
nutrients

Article

The Structure of Relationships between the Human Exposome
and Cardiometabolic Health: The Million Veteran Program

Kerry L. Ivey 1,2,3,* , Xuan-Mai T. Nguyen 1,4,5, Daniel Posner 1, Geraint B. Rogers 2, Deirdre K. Tobias 3,6,
Rebecca Song 1,7, Yuk-Lam Ho 1 , Ruifeng Li 3 , Peter W. F. Wilson 8,9, Kelly Cho 1,4,5,
John Michael Gaziano 1,4,5,10, Frank B. Hu 3,11,12, Walter C. Willett 3,11,12 and Luc Djoussé 1,4,5,†

����������
�������

Citation: Ivey, K.L.; Nguyen, X.-M.T.;

Posner, D.; Rogers, G.B.; Tobias, D.K.;

Song, R.; Ho, Y.-L.; Li, R.; Wilson,

P.W.F.; Cho, K.; et al. The Structure of

Relationships between the Human

Exposome and Cardiometabolic

Health: The Million Veteran Program.

Nutrients 2021, 13, 1364. https://

doi.org/10.3390/nu13041364

Academic Editor: Rosa Casas

Received: 10 March 2021

Accepted: 14 April 2021

Published: 19 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC), Boston Veterans Affairs
Healthcare System, Boston, MA 02130, USA; xuan-mai.nguyen@va.gov (X.-M.T.N.); dcposner@bu.edu (D.P.);
Rebecca.Song@va.gov (R.S.); Yuk-Lam.Ho@va.gov (Y.-L.H.); Kelly.Cho@va.gov (K.C.);
michael.gaziano@va.gov (J.M.G.); ldjousse@rics.bwh.harvard.edu (L.D.)

2 South Australian Health and Medical Research Institute, Infection and Immunity Theme,
Adelaide 5000, Australia; Geraint.Rogers@sahmri.com

3 Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA;
dtobias@bwh.harvard.edu (D.K.T.); rli@hsph.harvard.edu (R.L.); fhu@hsph.harvard.edu (F.B.H.);
wwillett@hsph.harvard.edu (W.C.W.)

4 Division of Aging, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
5 Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
6 Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital,

Boston, MA 02115, USA
7 Department of Epidemiology, Boston University School of Public Health, Boston, MA 02118, USA
8 Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA; pwwilso@emory.edu
9 Department of Medicine, Division of Cardiovascular Disease, Emory University Schools of Medicine and

Public Health, Atlanta, GA 30322, USA
10 Division of General Internal Medicine, Department of Medicine, Brigham and Women’s Hospital,

Boston, MA 02115, USA
11 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
12 Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital,

Harvard Medical School, Boston, MA 02115, USA
* Correspondence: kivey@hsph.harvard.edu
† On behalf of the VA Million Veteran Program.

Abstract: The exposome represents the array of dietary, lifestyle, and demographic factors to which
an individual is exposed. Individual components of the exposome, or groups of components, are
recognized as influencing many aspects of human physiology, including cardiometabolic health.
However, the influence of the whole exposome on health outcomes is poorly understood and may
differ substantially from the sum of its individual components. As such, studies of the complete
exposome are more biologically representative than fragmented models based on subsets of factors.
This study aimed to model the system of relationships underlying the way in which the diet, lifestyle,
and demographic components of the overall exposome shapes the cardiometabolic risk profile. The
current study included 36,496 US Veterans enrolled in the VA Million Veteran Program (MVP) who
had complete assessments of their diet, lifestyle, demography, and markers of cardiometabolic health,
including serum lipids, blood pressure, and glycemic control. The cohort was randomly divided
into training and validation datasets. In the training dataset, we conducted two separate exploratory
factor analyses (EFA) to identify common factors among exposures (diet, demographics, and physical
activity) and laboratory measures (lipids, blood pressure, and glycemic control), respectively. In the
validation dataset, we used multiple normal regression to examine the combined effects of exposure
factors on the clinical factors representing cardiometabolic health. The mean ± SD age of participants
was 62.4 ± 13.4 years for both the training and validation datasets. The EFA revealed 19 Exposure
Common Factors and 5 Physiology Common Factors that explained the observed (measured) data.
Multivariate regression in the validation dataset revealed the structure of associations between the
Exposure Common Factors and the Physiology Common Factors. For example, we found that the
factor for fruit consumption was inversely associated with the factor summarizing total cholesterol
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and low-density lipoprotein cholesterol (LDLC, p = 0.008), and the latent construct describing light
levels of physical activity was inversely associated with the blood pressure latent construct (p < 0.0001).
We also found that a factor summarizing that participants who frequently consume whole milk are
less likely to frequently consume skim milk, was positively associated with the latent constructs
representing total cholesterol and LDLC as well as systolic and diastolic blood pressure (p = 0.0006
and <0.0001, respectively). Multiple multivariable-adjusted regression analyses of exposome factors
allowed us to model the influence of the exposome as a whole. In this metadata-rich, prospective
cohort of US Veterans, there was evidence of structural relationships between diet, lifestyle, and
demographic exposures and subsequent markers of cardiometabolic health. This methodology could
be applied to answer a variety of research questions about human health exposures that utilize
electronic health record data and can accommodate continuous, ordinal, and binary data derived
from questionnaires. Further work to explore the potential utility of including genetic risk scores and
time-varying covariates is warranted.

Keywords: exposome; diet; lifestyle; demographics; cardiovascular disease; cholesterol; triglycerides;
blood pressure; glycemic control

1. Background

Cardiovascular disease (CVD) is the leading cause of adult mortality globally [1]
Strategies aimed at reducing CVD rates involve modulation of markers of CVD risk. In
particular, elevated circulating cholesterol and triglyceride levels are associated with higher
CVD risk and mortality and are principal targets for risk reduction [2,3]. Further, elevated
blood pressure is one of the leading non-communicable disease risk factors [4], and elevated
glycated hemoglobin is also a predictor of cardiovascular disease [5–8]. As such, strategies
aimed at improving lipid profile, blood pressure, and glycemic control are urgently needed.

