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Abstract

Summary: Differential DNA methylation and chromatin accessibility are associated with disease development,
particularly cancer. Methods that allow profiling of these epigenetic mechanisms in the same reaction and at the
single-molecule or single-cell level continue to emerge. However, a challenge lies in jointly visualizing and analyzing
the heterogeneous nature of the data and extracting regulatory insight. Here, we present methylscaper, a visualiza-
tion framework for simultaneous analysis of DNA methylation and chromatin accessibility landscapes. Methylscaper
implements a weighted principal component analysis that orders DNA molecules, each providing a record of the
chromatin state of one epiallele, and reveals patterns of nucleosome positioning, transcription factor occupancy, and
DNA methylation. We demonstrate methylscaper’s utility on a long-read, single-molecule methyltransferase accessi-
bility protocol for individual templates (MAPit-BGS) dataset and a single-cell nucleosome, methylation, and tran-
scription sequencing (scNMT-seq) dataset. In comparison to other procedures, methylscaper is able to readily iden-
tify chromatin features that are biologically relevant to transcriptional status while scaling to larger datasets.

Availability and implementation: Methylscaper, is implemented in R (version > 4.1) and available on Bioconductor:
https://bioconductor.org/packages/methylscaper/, GitHub: https://github.com/rhondabacher/methylscaper/, and
Web: https://methylscaper.com.

Contact: rbacher@ufl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Abnormal epigenetic changes are a key hallmark of cancer.
Alterations in DNA methylation, including the co-occurrence of
both hyper- and hypo-methylation of different regions of the gen-
ome, have been detected in nearly all cancer types (Kushwaha et al.,
2016; Orjuela et al., 2020; Pérez et al., 2018). In addition, both can-
cer- and tissue-specific differences exist in nucleosome positioning
and occupancy, as well as transcription factor binding activity,
which together determine chromatin accessibility (Corces et al.,
2018). However, profiling endogenous methylation and accessibility
states separately ignores their complementary nature in regulating
gene expression and, by definition, queries different sets of molecules
(Portela et al., 2013). To address this, assays such as MAPit-BGS
(Pondugula and Kladde, 2008) and NOMe-seq (Kelly et al., 2012)
have been developed to simultaneously capture nucleosome occu-
pancy and methylation states at single-molecule resolution. In both
cases, chromatin accessibility is first probed by the methyltransferase

M.CviPI (Xu, 1998), which methylates unprotected GC sites. Next,
accessibility at GC sites and CG endogenous methylation are pro-
filed by bisulfite (Darst et al., 2010) or bisulfite-free enzymatic con-
version (Schutsky et al., 2018). After sequencing, the methylation
signals of all cytosines are translated bioinformatically. Long-read
sequencing is particularly advantageous to phase the co-occurrence
of epigenetic features, e.g. multiple nucleosomes. Recently, an exten-
sion of NOMe-seq, nanoNOMe, made use of long-read nanopore
sequencing and resolved long-range patterns along with individual
DNA molecules (Lee et al., 2018). Methods for simultaneously
profiling accessibility and methylation have also been extended to
single cells via the scNOMe-seq (Pott, 2017) and scNMT-seq (Clark
et al., 2018) techniques.

For MAPit-BGS and nanoNOMe, the long reads derive from
contiguous single DNA molecules, while single-cell methods use
short reads that are reconstructed into contiguous DNA molecules
from individual cells. Both types of methods allow for discerning the
heterogeneous nature of cellular DNA methylation and chromatin
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structure. Bioinformatic software programs, such as Bismark
(Krueger and Andrews, 2011), are first used to align the data; how-
ever, many analytical pipelines and downstream visualization tools
fail to highlight the epigenetic variation in a useful way. Previously
developed methods utilize the output from Bismark but are limited
to a relatively small number of reads or provide summary plots ra-
ther than site-level data (Huang et al., 2018; Wong et al., 2016).
Two other such visualization tools are the NOMePlot (Requena
et al., 2019) and MethylViewer (Pardo et al., 2011) applications,
which were designed to simultaneously visualize CG methylation/
GC accessibility patterns. Despite their integrated pipelines, the
commonly used ‘lollipop’ plots are not intuitive in highlighting the
joint occupancy and methylation states along a continuous DNA
strand, especially when considering hundreds or thousands of mole-
cules. The previously developed MethylTracker (Darst et al., 2012)
plots visually intuitive methylation/accessibility patterns by connect-
ing consecutively methylated or unmethylated sites with contrasting
colors, however, it is computationally inefficient and unable to ef-
fectively organize hundreds or thousands of reads.

Here, we describe methylscaper, a bioinformatic and statistical
software package that generates visualizations of the DNA methyla-
tion and chromatin accessibility patterns. For single-molecule joint
profiling data, or those using targeted sequencing approaches, meth-
ylscaper begins by processing raw sequencing reads. For single-cell
data, or those using genome-wide approaches, output from Bismark
or similar alignment programs is used as the initial input. Ordering
the molecules is a key step for visualization, and our pipeline imple-
ments a two-stage weighted principal component analysis (PCA)
framework that is feature- and site-specific. Weighting allows the
user to emphasize specific genomic regions or features of interest.
Compared to alternative procedures, our ordering is also efficient
for large-scale datasets. Methylscaper is an interactive visualization
platform available as a R/Shiny application and its functions may
also be used directly via the R package. We evaluate methylscaper
on an epigenetic DNA resilencing MAPit-BGS dataset and demon-
strate its superior ability to elucidate epigenetic patterns and identify
regions of cell-to-cell nucleosome sliding. We further demonstrate
methylscaper on a single-cell dataset generated using scNMT-seq
and identify a site of nucleosome positioning.

