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Must-have Qualities of Clinical Research on Artificial Intelligence and 
Machine Learning

Artificial intelligence (AI) is a subfield of computer science that is 
related to the creation of algorithms to make decisions on tasks that 
are typically associated with human intelligence.1 Various machine 
learning (ML) techniques are under the umbrella term “AI.” ML 
simply refers to the methods that allow computers to learn directly 
from data and develop models for tasks such as prediction and 

recognition, which could be valuable in clinical practice. The 
general purpose of clinical AI is to find relevant information from 
complex and high-dimensional data to assist decision-making.2 
Clinical AI should be useful to solve several clinical tasks such as 
diagnosis,3-5 disease stratification,6 risk predictions,7,8 therapeutic 
decisions,9 prognostic predictions,10,11 and drug discovery.12 

In the field of computer science, known as artificial intelligence, 
algorithms imitate reasoning tasks that are typically performed by 
humans. The techniques that allow machines to learn and get better 
at tasks such as recognition and prediction, which form the basis 
of clinical practice, are referred to as machine learning, which is a 
subfield of artificial intelligence. The number of artificial intelligence- 
and machine learnings-related publications in clinical journals has 
grown exponentially, driven by recent developments in computation 
and the accessibility of simple tools. However, clinicians are often not 
included in data science teams, which may limit the clinical relevance, 
explanability, workflow compatibility, and quality improvement 
of artificial intelligence solutions. Thus, this results in the language 
barrier between clinicians and artificial intelligence developers. 
Healthcare practitioners sometimes lack a basic understanding of 
artificial intelligence research because the approach is difficult 
for non-specialists to understand. Furthermore, many editors and 
reviewers of medical publications might not be familiar with the 
fundamental ideas behind these technologies, which may prevent 
journals from publishing high-quality artificial intelligence studies or, 

worse still, could allow for the publication of low-quality works. In 
this review, we aim to improve readers’ artificial intelligence literacy 
and critical thinking. As a result, we concentrated on what we consider 
the 10 most important qualities of artificial intelligence research: valid 
scientific purpose, high-quality data set, robust reference standard, 
robust input, no information leakage, optimal bias-variance tradeoff, 
proper model evaluation, proven clinical utility, transparent reporting, 
and open science. Before designing a study, one should have defined a 
sound scientific purpose. Then, it should be backed by a high-quality 
data set, robust input, and a solid reference standard. The artificial 
intelligence development pipeline should prevent information leakage. 
For the models, optimal bias-variance tradeoff should be achieved, 
and generalizability assessment must be adequately performed. The 
clinical value of the final models must also be established. After 
the study, thought should be given to transparency in publishing the 
process and results as well as open science for sharing data, code, and 
models. We hope this work may improve the artificial intelligence 
literacy and mindset of the readers.
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The number of AI-related publications in clinical journals has 
grown exponentially, driven by developments in computation 
power and accessibility of simple tools. A simple PubMed search 
for 2010-2021 reveals an annual growth rate of 42% over the 
last 5 years (Figure 1). Nearly 25% of all diagnostic accuracy 
studies submitted to a prominent journal are related to AI.13 
However, despite the high expectations and promises of AI, data 
and convincing proof are lacking.14 In real-world clinical practice, 
several AI technologies reported being on par with or better than 
experts have actually shown large false-positive rates.14

Data science teams rarely involve clinicians, potentially limiting 
the clinical relevance, explanability, workflow compatibility, 
and quality improvement in AI solutions.15 This also contributes 
to a communication gap between clinicians and developers. 
Therefore, physicians usually are not familiar with the basic 
concepts of AI research, as the methodology is rather complex for 
non-specialists.13,16,17 Furthermore, many editors or reviewers of 
medical journals may not be aware of the key concepts of AI.13 
As an example of the complexity in interpreting these papers, 
at a recent ML conference (The Conference and Workshop on 
Neural Information Processing Systems; NeurIPS), double-blind 
reviewers were unable to reach an agreement on more than half 
of the submissions.18 Such a disagreement among reviewers might 
prevent journals from correctly identifying high-quality AI works 
and, even worse, may lead to publishing works with poor quality 
or critical flaws.19

Understanding the fundamental qualities is key to a critical 
appraisal of clinical AI research. In this study, we aim to increase 
the AI literacy of the readers. Therefore, we focused on the 10 
most important qualities and related considerations of AI research 
that were carefully selected based on the domain expertise of the 
authors (Figure 2).