The array of external factors an individual is exposed to, referred to as the exposome,
represents a complex network of interrelationships within and between different compo-
nents comprising diet, lifestyle, and demographics. Despite the well-documented ability
of individual exposome components, or groups of exposome components, to influence
many aspects of human physiology [9–11], surprisingly little is known about how the
complex array of exposures as a whole shape the cardiometabolic risk profile. Reduction-
ist approaches, such as single-exposure models, are unable to account for the complex
interactions between the many potential exposome components and their effect on physiol-
ogy [12]. The absence of models that integrate the many different components undermines
the capacity of current studies of exposome components to draw robust generalizations.
This project therefore aims to model the system of relationships underlying the way in
which the exposome, as a whole, shapes the cardiometabolic risk profile. To achieve this
aim, we utilized a truly unique dataset generated from an exposome assessment, as well as
longitudinally assessed markers of cardiometabolic health in the Million Veteran Program.

2. Methods
2.1. Study Population

Between January 2011 and November 2019, approximately 800,000 Veterans enrolled
in the Million Veteran Program (MVP) [13]. The current prospective study draws from
the approximately 350,000 Veterans that had enrolled in the MVP between January 2011
and 2016. Of the 297,937 participants that had exposure data, 182,363 participants were ex-
cluded if they were using antilipemic, antihypertensive, and/or hypoglycemic medications
during either the exposure-assessment or outcome-assessment periods (Supplementary
Table S1). A further 79,078 participants were excluded as they had incomplete exposure
and/or physiology data. Consequently, the final analysis included 36,496 MVP participants.
Consent was obtained in accordance with all VA policies and under the authority of the VA
Central IRB [13].
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2.2. Exposome Assessment

Variables representing the exposome were observed (measured) using various ques-
tionnaires. At enrollment, participants completed a baseline questionnaire in which they
reported their date of birth, height, smoking status, gender, ethnicity, and race. Participants
also completed a lifestyle questionnaire in which they reported body weight, frequency of
light, moderate, and vigorous physical activities both during and outside of work hours,
smoking status, and number of hours per week spent in sedentary activities (watching
television, DVDs, or videos, using a computer, or playing video games). Body mass index
(BMI) was calculated as weight (kg)/height (m) [2].

A food frequency questionnaire (FFQ) was used to assess habitual dietary intake
over the year preceding lifestyle questionnaire administration. Participants were asked to
describe the average consumption frequency of 67 different foods. “For each food listed,
please mark the column indicating how often, on average, you have used the amount
specified during the past year”. Pre-specified answers were as follows: “Never or less than
once a month; 1 to 3 per month; once a week; 2 to 4 per week; 5 to 6 per week; once (1) a
day; 2 to 3 per day; 4 to 5 per day; or 6+ per day”.

For this study, we included 83 measured (observed) variables to represent the expo-
some. This is a large number of individual variables, many of which are not independent
from one another due to patterns of behaviors amongst participants. In order to make sense
of the numerous individual measured (observed) exposome variables, it was imperative
that we reduce the dimensionality of the exposome variables to a smaller set of common
factors representing groups of covarying measured (observed) variables. The methods to
achieve this dimension reduction are detailed in the statistical analysis section.

2.3. Assessment of Physiological Markers of Cardiometabolic Health

A panel of clinicians reviewed lab measurements across all VA locations and ad-
judicated discrepancies to ensure lab measure consistency. Electronic medical records,
adjudicated by two clinicians, were used to ascertain the markers of cardiometabolic health,
which included systolic and diastolic blood pressures, as well as the concentration of
total cholesterol, low-density lipoprotein cholesterol (LDLC), high density lipoprotein
cholesterol (HDLC), triglycerides, HbA1c, and glucose.

This study included the physiological variables that were assessed during the 1–4 years
post lifestyle questionnaire administration. For each individual marker of cardiometabolic
health, analyses utilized the mean measurement of all of the assessments taken during this
period, as well as the maximum recorded measurement during this time period. For each
physiology parameter, measurements were excluded if they were taken within 4 days of a
previous measurement [14], if they had negative values, or if they had values that were
three interquartile ranges from the 25th and 75th percentiles. Data from casually obtained
specimens were used in the analysis without regard to fasting status.

2.4. Assessment of Medication Usage

Electronic medical records were used to ascertain antilipemic agent usage during the
1 year preceding exposure assessment and during the outcome assessment period. Two
clinicians adjudicated the list of antilipemic agents and included specific medications and
doses from the following Generic Adjudication Classes: alirocumab; atorvastatin; atromid;
bezafibrate; bezalip retard; cholestyramine; choloxin; clofibrate; colesevelam; colestipol;
dextrothyroxine; evolocumab; ezetimibe; ezetimibe/simvastatin; fenofibrate; fenofibric
acid; fish oil; gemfibrozil; icosapent ethyl; lomitapide; mevacor; mipomersen; niacinamide;
omega-3; omega-3 acid; probucol; rosuvastatin; and statin. The same method of adjudi-
cation was used to ascertain usage of antihypertensive medications and combinations, as
well as use of hypoglycemic agents.
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2.5. Statistical Analysis

Before analysis, participants were randomly divided into one of two groups: a training
dataset containing 66.6% of participants (n = 24,411) or a validation dataset containing the
remaining 33.3% of participants (n = 12,085). See Supplementary Figure S1 for details.

The advent of multidimensional cohorts that both assess the exposome and are linked
to electronic health records has resulted in large and complex datasets that comprise nor-
mally and non-normally distributed data that can be continuous, ordinal, categorical, and
binary. There are many techniques available for reducing data dimensionality, which can
be broadly categorized into supervised analyses (such as decision trees) and unsupervised
analyses. Of the unsupervised analytic approaches, methods such as cluster analysis were
not implemented as they would have reduced the number of observations (participants) by
grouping them into a smaller set of clusters. Instead, we were aiming to achieve a reduction
in the number of variables by grouping them into a smaller set of factors. We achieved this
aim through implementation of common exploratory factor analysis. In fact, the use of com-
mon exploratory factor analysis in biomedical research is well-tested and effective [15,16],
representing an established method whereby “hidden” relationships between the assumed
latent variables and the initial observed (measured) variables can be uncovered [17]. To
make sense of these data, this study aimed to (i) holistically examine the complex networks
of interrelationships that define the exposome and clinical cardiometabolic risk profile;
(ii) represent theoretical constructs that are unmeasurable or unmeasured; (iii) include
parameter-specific measurement error; and (iv) integrate a number of techniques into
one framework, accounting for the range of distributions, units, and relations within and
between exposures and cardiometabolic health. Through applying tetrachoric and poly-
choric, common exploratory factor analysis followed by multivariable-adjusted regression
analysis, our methods allowed us to observe the structure of relationships within and
between the human exposome and subsequent markers of cardiometabolic health in this
large, metadata-rich, prospective cohort of adult US Veterans.

