups. 

The PCA results suggest that the gender classes may be a confounding factor. Logistic 

regression to test if gender was a significant predictor of smoking status in our data set 

yielded a non-significant (p-value: 0.40) predictor of smoking status.

To assess which NMR peaks warrant metabolite identification and quantification, the NMR 

spectral bins from 0.0 ppm to 10.0 ppm between the smoking classes were tested for 

significant differences in 467 spectral bins. For the Wilcoxon Rank Sum test, each bin 
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was compared to its corresponding position in the NMR spectra between classes, i.e., 

the bin at position 1 ppm from the smoking class was only compared to the bin at 

position 1 ppm for the never smoker class. Each of the 467 non-normal spectral bins 

were tested for significance with the Wilcoxon Rank Sum test and 32 bins were significant 

when Bonferroni-adjusted (α: 0.05) (Figure 3). Spectral bins passing this threshold were 

investigated for metabolite identification and quantification via the rDolphin peak aligner.

After metabolite quantification, the 79 putatively identified metabolites and their relative 

concentrations were sum normalized, log transformed and pareto scaled for univariate two 

tailed t-tests. When the smoking classes were compared, 6 compounds were significant 

after Bonferroni adjustment (Figure 4). The significant metabolites include: Indole-3-

propionicacid (p-value: 5.24 × 10−6), Indoxyl sulfate (p-value: 6.57 × 10−6), N-Acetyl-L-

aspartic (p-value: 1.27 × 10−5), xanthine (p-value: 3.36 × 10−5), L-tryptophan (p-value: 7.36 

× 10−5) and L-histidine (p-value: 0.00010336).

Two types of RF models were generated and were trained with either spectral data or 

quantitative metabolic data (Figure 5). For smoking status, the models demonstrated an AUC 

of 0.76 (SD: 0.15) for spectral bins (Figure 5a) and an AUC of 0.86 (SD: 0.14) for quantified 

metabolites (Figure 5c). For gender, the models demonstrated an AUC 0.70 (SD: 0.15) for 

spectral bins (Figure 5b) and AUC of 0.41 (SD: 0.13) for quantified metabolites (Figure 5d).

We created the decision tree from the RF model trained on the quantitative metabolic data 

that predicted smoking classes (Figure 6). When the RF model was trained it iteratively split 

the smoking classes into two branches but not all splits are perfect. Gini impurity represents 

the quality of the split between smoking classes at a node and a perfect split between classes 

at a node has a value of 0 like the terminal nodes in (Figure 6). 2,4-dichlorophenol (Figure 

6a), 3-nitrotyrosine (Figure 6b), and xanthurenic acid (Figure 6c) have a gini impurity of 0.1, 

0.36, and 0.23, respectively. The gini impurity at the 3-nitrotyrosine node indicates that the 

metabolite is not always perturbed for the smoking class which reveals smoking exposure 

metabolic heterogeneity. Also, at each node the percent of samples in the dataset that fulfill 

the quantitative threshold is given for each metabolite in the tree. The multivariate RF model 

indicates how combinations of metabolic perturbations occur depending on CS exposure 

which is more representative the highly interconnected metabolic biology of humans.

To determine which metabolic pathways were significantly perturbed, we performed 

enrichment tests on the 79 metabolites we quantified (that were found in the statistically 

significant spectral bins) and were mapped to known metabolic pathways from the KEGG 

database. The top 15 metabolic pathways that were perturbed between smoking classes 

are listed (Figure 7). The Bonferroni-adjusted significant pathways were aminoacyl-tRNA 

biosynthesis, histidine metabolism, purine metabolism, and beta-alanine metabolism. At 

most, the significantly enriched pathways have two metabolite hits which means that 2 of the 

metabolites we newly quantified are known to participate in that metabolic pathway.
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4. Discussion

Environmental exposures can perturb the complex human metabolome, and it is difficult 

to quantify the numerous metabolic pathways with NMR data using proprietary software 

with limited automation features and no record of data transformation. We demonstrated 

the technical feasibly of describing the metabolome when affected by an environmental 

exposure like CS by unifying open source NMR packages. The MTBLS374 NMR data set 

was originally used to quantify 3 specific metabolites; however, the NMR spectra of each 

human blood serum sample was representative of thousands of metabolites that are expected 

to be found.21 We demonstrated our pipeline’s potential to increase the number of quantified 

metabolites.

To understand the global metabolomic differences between the smoking status classes and 

the gender classes, PCA was performed. The PCA cluster based on spectral data indicated 

more distinct separation between the gender-based classes than smoking exposure classes. 

The female and male groups have clusters that overlap with one another (Figure 1a), which 

suggests there may be more spectral differences related the metabolic sexual dimorphism 

which has been demonstrated previously.22 The pooled quality control classes clustered 

more tightly relative to the gender and smoking based classes, and we expected the quality 

control samples to display very little variance between one another and the variance that that 

we do detect likely came from variance from the NMR instrumentation.