MUST HAVE QUALITIES

Valid Scientific Purpose

All researchers are familiar with the challenges and complexity 
behind the conceptualization of a good research question, which 
is a difficult and recurring task.20 Indeed, ideas should selected, 
refined, and finally shaped into valid research questions that must 
be both interesting and feasible to become the solid foundation for 
designing a scientific study.21 A few frameworks can be used to 
focus on the valid scientific purpose (Figure 3). Frameworks such 
as the PICOT (population, intervention, comparator, outcome, 
and time frame) and FINER frameworks can aid in this process,22 
helping researchers to focus on the most promising outcomes or 
find an unexplored niche with great potential.20 In this setting, 
clinical AI research is not an exception. The possibilities for AI 
in healthcare are apparently limitless, ranging from diagnostics 
to management and decision-making support. Research efforts 
should prioritize applications that address a currently unmet 

FIG. 1. Recent temporal trend in publications on artificial intelligence or 
machine learning indexed in PubMed between 2010 and 2021, based 
on a simple search syntax (artificial intelligence OR machine learning). 
Average annual growth rates are 23% and 42% for 2010-2021 and 
2017-2021, respectively. 

FIG. 2. Top 10 must-have qualities of clinical research on artificial 
intelligence, being carefully selected by the authors. 
AI, artificial intelligence

FIG. 3. Frameworks that can be used to establish a valid scientific 
purpose. 



 

Balkan Med J, Vol. 40, No. 1, 2023

Koçak et al. Must-have Qualities of AI 5

clinical need (e.g., compensating the limitations of current 
standard-of-care procedures) and exploit the intrinsic advantages 
of AI (e.g., handling highly dimensional datasets).23-25 Furthermore, 
specific frameworks should be considered when formulating a 
research question for clinical AI studies, such as transparency, 
reproducibility, ethics, and effectiveness (TREE).26 Indeed, while 
keeping in mind what could actually be the ultimate advantage for 
patients, researchers exploring AI applications in healthcare should 
promote the paradigm shift toward substantial AI integration in 
the way healthcare is delivered in clinical practice.27,28 At present, 
most patients do not benefit from the steadily increasing research 
output on AI, which remains in the testing phase and does not 
move to the bedside.29 Thus, to be truly valid, the scientific 
purpose of AI healthcare research should also consider and address 
the TREE challenges to facilitate its translation into clinical 
practice. Accordingly, involving experts from different fields 
(e.g., epidemiologists, physicians with different subspecialties, 
biostatisticians, engineers, and ethical consultants) is important in 
the conceptualization phase.

Interestingly, AI does not only represent the object of research 
but could play an important role in how research is conducted.30 
Regarding clinical trials, AI has been proposed as a solution to 
optimize protocol design, make patient selection and management 
more efficient, and, of course, analyze the data collected.31,32 In the 
not-so-distant future, AI itself might even find its role alongside 
researchers to generate valid research questions in the first place.33,34

High-quality Data Set

When designing AI healthcare research, the dataset should 
be suitable to answer the clinical question.26 Indeed, good AI 
applications are highly unlikely obtained when using inadequate 
data for model training, as the output is heavily dependent on 
the input, i.e., “garbage in garbage out” (Figure 4).35 Rather than 
modifying the model to obtain more reliable performance, working 
on the two main aspects of dataset appropriateness, namely, 
quality and quantity might often be more effective. For the latter, 
a small sample size could lead to unreliable results in AI studies, 
as confirmed by a recent publication in radiomics.36 While it might 
be difficult for each research group to independently obtain a 
large study population, a possible solution is offered by publicly 
available datasets.37,38 However, public datasets might be of 
heterogeneous quality, and proper controls are advocated to avoid 
increasing quantity at the expense of quality, which is of course 

undesirable.39-41 For some AI tasks, even a relatively small dataset 
could generate satisfactory results, and the gain from adding 
new samples for the training dataset tends to decrease, provided 
that the input data have sufficient quality.42,43 Furthermore, data-
augmentation techniques might be a feasible strategy to compensate 
for the small sample size in selected AI applications.44,45 Data 
quality can be influenced by several factors, such as completeness, 
accuracy, timeliness, and representativeness. A dataset with some 
missing values has an obvious completeness issue, which could be 
either solved by dropping the involved instances (in this scenario, 
quantity pays the price to ensure the quality) or using imputation 
to artificially replace missing values.46 Accuracy refers to how 
reliable and consistent the dataset is (e.g., free from compilation 
errors, redundancy, or overlapping categories). Timeliness can be 
used to define a dataset based on the extent of samples aligned to 
current practice (e.g., an imaging dataset obtained with a very old 
magnetice resonance imaging scanner using an obsolete acquisition 
protocol will likely lead to an AI model that cannot generalize data 
when applied to more recent acquisition protocols and scanners). 
Finally, representativeness should be considered to ensure that 
biomedical AI can be reliably applied to diverse populations (e.g., 
a dataset highly skewed toward a certain ethnicity might train a 
model with poor performance on dataset minorities).47 Similarly, 
the dataset should be representative of the population suffering from 
the disorder of interest (e.g., if the prevalence of the disorder in the 
sample size is significantly different from what is expected, the 
sample size might not be representative of the target population).