The first stage of the analysis identified the latent constructs (common factors) that
best described the shared covariance of the observed (measured) exposures and the physio-
logical variables in the training dataset. These unobservable latent constructs are essentially
hypothetical constructs that are used to represent groups of interconnected measured vari-
ables [18]. Exploratory factor analyses were used to evaluate the latent constructs and
underlying structure because there were multiple hypotheses and extremely limited a priori
knowledge of how observed (measured) variables might cluster, and because we aimed
to develop a measurement model of latent variables, and not to merely identify a linear
combination of variables, as is the case in principal component analysis.

For exposure variables, the exploratory factor analysis used tetrachoric and polychoric
correlation coefficients between measures of exposure and oblique promax rotation and
the varimax prerotation method to make exposure factors more parsimonious [19]. For
physiology variables, Spearman’s correlation coefficients were estimated and utilized a
common exploratory factor analysis using the orthogonal parsimax rotation [20]. Factors
were estimated with maximum likelihood methods [20,21]. As a sensitivity analysis, we
implemented an alternative method for extracting factors: iterated principal factor analysis.
We determined the number of factors to extract through parallel analysis, where each
of the eigenvalues of the input correlation matrix was compared against an empirical
distribution of eigenvalues. The empirical distribution of eigenvalues was obtained from
10,000 simulations of generated random correlation matrices. We retained all factors with
corresponding eigenvalues that exceeded the one-sided critical value (α = 0.01) of the
empirical eigenvalue distribution [20,22].

The eigenvalues and vectors were then used to compute the standardized (mean = 0,
standard deviation = 1) latent constructs in the validation dataset, upon which multivariable-
adjusted regression analysis that simultaneously adjusted for all of the exposure latent
constructs could be applied to identify the structure of relationships between exposure
latent constructs and latent constructs representing cardiometabolic health. These inter-
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relationships were visualized using Cytoscape Version 3.7.2, with the following criteria
dictating which associations were displayed: rotated factor pattern (standardized regres-
sion coefficients ≥ 0.5); uniqueness (display = all); inter-factor correlations (correlation
coefficient ≥ 0.4); and multivariable-adjusted regression coefficients (significance under
the Bonferroni criterion).

All analyses were conducted using SAS version 9.4, maintenance release #6.

3. Results
3.1. Participant Characteristics

All of the exposome variables that were included in the models are detailed in Table 1
and Supplementary Table S2. Of the 36,496 MVP participants analyzed, 86% were men,
85% were Caucasians and 11% were African-Americans (Table 1). The mean ± SD body
mass index was 28 ± 5 kg/m2 (Supplementary Table S2). Markers of cardiometabolic
health are presented in Table 2.

Table 1. Key baseline characteristics of all Million Veteran Program participants included in this study.

Value

DEMOGRAPHICS
Age (years) 62.40 ± 13.41

Gender (% males) 86
Caucasian (%) 85

Current smoking (number of cigarettes smoked/day) 0.26 ± 0.77
SUPPLEMENT USE

Omega-3 supplement use (%) 23
Vitamin D supplement use (%) 36

Multivitamin supplement use (%) 54
DIETARY INTAKE

Dairy
Whole milk (serves/day) 0.17 ± 0.55
Skim milk (serves/day) 0.51 ± 0.87

Meat
Red meat in main dish (serves/day) 0.20 ± 0.28

Red meat in mixed dish (serves/day) 0.19 ± 0.26
Hamburgers (serves/day) 0.16 ± 0.24

Processed meat (serves/day) 0.16 ± 0.28
Hot dogs (serves/day) 0.08 ± 0.19

Bacon (serves/day) 0.15 ± 0.29
Sweets and other foods

French fries (serves/day) 0.12 ± 0.23
Potato chips (serves/day) 0.18 ± 0.32

Cake (serves/day) 0.06 ± 0.15
Home-made pie (serves/day) 0.05 ± 0.13
Ready-made pie (serves/day) 0.05 ± 0.14

Alcoholic beverages
Liquor (serves/day) 0.15 ± 0.52

Beer (serves/day) 0.31 ± 0.84
Wine (serves/day) 0.17 ± 0.49

Fruit
Peaches (serves/day) 0.13 ± 0.32
Oranges (serves/day) 0.19 ± 0.37
Apples (serves/day) 0.27 ± 0.43

Vegetables
Peas (serves/day) 0.14 ± 0.25

Spinach (serves/day) 0.15 ± 0.32
Yams (serves/day) 0.09 ± 0.23

Squash (serves/day) 0.07 ± 0.21
Cooked carrot (serves/day) 0.13 ± 0.25
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Table 1. Cont.

Value

Corn (serves/day) 0.15 ± 0.25
String beans (serves/day) 0.17 ± 0.26

Beans (serves/day) 0.18 ± 0.32
Cabbage (serves/day) 0.14 ± 0.28
Broccoli (serves/day) 0.19 ± 0.31

PHYSICAL ACTIVITY
Vigorous physical activity during leisure time (hours/day) 0.85 ± 1.68
Moderate physical activity during leisure time (hours/day) 1.20 ± 1.92

Vigorous physical activity at home (hours/day) 0.85 ± 1.51
Moderate physical activity at home (hours/day) 1.14 ± 1.75
Vigorous physical activity at work (hours/day) 0.9 ± 1.87
Moderate physical activity at work (hours/day) 1.77 ± 2.53

Light physical activity during leisure time (hours/day) 2.37 ± 2.65
Light physical activity at home (hours/day) 2.93 ± 2.71
Light physical activity at work (hours/day) 2.96 ± 3.19

Number of participants: 36,496. Results are mean ± standard deviation or %, where appropriate.