We found 6 significant metabolites, all of which were not previously identified in the data 

set, however, we did only detect 1 out of the 3 metabolites the original authors found 

in the NMR data. We used a new computational approach involving semi-automated pre-

processing and automated metabolite quantification open source packages as opposed to 

proprietary software like the original authors. Therefore, we did not necessarily expect to 

detect the same metabolites from the NMR data. Of the significantly perturbed metabolites 

from Figure 3, Indole-3-propionicacid is known to be neuroprotective antioxidant23 and 

more likely to be affected in smokers with atherosclerosis.24 Indoxyl sulfate is a known 

cardiotoxin and uremic toxin.25 A previous study found that indoxyl sulfate is lower in 

smokers’ blood serum, while here we found it was elevated.26 N-Acetyl-L-aspartic acid is 

one of the most concentrated compounds in the brain for myelin27 and a previous study 

found that this metabolite is decreased in the left hippocampus tissue in smokers.28 In our 

analysis we found that N-Acetyl-L-aspartic acid was elevated in blood serum. Xanthine is 

involved in the purine degradation pathway.29 The xanthine oxidase enzyme is elevated in 

smokers and it produces uric acid by consuming xanthine as a precursor molecule.30 We 

found that xanthine was significantly decreased in blood serum which might be due to its 

consumption of elevated xanthine oxidase. L-Tryptophan is an amino acid that is a precursor 

to hormones and neurotransmitters31 and has been found to be downregulated in those 

attempting to quit smoking.32 In our study we found that L-Tryptophan was significantly 

elevated which might play a role in cigarette smoking related behavior. L-Histidine is an 

essential amino acid and is a precursor to an inflammatory agent, histamine.33 L-Histidine 

is depressed in smokers without chronic obstructive pulmonary disease (COPD) versus 

those with COPD suggesting its consumption for histamine production thereby increasing 

inflammatory response.34 In our study, L-Histidine is significantly decreased suggesting 
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that we might detect markers of inflammation in blood serum due to CS exposure. The 

significant perturbations of these 6 metabolites reinforces how CS exposure contributes to 

pathologies relating to ROS metabolism, cardiac damage, neural toxicity, and inflammatory 

response. Given that CS exposure perturbs individual metabolites it follows that it was 

possible to classify smoking exposure classes based on these perturbations.

The metabolite-based RF model that predicted smoking status has a decision tree that 

found novel relationships between metabolites. 2,4-Dichlorophenol (Figure 6a) is a known 

hazardous air pollutant and is a soil pollutant that tobacco plants can absorb.35,36 Within 

the context of other metabolites, 2,4-dichlorophenol is a necessary smoking class decision 

node. Smoking is associated with a decrease in 3-nitrotyrosine levels of plasma proteins and 

vascular endothelial dysfuction.37 3-Nitrotyrosine (Figure 6b) was not significant within our 

univariate t-tests but in a multivariate context 3-nitrotyrosine was a necessary decision node 

for smoking classes. Although there is an inverse metabolic relationship between xanthine 

and neuronal uptake of xanthurenic acid38 on the path towards the terminal node (Figure 

5c), there is no documented relation of these two metabolites with respect to smoking 

exposure. The root nodes in the decision tree (Figure 6) begin with a high gini impurity and 

terminate with 0 impurity. This means that each terminal node is dependent on the node 

path leading back to the root metabolite in the tree. In other words, these metabolite changes 

were dependent on one another to yield a metabolic profile indicative of the smoking 

classes. The combinations of these metabolites have not been previously documented and 

suggests a heterogenous response to a smoking exposure. These metabolite combinations 

used to classify smoking exposure status may be indicative of interconnected perturbations 

of metabolic pathways. Nevertheless, the decision tree found a statistical relationship and 

did not relate metabolites to mapped metabolic pathways.

We conducted a pathway enrichment analysis to relate how the metabolic perturbations we 

quantified relate to previously empirically derived metabolic pathways. In the enrichment 

analysis we included the 79 putatively identified compounds we quantified from NMR 

data. The original study found that the aminoacyl-tRNA biosynthesis was one of the top 

significantly enriched pathways which we replicated in this automated analysis. Another 

smoking exposure blood serum based mass spectroscopy study also corroborated the 

enrichment of aminoacyl-tRNA biosynthesis.39 Nonetheless we found purine, histidine, and 

biotin pathways to be enriched which was not previously described for human samples with 

CS exposure. These three pathways that we newly derived from NMR data is supported 

by a previous mass spectrometry blood serum based smoking study in a mouse model.40 

A smoking exposure NMR study on mouse lung tissue extracts also found purine and 

histidine pathway perturbations likely due to cell injury.41 In particular the purine pathway 

perturbation might be due to CS related DNA damage and cell injury.4 The original study’s 

enrichment analysis was supplemented by mass spectroscopy data, which may contribute to 

divergence in enrichment results.