2 Materials and methods

Methylscaper first processes the data, followed by visualization and
statistical analysis of methylated and accessible chromatin regions.
For targeted sequencing datasets, the initial preprocessing steps
include pairwise alignment of each sequence, quality control and
filtering of poorly aligned sequences, and finally, conversion of the
aligned sequences to plots of methylation and occupancy states (Fig.
1A). For genome-wide datasets, methylscaper begins with processed
output from alignment programs such as Bismark. Additional details
on the bioinformatic processing are available in Supplementary
Materials. Regions of methylation or accessibility are identified by
connecting consecutive sites having the same methylation state (Fig.
1B). A patch of endogenous methylation is plotted in red if �2 con-
secutive HCG sites show methylation (H¼A, T or C, where a
sequenced C [or G on the complementary strand] denotes methyla-
tion). Similarly, consecutive GCH methylation indicates accessibil-
ity, plotted in yellow. By contrast, consecutively unmethylated GCH
or HCG [a sequenced T (or A on the complementary strand) in the
sequence denotes an unmethylated status] are colored black. Patches
of either color interrupted by a single GCH or HCG site of the op-
posite methylation state are emphasized as gray borders.

Ordering the single-cells or molecules displays population
heterogeneity and allows identification of patterns of endogenous
methylation as well as transcription factor and nucleosome occu-
pancy. To do so, methylscaper constructs a matrix containing both
endogenous (HCG) and introduced (GCH) methylation states for
the set of molecules. A numerical key is used to represent patches of
methylation. Weighted PCA is performed on the entire matrix, with
molecules assigned a weight based on the number of methylation
patches between two fixed base pairs chosen by the user. This allows

the weighting to focus on either type of methylation and to empha-
size specific genomic regions (Supplementary Fig. S1). The first
weighted principal component is used to determine the global order;
as shown in Supplementary Figure S2, where the first component is
highly correlated with methylation and accessibility.

Following the determination of the global ordering, users can
perform an optional second-stage refinement step in which a con-
tiguous subset of the molecules is reordered using the PCA procedure
to increase the resolution of patterns (Supplementary Fig. S3).
Additional experiment-wide statistics are also calculated from the
molecules that are then comparable across datasets or treatments
(Supplementary Fig. S4).

3 Results

We applied methylscaper to a dataset with 149 single-molecule reads
generated using MAPit-BGS. This dataset is from an epigenetic study
of methylation resilencing in the EMP2AIP1 promoter region fol-
lowing withdrawal of the DNA methyltransferase inhibitor 5-aza-20-
deoxycytidine using cell line RKO. A comparison of the visualization
without any ordering versus our weighted PCA is shown in Fig. 1B.
Without any ordering of the molecules (left panel), drawing biologic-
al conclusions is precluded. Using methylscaper (right panel), it
becomes evident that endogenous HCG methylation (red-gray) in-
versely correlates with GCH accessibility (yellow-gray). The quality
of ordering also allows visualization of the þ1 nucleosome sliding
and occupying different positions in each cell–the �150 bp

Fig. 1. An overview of methylscaper. (A) Flowchart of the bioinformatic preprocess-

ing pipeline. (B) methylscaper plots of the MAPit-BGS data, generated with two dif-

ferent orderings. The data in the left plot is not ordered; the data on the right was

ordered with methylscaper’s weighted principal component algorithm. A pink oval

was added to indicate the �150-bp þ1 nucleosome downstream of the transcription

start site; a green rectangle was added to indicate a sequence-specific DNA-binding

factor; and a bent arrow was added to indicate the TSS
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footprints (black areas) that move in register with expansion/short-

ening of the accessible nucleosome-free region at the transcription

start site (TSS). In molecules 25–35, two-phased nucleosomes are

observed, punctuated by an accessible linker. Finally, protection of
two GCH sites upstream of the TSS and within the nucleosome-free

region detects binding of a sequence-specific transcription factor.
We also compared visualization with methylscaper to existing

tools. In previous manuscripts using MAPit-BGS, hierarchical clus-
tering alone was used to order the molecules. However, we have

found this method fails with increasing complexity of patterns and

number of molecules and often breaks the molecules into distinct

blocks that have locally optimal orderings but are out of order with
respect to a global structure (Supplementary Fig. S5). When patterns

in the data are heterogeneous and many molecules are available, this

leads to unorganized and potentially uninformative visualizations.
Line plots, also commonly used to visualize methylation and accessi-

bility status [e.g. as implemented in the aaRon R package (Statham

et al., 2015) or the NOMePlot software(Requena et al., 2019)] ei-

ther present the status of a single molecule at a time or of a moving
population average of statuses across all molecules (Supplementary

Fig. S6). This type of plot is insufficient when visualizing a large

number of molecules, as using population averages often leads to a

loss of critical information when methylation status or nucleosome
occupancy is highly variable in heterogeneous cell populations.

Commonly used lollipop plots also become unclear when a large

number of molecules are available (Supplementary Fig. S6).
Next, we applied our results to a single-cell dataset generated

using the scNMT-seq protocol that jointly profiles methylation and

accessibility chromatin states in single cells (Clark et al., 2018). As

shown in Clark et al., we also observe high levels of open chromatin

near the TSS for Eef1g, though we find evidence of aþ 1 nucleosome
approximately þ250 bp downstream of the TSS (Supplementary Fig.

S7).

Data Availability

The MAPit-BGS reads and reference sequence are available with this

article as Supplementary data and available in the methylscaper R

package on Github (https://github.com/rhondabacher/methylscaper/).
The scNMT-seq dataset was downloaded from GSE109262.
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