Table 2. Physiological markers of cardiometabolic health in all included Million Veteran
Program participants.

Mean ± SD

Total cholesterol
Mean of measurements (mg/dL) 177.40 ± 33.96

Maximum measurement (mg/dL) 187.28 ± 36.98
Low-density lipoprotein cholesterol

Mean of measurements (mg/dL) 104.57 ± 29.36
Maximum measurement (mg/dL) 113.15 ± 31.90

Triglycerides
Mean of measurements (mg/dL) 123.48 ± 63.96

Maximum measurement (mg/dL) 145.81 ± 80.31
High-density lipoprotein cholesterol

Mean of measurements (mg/dL) 49.79 ± 13.94
Maximum measurement (mg/dL) 53.02 ± 15.10

Systolic blood pressure
Mean of measurements (mmHg) 130.27 ± 12.43

Maximum measurement (mmHg) 145.71 ± 17.93
Diastolic blood pressure

Mean of measurements (mmHg) 76.72 ± 7.67
Maximum measurement (mmHg) 85.74 ± 10.24

HbA1c
Mean of measurements (DCCT %) 5.64 ± 0.58

Maximum measurement (DCCT %) 5.74 ± 0.66
Glucose

Mean of measurements (mg/dL) 101.92 ± 17.70
Maximum measurement (mg/dL) 113.45 ± 26.93

Number of participants: 36,496. Mean of measurements reflects mean value for all measurements, whereas
maximum measurement reflects the maximum value for all measurements.

Two-thirds of participants (n = 24,411) were randomly assigned to the training dataset
and the remaining one-third (n = 12,085) were randomly assigned to the validation dataset.
The mean ± SD age of the participants in the training and validation datasets was identical
(62.4 ± 13.4 years).

3.2. Latent Constructs Describing the Exposure Variables in the Training Dataset

Tetrachoric and polychoric, common exploratory factor analysis in the training dataset
revealed 19 common factors that explained shared exposure observed (measured) variable
covariance. The common factors could be broadly categorized according to the measured
(observed) variables they represented (Figure 1 and Supplementary Figure S2). For example,
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the Common Exposure Factor E1 represented shared covariance in the intakes of many
commonly consumed vegetables. Furthermore, Common Exposure Factor E17 had strong
positive weighting for intake of whole milk but a strong negative weighting for intake of
skim milk, representing the fact that, in this cohort, participants who frequently consumed
whole milk were less likely to frequently consume skim milk.

Different types of physical activity were grouped together in three separate Common
Exposure Factors. In particular, Common Exposure Factor E6 represented moderate and
vigorous physical activity at home and during leisure time, Common Exposure Factor
E7 represented moderate and vigorous physical activity at work, and Common Exposure
Factor E10 represented light levels of physical activity at home, during leisure and at work.
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3.3. Latent Constructs Describing the Physiological Variables in the Training Dataset

Common exploratory factor analysis in the training dataset revealed 5 common factors
that explained shared physiology variable covariance. These broadly represented (i) total
cholesterol and LDLC; (ii) glycemic control; (iii) blood pressure; (iv) HDLC; and (v) triglyc-
erides (Figure 2). Common Physiology Factor P1 had positive loadings for all measures of
total cholesterol and LDLC, and Common Physiology Factor P3 had high loadings for all
of the measures of blood pressure. In fact, the final model applied similar loadings to mean
and maximum values of the observed (measured) variables. As sensitivity analysis, we
implemented an iterated principal factor analysis as the extraction method and observed
similar factor loadings with the exception of mean and maximum glucose, which went from
having a factor loading < 0.5 for Common Physiology Factor P2 in the primary analysis to
having a factor loading > 0.5 (0.64 and 0.60, respectively) for Common Physiology Factor
P2 in the sensitivity analysis.
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3.4. Relationships between Human Exposures and Physiology in the Validation Dataset

Identification of the 19 Common Exposure Factors was done without knowledge of
the physiological variables. Likewise, the creation of the 5 Common Physiology Factors
was independent of the exposure variables. In Figure 3a–e, we present the complex pat-
terns underlying the structure of relationships between Common Exposure Factors and
Common Physiology Factors that remain after taking into account the non-independence
of the assessed exposome. Some Common Exposure Factors had no association with the
Common Physiology Factors, whereas others showed a strong association, both inversely
and positively. Specifically, even though the Common Exposure Factor describing intake of
processed meat and fried potato (E2) was associated with the Common Physiology Factors
describing total cholesterol and LDLC (P1), triglycerides (P5), blood pressure (P3), and
glycemic control (P2), the Common Exposure Factor representing red meat intake from
main and mixed dishes (E14) was not associated with any of the physiological common fac-
tors. Similarly, although the Common Exposure Factor describing intake of moderate and
vigorous physical activity at home and during leisure (E6) was associated with the Com-
mon Physiology Factors describing total cholesterol and LDLC (P1), triglycerides (P5), and
HDLC (P4), the Common Exposure Factor representing moderate and vigorous physical
activity at work (E7) was not associated with any of the physiological common factors.