Robust Reference Standard

Many remember the media attention that ensued when a study 
from Stanford claimed that deep learning outperformed human 
radiologists in detecting pneumonia on chest X-ray images 
(Rajpurkar P. et al. 2017 preprint, https://doi.org/10.48550/
arXiv.1711.05225). While many aspects of the study were quite 
remarkable, one major issue was discussed critically after the 
study was first published.48,49 In the initial dataset, over 100,000 
frontal-view chest X-ray images were included, and labels were 
automatically extracted from the radiological reports associated 
with the images using natural language processing.50 However, 
when labels and images were visually inspected by an independent 
researcher, numerous images were associated with a clearly wrong 
label.48 The study was then revised, and the claims were toned down 
to a more honest statement that the system performs at least on par 
with human experts in detecting pneumonia-like image features.49

Nevertheless, this example highlights a very important issue with 
research on clinical AI systems. Researchers should ensure that 
the reference standard the AI system is using during training is of 
the highest quality that is reasonably achievable. In the example 
above, it can easily be understood that neither the original report 
nor the visual inspection of the chest X-ray image alone is ideal 
in determining whether a patient indeed has pneumonia. Ideally, 
clinical and laboratory data should be included to establish 
diagnosis more accurately, especially in cases where visual 
features alone are ambiguous. The best and most robust reference 
standard strongly depends on the case selected for the AI system. 

FIG. 4. Importance of high-quality input in artificial intelligence research. 
The output of models heavily depends on the quality of input data. 
AI, artificial intelligence
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For instance, while it is perfectly reasonable to limit the reference 
standard to visual features that establish the diagnosis (e.g., for 
obvious intracranial pathologies such as hemorrhages and midline 
shift),51 in other cases, histopathological results should be used 
as the reference standard (e.g., to determine if a breast lesion 
is benign or malignant).52 Of course, it is not always feasible to 
obtain histopathological results from all relevant lesions because 
patients with suspected benign lesions will often not undergo 
a biopsy. In such cases, an appropriate follow-up may serve a 
similar purpose. Other cases may have no final diagnosis (e.g., 
fractures in pediatric patients). In some instances, a fracture will 
be clearly visible, whereas in others, some doubts remain about 
whether a fissure or a bone canal is visible. For such cases multiple 
expert readings, establishing consensus (Figure 5), or including 
uncertainty estimation in the model’s training or evaluation should 
be considered.

Robust Input

The robustness of input refers to the resistance of input data or its 
derived features to varying conditions. This aspect has been widely 
studied in medical imaging-related AI. These varying conditions 
can be acquisition protocols,53 reconstruction settings,53 scanners,54 
annotation or segmentation variabilities,55,56 computational 
factors,57 phenotype of interest,58 and adversarial examples  
(Figure 6).59

Ideally, only inputs and features that are robust to variations should 
be incorporated into the predictive models to achieve optimal 
generalizability.60 Otherwise, these models may fail to predict the 
outcomes to a large extent.61 In deep learning models, non-robust 
features are highly correlated with adversarial examples (Artuso M. 
et al., 2022 preprint, https://doi.org/10.48550/arXiv.2204.07285). 
Such a vulnerability not only poses generalizability problems 
but also leads to security problems.62 Thus, feature robustness 
must be assessed to improve the generalizability of AI models. 
When identified, non-robust ones should be removed from further 
analysis.

The test-retest analysis is recommended for determining 
robustness.56,58,60 However, because it is not a standard part of 
clinical practice, conducting a test-retest analysis for each research 
and each susceptibility factor is challenging. Additionally, it could 
be a partial solution because features’ dependence on different 
factors prevents the transfer of robust information between 
studies.58 An alternative to the test–retest method for robustness 
testing is the use of image perturbations, which enables repeated 
assessments without the actual acquisition of numerous images.60

Different harmonization solutions can be applied to achieve robust 
input data and features. For medical imaging, these can be evaluated 
in two main categories: image domain and feature domain.63 
Common methods for the image domain include standardization of 
image acquisition,64,65 post-processing of raw sensor-level image 
data,66 data augmentation using generative adversarial networks,67 
and style transfer.68 For the feature domain, identification 
of reproducible features (e.g., annotation or segmentation 
reproducibility and computational reproducibility),55,56,69 
normalization techniques,70 intensity harmonization,71 ComBat 
along with its derivatives,72 and normalization using deep learning73 
are common methods.