Although this study demonstrates that our pipeline can reveal more NMR generated 

metabolomic information about environmental exposures, we did not uncover all of 

the possible metabolic perturbations. The significant results from the univariate analysis 

described here provided a limited viewing window into the CS exposure metabolome 
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because it does not describe the interconnected reality of human metabolism. The RF 

decision tree begins to describe interconnected metabolism and suggests that multiple 

combinations of metabolites are associated with the smoking classes. However, these 

combinations are not to be interpreted as being the only metabolites that are perturbed. 

Given that the public repository did not include the BMI, age, and drug intake data 

from the original study, we were not able to do additional confounder tests. Scalability 

of the pipeline becomes limited with data sets larger than MTBLS374 given that the 

preprocessing package (PepsNMR) and peak alignment package (rDolphin) where not 

coded with multicore support. Next steps include testing this pipeline on other NMR based 

environmental exposure studies to classify disease status, replicating major findings, and 

describing novel findings. Nonetheless, our unified pipeline overcame the limitations of 

manual NMR pre-processing and quantification and has enabled us to extract valuable 

metabolomic findings regarding smoking exposure.

5. Conclusion

Here we demonstrate how an environmental exposure like smoking and its metabolic effects 

can be quantified and modeled with NMR data. Our approach of filtering spectral bins via 

multiple tests informed which metabolites were automatically quantified. The RF modeling 

reveals how several unique combinations of metabolites are associated with smoking classes. 

This suggests there are more than one combination of metabolite perturbations associated 

with smoking and a heterogenous response to smoking exposure. Several of the metabolites 

that belong to these combinations have a known relationship to smoking and/or cellular 

damage. The novelty of our analysis approach lies in breaking from the conventional manual 

analysis methods and promoting study reproducibility.
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Fig 1. 
Semi-automatied pipeline for NMR based environmental exposure studies. The pipeline 

connected open source packages (white boxes). Outputs are represented in gray boxes.
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Fig. 2. 
PCA Clustering of Smoking Status (A) and Gender Classes (B). PC 1 and PC2 are 

represented on the x-axis and y-axis, respectively. A) The PCA plot clustered the data points 

according to the female (green) and male (blue) classes according to PC 1 and PC 2. B) 

The PCA plot clusters the data points according to the smoker class (blue) and never smoker 

class (red). Both plots have a quality control class (red in subplot A and green in subplot B) 

to gauge technical variance.
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Fig. 3. 
Manhattan plot of spectral bin associations with smoking status. The NMR spectrum for 

each sample was represented on the x-axis from 0 – 10 ppm and divided into bins with 

widths of 0.02 ppm and the y-axis represents the −log (10) of the p-value. The red line 

represents the Bonferroni significance threshold (alpha: 0.05, 467 tests). The absence of data 

points between at 4.5 – 5.1 ppm was expected due to the removal of the water signal.

Aguilar et al. Page 13

Pac Symp Biocomput. Author manuscript; available in PMC 2022 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Manhattan plot of metabolite associations with smoking status. The Manhattan plot displays 

the metabolites on the x-axis and their −log(10) p-values on the y-axis. The red line 

represents the Bonferroni corrected significance threshold. The blue and yellow triangles 

represent increased and decreased metabolites.
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Fig. 5. 
Smoking classes and gender classes prediction from spectral bins and metabolites. The 

ROC curves represent the RF models’ ability to discriminate between case and control and 

characterizes the model’s true positive and false positive rates. The plots also depict the 

model for every k-fold cross validation and the thick blue line represents the mean ROC 

curve derived from the cross validated models. A set of RF models were created by using the 

NMR spectral bins (467 per sample) as features. Another RF model set was created using 

the quantified metabolite data generated from the compound detection.
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Fig. 6. 
Metabolite random forest model for smoking classes prediction. This metabolite-based RF 

model has a decision tree that places each metabolite at a node and branches according to a 

Boolean quantitative threshold; when a condition was true the node branches upwards and 

if the condition was false the node branches downwards. Notable metabolites in the tree 

include A) 2,4-dichlorophenol, B) 3-nitrotyrosine, and c) xanthurenic acid. The decision tree 

emphasizes that several unique combinations of biomarkers differentiate smoking classes.
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Fig. 7. 
Metabolite enrichment overview. Metabolite enrichment analysis—with a 2-fold change 

criterion—from the KEGG Pathways data base reveals pathways that are enriched due to 

smoking status. The metabolic pathways above the black dashed line represents statistical 

significance after Bonferroni adjusted (α = 0.05) multiple test correction.
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