When considering individual physiology factors, the fruit latent construct (Common
Exposure Factor E3), but not the vegetable latent constructs (Common Exposure Factors
E1 and E19) was inversely associated (estimate: −0.03, P: 0.0077) with the latent construct
summarizing total cholesterol and LDLC (Common Physiology Factor P1) (Figure 3a).
Conversely, the latent construct with a positive weighting for intake of whole milk but a
strong negative weighting for intake of skim milk (Common Exposure Factor E17) had a
positive association with Common Physiology Factor P1, as well as with Common Physiol-
ogy Factor P3, the latent construct summarizing measures of blood pressure (Figure 3d).
The latent construct describing light levels of physical activity (Common Exposure Factor
E10) was inversely associated with the blood pressure latent construct.
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Figure 3. Common exploratory factor analysis (training dataset) and multiple regression analysis (validation dataset)
outlining the interrelationships between human exposures and markers of cardiometabolic health. (a) Association of latent
constructs representing exposure to various dietary and lifestyle common factors with the latent construct that explains
the shared covariance in total cholesterol and low-density lipoprotein cholesterol (LDLC) concentrations. (b) Association
of latent constructs representing exposure to various dietary and lifestyle common factors with the latent construct
representing triglyceride concentrations. (c) Association of latent constructs representing exposure to various dietary and
lifestyle common factors with the latent construct representing high-density lipoprotein cholesterol (HDLC) concentrations.
(d) Association of latent constructs representing exposure to various dietary and lifestyle common factors with the latent
construct representing blood pressure. (e) Association of latent constructs representing exposure to various dietary
and lifestyle common factors with the latent construct representing glycemic control. Number of participants for the
common exploratory factor analysis that was conducted in the training dataset: n = 24,411. Number of participants for the
multivariable-adjusted regression analysis that was conducted in the validation dataset: n = 12,085. Observed (measured)
exposure and physiology variables are presented in the order in which they appear in Figures 1 and 2, respectively.
Criteria for displaying measured (observed) variables: rotated factor pattern: Standardized regression coefficient ≥ 0.5.
Criteria for displaying association lines: uniqueness (display all); inter-factor correlations (correlation coefficient ≥ 0.4);
and multivariable, adjusted regression coefficients (p value significant using the Bonferroni threshold). For multivariable-
adjusted regression coefficients, the line thickness represents the value of the -log10(p value), range: 2.11, 9.05.
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4. Discussion

In this prospective cohort study of U.S. male and female Veterans, we reported an
association between the exposome and markers of cardiometabolic health. Specifically,
using factors identified in a training dataset, multiple multivariable-adjusted regression
analyses revealed significant positive and inverse associations between exposure latent
constructs and latent constructs describing observed (measured) physiology variables when
applied to a separate validation dataset containing different participants. This provided
us with critical insights and observations that represent steps forward in enhancing our
understanding of how the exposome, as a holistic entity, shapes human physiology.

We employed common exploratory factor analysis to reveal the structure of interrela-
tionships between individual exposures and physiology variables in a way that substan-
tially advances our understanding of how observed (measured) exposome variables relate
to the cardiometabolic risk profile. For example, a Common Exposure Factor was created
to reflect the close relationship in study participants between high levels of moderate and
vigorous physical activity at home and high levels of moderate and vigorous physical
activity during leisure time. This relationship was not strongly correlated with levels of
moderate and vigorous physical activity at work, which was represented by a different
Common Exposure Factor. This suggests that the amount of moderate to vigorous physical
activity participants perform at work did not covary with the amount of moderate to
vigorous physical activity performed during leisure and at home [23]. By unveiling “hid-
den” relationships between the latent constructs and the observed (measured) variables
they represent that matched our understanding of biology and variable representation,
the utility of common exploratory factor analysis for both questionnaire-derived assess-
ments of exposome and electronic medical record-derived assessments of cardiometabolic
health was highlighted. However, it is unclear what the causal implications for these
relationships are.

Very few studies have attempted to determine the influence of the exposome as a
whole on cardiometabolic risk (as determined through electronic medical records). Mod-
elling the system of relationships underlying the way in which the exposome, as a whole,
shaped the cardiometabolic risk profile was therefore an important aim of our investigation.
In addition to revealing the structure of the exposome and the structure of physiology
variables, this study also revealed the structure of relationships between the exposome and
cardiometabolic risk profile through multiple regression of latent constructs. An example
of this was the creation of a latent construct in the training dataset that represented the
reciprocal relationship between consumption of whole and skim milk. In other words, any
associations of whole milk with cardiometabolic disease risk could not be separated from
the effects of skim milk and should not be interpreted in isolation. When applied to sepa-
rate validation datasets, this milk-based latent construct was positively associated with the
latent constructs representing total cholesterol and LDLC as well as systolic and diastolic
blood pressure. This observation is supported by randomized controlled trials directly
comparing non-fermented whole milk to non-fermented skim milk that suggest adverse ef-
fects of whole milk, compared to skim milk, on total cholesterol and LDLC [24,25]. Further,
skim but not whole milk has been shown to exhibit antihypertensive properties [26,27]. It
is not yet clear whether dairy fat intake increases cardiovascular disease risk [28]. Despite
this, results of our exposome analysis support the 2006 American Heart Association to
Diet and Lifestyle Recommendations and the 2015–2020 Dietary Guidelines for Americans,
which both encourage adults to select milk products that are either fat-free or low in fat
rather than whole milk products [29,30]. The finding that individual components of the
exposome are both numerically and biologically intertwined highlights the urgent need
to implement analytic techniques that holistically examine the complex networks of in-
terrelationships within and between observed (measured) variables. This was achieved
through the representation of unmeasurable or unmeasured theoretical constructs as well
as parameter-specific measurement error in order to draw robust generalizations regarding
the complex interactions between the many exposome components and human physiology.
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The use of latent factors to describe interrelationships between individual exposome
and physiology components was able to shed light on hypothesized relationships. For
example, the factor describing fruit consumption was inversely associated with the factor
describing concentrations of total cholesterol and LDLC. This is supported by (i) our
previous findings from the National Heart, Lung, and Blood Institute Family Heart Study,
which found that consumption of fruit and vegetables was inversely related to LDLC in both
men and women [31] and (ii) results from other cohort studies and randomized controlled
trials [32,33]. Although the benefits of fruit consumption on cholesterol concentrations
are not conclusive, with some studies showing no benefit of fruit consumption [34], the
high fiber content of fruit has been attributed to its cholesterol-lowering capacity [35,36].
In this study, peaches, oranges, and apples contributed to the fruit factor. Apples have
been shown to increase the clearance of plasma cholesterol by enhancing the fecal excretion
of bile acids and cholesterol [37], and the peel of peaches has been shown to lower total
cholesterol and LDLC in rats fed a high-sucrose diet. Further, the polyphenols in apples
have been shown to have beneficial effects on cholesterol metabolism [38–41], as too have
the pectins of apples and oranges [42]. A randomized controlled trial testing the effect
of the combination of peaches, oranges, and apples on serum lipid profile is needed in
order to ascertain causality of this observed association. It is important to note that there
were cases where hypothesized relationships were not observed. For example, despite
vegetables being a rich source of dietary fiber and higher consumption of vegetables being
associated with lower risk of all-cause mortality and cardiovascular mortality [43], the
vegetable consumption factors in this study were not significantly associated with the factor
describing total cholesterol and LDLC. The absence of confirmatory findings regarding
vegetables in this study may be explained by the absence of data on intake of nutrients, such
as fiber, which can summarize contributions from many different foods that are biologically
important. Another reason may be that the measurement error may be lower in fruits
as opposed to vegetables. However, another interpretation may be that, after controlling
for other exposome components, vegetables are not associated with total cholesterol and
LDLC concentrations in this cohort. Further studies using longitudinal data are needed to
confirm these findings.

Although the methods implemented were well-tested and effective, it is important
to note that diet was self-reported, health outcomes were captured through electronic
medical records, there was a lack of data on medication adherence, and there were a limited
number of women and non-whites in this U.S. Veteran cohort. Additionally, causality of
observed relationships could not be established due to the observational nature of the
study. Nevertheless, it is important to note that the exposome was measured at least
one year prior to any of the physiologic variables being assessed, which, although not
ruling it out, does reduce the likelihood and impact of reverse causation. An additional
factor to consider when interpreting the results is the possibility of false-positive findings,
which was reduced through implementation of the conservative Bonferroni correction [44].
Furthermore, although residual or unmeasured confounders cannot be ruled out, the
common exploratory methods implemented in this study do aim to represent unmeasured
and/or immeasurable variables through the creation of latent constructs. This analytic
approach also enabled us to model the measurement error inherent when using self-
reported exposome assessments as well as collations from electronic medical records,
even when there are some exposome variables, such as environmental variables, that are
not measured directly. By conducting the analysis in both a training and a validation
dataset, we were able to demonstrate the utility of our analytic strategy for use in the
increasingly prevalent type of cohort that has extensive questionnaire-based assessments
of the exposome as well as markers of human physiology derived from electronic medical
records. However, further replication in separate datasets is warranted.

It is becoming increasingly recognized that studies of the complete exposome are more
biologically representative than fragmented models based on subsets of factors. There is
no more clear example of this than the position of the Academy of Nutrition and Dietet-
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ics, which plainly states that the “total diet or overall pattern of food eaten is the most
important focus of healthy eating” [45]. In recognition of this, as opposed to focusing on
individual nutrient recommendations, the Dietary Guidelines for Americans highlight key
elements of healthy eating patterns [30]. Some patterns, such as the Mediterranean Dietary
Pattern, are based on a priori knowledge of how individual dietary components influence
human health, and are often represented by a pattern score that reflects relative adher-
ence to the dietary pattern, as is the case for the Healthy Eating Index [46,47]. Although
hypothesis-driven, there is no general consensus in the scientific or clinical community
as to what is the ideal dietary pattern for optimal health [48]. Importantly, these dietary
patterns typically reflect only a select group of dietary components, and not necessarily
the diet as a whole [46,47]. Given that the aim of the present paper was to identify the
importance of the entire exposome in influencing cardiometabolic health, we chose to adopt
a data-driven approach which allowed us to identify existing patterns in the population,
and how individual foods, lifestyle factors, and demographic features related to each other
at a population level. In this study, the measured exposome variables were represented by
19 common factors that were created independently from the physiological variables. We
observed heterogeneous patterns of association of exposome constructs with each of the
physiological constructs, which represented measured biomarkers that are important indi-
cators of cardiometabolic health. As such, even though the exposome overall contributed
to cardiometabolic health, each facet of the exposome had differential implications for
different aspects of cardiometabolic health. It is evident that the overall complex exposome
that individuals are exposed to needs to be studied more in order to more fully understand
what is contributing to cardiometabolic risk profiles in communities of free-living indi-
viduals. To be more comprehensive, a logical extension to this current work would be to
incorporate more environmental exposome variables, such as air pollution and access to
green space, into the current models.

In conclusion, we observed a complex pattern of associations between the exposome
and markers of cardiometabolic health. Given that we are increasingly recognizing the
potential of the exposome as a whole to have far-reaching health implications beyond the
effects associated with the sum of its parts, it is more important than ever that we make
available analytic tools and approaches that are capable of dealing with this directly. It
should be noted that the analytic strategy implemented in this paper could be applied to
address a range of research questions that utilize data from questionnaire and electronic
health record data, thus bringing us one step closer to understanding how the exposome,
as a whole, impacts human health.
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• Philadelphia VA Medical Center, 3900 Woodland Avenue, Philadelphia,
PA 19104, USA

- Christopher J. O’Donnell, M.D., M.P.H.

• VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA
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MVP Program Office

- Sumitra Muralidhar, Ph.D.

◦ US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington,
DC 20420, USA

- Jennifer Moser, Ph.D.

◦ US Department of Veterans Affairs, 810 Vermont Avenue NW, Washington,
DC 20420, USA

MVP Recruitment/Enrollment

- Recruitment/Enrollment Director/Deputy Director, Boston—Stacey B. Whitbourne,
Ph.D.; Jessica V. Brewer, M.P.H.

• VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA

- MVP Coordinating Centers

• Clinical Epidemiology Research Center (CERC), West Haven—Mihaela Aslan, Ph.D.
• West Haven VA Medical Center, 950 Campbell Avenue, West Haven,

CT 06516, USA
• Cooperative Studies Program Clinical Research Pharmacy Coordinating Center,

Albuquerque—Todd Connor, Pharm.D.; Dean P. Argyres, B.S., M.S.
• New Mexico VA Health Care System, 1501 San Pedro Drive SE, Albuquerque,

NM 87108, USA
• Genomics Coordinating Center, Palo Alto—Philip S. Tsao, Ph.D.
• VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto,

CA 94304, USA
• MVP Boston Coordinating Center, Boston—J. Michael Gaziano, M.D., M.P.H.
• VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA
• MVP Information Center, Canandaigua—Brady Stephens, M.S.
• Canandaigua VA Medical Center, 400 Fort Hill Avenue, Canandaigua,

NY 14424, USA

- VA Central Biorepository, Boston—Mary T. Brophy M.D., M.P.H.; Donald E. Humphries,
Ph.D.; Luis E. Selva, Ph.D.

• VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA

- MVP Informatics, Boston—Nhan Do, M.D.; Shahpoor (Alex) Shayan, M.S.

• VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA

- MVP Data Operations/Analytics, Boston—Kelly Cho, M.P.H., Ph.D.

• VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA

- Director of Regulatory Affairs—Lori Churby, B.S.

• VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA

MVP Science

- Science Operations—Christopher J. O’Donnell, M.D., M.P.H.
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA
- Genomics Core—Christopher J. O’Donnell, M.D., M.P.H.; Saiju Pyarajan Ph.D.
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA
- Philip S. Tsao, Ph.D.
- VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
- Data Core—Kelly Cho, M.P.H, Ph.D.
- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA
- VA Informatics and Computing Infrastructure (VINCI)—Scott L. DuVall, Ph.D.
- VA Salt Lake City Health Care System, 500 Foothill Drive, Salt Lake City,

UT 84148, USA
- Data and Computational Sciences—Saiju Pyarajan, Ph.D.
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- VA Boston Healthcare System, 150 S. Huntington Avenue, Boston, MA 02130, USA
- Statistical Genetics—Elizabeth Hauser, Ph.D.
- Durham VA Medical Center, 508 Fulton Street, Durham, NC 27705, USA
- Yan Sun, Ph.D.
- Atlanta VA Medical Center, 1670 Clairmont Road, Decatur, GA 30033, USA
- Hongyu Zhao, Ph.D.
- West Haven VA Medical Center, 950 Campbell Avenue, West Haven, CT 06516, USA

Current MVP Local Site Investigators

- Atlanta VA Medical Center (Peter Wilson, M.D.)

◦ 1670 Clairmont Road, Decatur, GA 30033, USA

- Bay Pines VA Healthcare System (Rachel McArdle, Ph.D.)

◦ 10,000 Bay Pines Blvd Bay Pines, FL 33744, USA

- Birmingham VA Medical Center (Louis Dellitalia, M.D.)

◦ 700 S. 19th Street, Birmingham, AL 35233, USA

- Central Western Massachusetts Healthcare System (Kristin Mattocks, Ph.D., M.P.H.)

◦ 421 North Main Street, Leeds, MA 01053, USA

- Cincinnati VA Medical Center (John Harley, M.D., Ph.D.)

◦ 3200 Vine Street, Cincinnati, OH 45220, USA

- Clement J. Zablocki VA Medical Center (Jeffrey Whittle, M.D., M.P.H.)

◦ 5000 West National Avenue, Milwaukee, WI 53295, USA

- VA Northeast Ohio Healthcare System (Frank Jacono, M.D.)

◦ 10701 East Boulevard, Cleveland, OH 44106, USA

- Durham VA Medical Center (Jean Beckham, Ph.D.)

◦ 508 Fulton Street, Durham, NC 27705, USA

- Edith Nourse Rogers Memorial Veterans Hospital (John Wells., Ph.D.)

◦ 200 Springs Road, Bedford, MA 01730, USA

- Edward Hines, Jr. VA Medical Center (Salvador Gutierrez, M.D.)

◦ 5000 South 5th Avenue, Hines, IL 60141, USA

- Veterans Health Care System of the Ozarks (Gretchen Gibson, D.D.S., M.P.H.)

◦ 1100 North College Avenue, Fayetteville, AR 72703, USA

- Fargo VA Health Care System (Kimberly Hammer, Ph.D.)

◦ 2101 N. Elm, Fargo, ND 58102, USA

- VA Health Care Upstate New York (Laurence Kaminsky, Ph.D.)

◦ 113 Holland Avenue, Albany, NY 12208, USA

- New Mexico VA Health Care System (Gerardo Villareal, M.D.)

◦ 1501 San Pedro Drive, S.E. Albuquerque, NM 87108, USA

- VA Boston Healthcare System (Scott Kinlay, M.B.B.S., Ph.D.)

◦ 150 S. Huntington Avenue, Boston, MA 02130, USA

- VA Western New York Healthcare System (Junzhe Xu, M.D.)

◦ 3495 Bailey Avenue, Buffalo, NY 14215-1199, USA

- Ralph H. Johnson VA Medical Center (Mark Hamner, M.D.)

◦ 109 Bee Street, Mental Health Research, Charleston, SC 29401

- Columbia VA Health Care System (Roy Mathew, M.D.)

◦ 6439 Garners Ferry Road, Columbia, SC 29209, USA

- VA North Texas Health Care System (Sujata Bhushan, M.D.)
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◦ 4500 S. Lancaster Road, Dallas, TX 75216, USA

- Hampton VA Medical Center (Pran Iruvanti, D.O., Ph.D.)

◦ 100 Emancipation Drive, Hampton, VA 23667, USA

- Richmond VA Medical Center (Michael Godschalk, M.D.)

◦ 1201 Broad Rock Blvd., Richmond, VA 23249, USA

- Iowa City VA Health Care System (Zuhair Ballas, M.D.)

◦ 601 Highway 6 West, Iowa City, IA 52246-2208

- Eastern Oklahoma VA Health Care System (Douglas Ivins, M.D.)

◦ 1011 Honor Heights Drive, Muskogee, OK 74401, USA

- James A. Haley Veterans’ Hospital (Stephen Mastorides, M.D.)

◦ 13000 Bruce B. Downs Blvd, Tampa, FL 33612, USA

- James H. Quillen VA Medical Center (Jonathan Moorman, M.D., Ph.D.)

◦ Corner of Lamont & Veterans Way, Mountain Home, TN 37684, USA

- John D. Dingell VA Medical Center (Saib Gappy, M.D.)

◦ 4646 John R Street, Detroit, MI 48201, USA

- Louisville VA Medical Center (Jon Klein, M.D., Ph.D.)

◦ 800 Zorn Avenue, Louisville, KY 40206, USA

- Manchester VA Medical Center (Nora Ratcliffe, M.D.)

◦ 718 Smyth Road, Manchester, NH 03104, USA

- Miami VA Health Care System (Hermes Florez, M.D., Ph.D.)

◦ 1201 NW 16th Street, 11 GRC, Miami, FL 33125, USA

- Michael E. DeBakey VA Medical Center (Olaoluwa Okusaga, M.D.)

◦ 2002 Holcombe Blvd, Houston, TX 77030, USA

- Minneapolis VA Health Care System (Maureen Murdoch, M.D., M.P.H.)

◦ One Veterans Drive, Minneapolis, MN 55417, USA

- N. FL/S. GA Veterans Health System (Peruvemba Sriram, M.D.)

◦ 1601 SW Archer Road, Gainesville, FL 32608, USA

- Northport VA Medical Center (Shing Shing Yeh, Ph.D., M.D.)

◦ 79 Middleville Road, Northport, NY 11768, USA

- Overton Brooks VA Medical Center (Neeraj Tandon, M.D.)

◦ 510 East Stoner Ave, Shreveport, LA 71101, USA

- Philadelphia VA Medical Center (Darshana Jhala, M.D.)

◦ 3900 Woodland Avenue, Philadelphia, PA 19104, USA

- Phoenix VA Health Care System (Samuel Aguayo, M.D.)

◦ 650 E. Indian School Road, Phoenix, AZ 85012, USA

- Portland VA Medical Center (David Cohen, M.D.)

◦ 3710 SW U.S. Veterans Hospital Road, Portland, OR 97239

- Providence VA Medical Center (Satish Sharma, M.D.)

◦ 830 Chalkstone Avenue, Providence, RI 02908, USA

- Richard Roudebush VA Medical Center (Suthat Liangpunsakul, M.D., M.P.H.)

◦ 1481 West 10th Street, Indianapolis, IN 46202, USA

- Salem VA Medical Center (Kris Ann Oursler, M.D.)

◦ 1970 Roanoke Blvd, Salem, VA 24153, USA

- San Francisco VA Health Care System (Mary Whooley, M.D.)
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◦ 4150 Clement Street, San Francisco, CA 94121, USA

- South Texas Veterans Health Care System (Sunil Ahuja, M.D.)

◦ 7400 Merton Minter Boulevard, San Antonio, TX 78229, USA

- Southeast Louisiana Veterans Health Care System (Joseph Constans, Ph.D.)

◦ 2400 Canal Street, New Orleans, LA 70119, USA

- Southern Arizona VA Health Care System (Paul Meyer, M.D., Ph.D.)

◦ 3601 S 6th Avenue, Tucson, AZ 85723, USA

- Sioux Falls VA Health Care System (Jennifer Greco, M.D.)

◦ 2501 W 22nd Street, Sioux Falls, SD 57105, USA

- St. Louis VA Health Care System (Michael Rauchman, M.D.)

◦ 915 North Grand Blvd, St. Louis, MO 63106, USA

- Syracuse VA Medical Center (Richard Servatius, Ph.D.)

◦ 800 Irving Avenue, Syracuse, NY 13210, USA

- VA Eastern Kansas Health Care System (Melinda Gaddy, Ph.D.)

◦ 4101 S 4th Street Trafficway, Leavenworth, KS 66048, USA

- VA Greater Los Angeles Health Care System (Agnes Wallbom, M.D., M.S.)

◦ 11301 Wilshire Blvd, Los Angeles, CA 90073, USA

- VA Long Beach Healthcare System (Timothy Morgan, M.D.)

◦ 5901 East 7th Street Long Beach, CA 90822, USA

- VA Maine Healthcare System (Todd Stapley, D.O.)

◦ 1 VA Center, Augusta, ME 04330, USA

- VA New York Harbor Healthcare System (Scott Sherman, M.D., M.P.H.)

◦ 423 East 23rd Street, New York, NY 10010, USA

- VA Pacific Islands Health Care System (George Ross, M.D.)

◦ 459 Patterson Rd, Honolulu, HI 96819, USA

- VA Palo Alto Health Care System (Philip Tsao, Ph.D.)

◦ 3801 Miranda Avenue, Palo Alto, CA 94304-1290, USA

- VA Pittsburgh Health Care System (Patrick Strollo, Jr., M.D.)

◦ University Drive, Pittsburgh, PA 15240, USA

- VA Puget Sound Health Care System (Edward Boyko, M.D.)

◦ 1660 S. Columbian Way, Seattle, WA 98108-1597, USA

- VA Salt Lake City Health Care System (Laurence Meyer, M.D., Ph.D.)

◦ 500 Foothill Drive, Salt Lake City, UT 84148, USA

- VA San Diego Healthcare System (Samir Gupta, M.D., M.S.C.S.)

◦ 3350 La Jolla Village Drive, San Diego, CA 92161, USA

- VA Sierra Nevada Health Care System (Mostaqul Huq, Pharm.D., Ph.D.)

◦ 975 Kirman Avenue, Reno, NV 89502, USA

- VA Southern Nevada Healthcare System (Joseph Fayad, M.D.)

◦ 6900 North Pecos Road, North Las Vegas, NV 89086, USA

- VA Tennessee Valley Healthcare System (Adriana Hung, M.D., M.P.H.)

◦ 1310 24th Avenue, South Nashville, TN 37212, USA

- Washington DC VA Medical Center (Jack Lichy, M.D., Ph.D.)

◦ 50 Irving St, Washington, D. C. 20422, USA

- W.G. (Bill) Hefner VA Medical Center (Robin Hurley, M.D.)
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◦ 1601 Brenner Ave, Salisbury, NC 28144, USA

- White River Junction VA Medical Center (Brooks Robey, M.D.)

◦ 163 Veterans Drive, White River Junction, VT 05009, USA

- William S. Middleton Memorial Veterans Hospital (Robert Striker, M.D., Ph.D.)

◦ 2500 Overlook Terrace, Madison, WI 53705, USA
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