Deep learning models are surprisingly susceptible to adversarial 
attacks, in which tiny input perturbations lead to inaccurate model 
predictions, notwithstanding their successes in classification and 
regression tasks. Furthermore, medical image deep learning models 
are more vulnerable to adversarial attacks than natural image deep 
neural networks.74 Universal adversarial perturbations can also 
cause misdiagnosis with a high success rate.75 This poses a major 
security threat to medical deep learning models because an attacker 
can alter the output of the network.59 Several defense strategies have 
been proposed to reduce model sensitivity to adversarial examples, 
such as detection methods,76 defensive distillation,77 adversarial 
training, and use of simpler models.59 Adversarial training is 
considered one of the most effective defense techniques.59 Recent 
works have argued that the existence of robust and non-robust 
features is a primary cause of adversarial examples (Ilyas A. et 
al., 2019 preprint, https://doi.org/10.48550/arXiv.1905.02175). In 
this respect, to achieve adversarial robustness, several methods 
have been described to distill robust and non-robust features. 
Nevertheless, attaining adversarial robustness of deep neural 
networks remains an ongoing research effort.

FIG. 5. Robustness of reference standard, highlighting the value of 
consensus evaluation over individual assessment.

FIG. 6. Robustness of input. Input data should be robust even for external 
or adversarial attacks. Adding noise that is not discernable by the human 
eye can lead to wrong prediction by artificial intelligence models.
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No Information Leakage

When training AI models, information leakage (i.e., data leakage 
or feature leakage) must be avoided. These terms refer to 
circumstances in which information that would not be available at 
the time of prediction is made available during the model training 
process.78 Researchers must be cautious in preventing leakage of 
information from data used for testing and validation of an AI 
model.

Before any other steps are taken, one of the most important steps 
is to perform dataset splitting into training, validation, and testing 
(Figure 7). Any preprocessing should be performed solely on the 
training dataset, and all steps should be recorded to be later applied 
before testing or validating the model’s performance. If dataset 
splitting is conducted only after preprocessing, the information that 
should only be contained in the testing dataset leaks to the training 
of the model through the common preprocessing step. Similarly, if 
augmentations such as oversampling of the underrepresented class 
are performed before dataset splitting, researchers risk including 
oversampled cases in both the training and testing/validation 
datasets. Lastly, the same applies when a single patient contributes 
multiple cases to an AI project, and various cases from the same 
patient are distributed to training and testing/validation during 
dataset splitting. To prevent this, researchers should carefully 
distribute cases on a per-patient basis to only one of the dataset 
splits. Interestingly, in the initial publication of the aforementioned 
chest X-ray study, only approximately 30,000 patients contributed 
to over 100,000 cases, but dataset splitting did not consider that 
distribution should be performed on a per-patient basis. This was 
later amended in a revision of the study.79

Sometimes, information leakage can be very difficult to exclude 
because subtle information that is not immediately visible to the 
researchers or is present in the data but unrelated to the used case 
may be detected by AI models. A typical example of such details 
may be the subtle differences in image characteristics between 
different scanners (e.g., different dedicated computed tomography 
scanners used for outpatients vs. intensive care unit patients - the 
AI might pick up on the differences in image characteristics and use 
them as a predictor for more critical conditions as opposed to the 
images themselves) or variations in radiodense markers included in 
the image (e.g., in chest X-rays, a “PA” [posterior-anterior] marker 
may be interpreted as decreasing the probability of pneumonia as 
opposed to an “AP” marker used ).

Optimal Bias-variance Tradeoff

Bias is the difference between the model’s prediction and the 
correct outcome, with a preference for a certain direction. Variance 
refers to the inconsistency of predictions. Bias can be related to 
overall model accuracy on historical data, whereas variance to 
the stability in performance on future data.19 Bias has an inverse 
relationship with variance, and vice versa, which is called the bias-
variance tradeoff.80 Briefly, very precise models in training could 
yield unexpectedly high prediction errors on unseen data, which 
indicates low bias and high variance. On the contrary, less precise 
ones in training could perform and generalize well on unseen data, 
which means high bias and low variance. 

To gain more insights regarding bias and variance, researchers 
should be familiar with the concept of under- and overfitting.80,81 
A high bias leads to underfitting, which means that a model may 
miss real relationships between the features and the outcome. 
Underfitting can be detected when the results on the training set are 
not improving when learning from the present data. By contrast, 
a high variance leads to overfitting, which means capturing false 
relationships due to noise or unrelated patterns (e.g., confounders 
and outliers) between the features and the outcome. Overfitting can 
be detected when the performance on the training data improves, 
whereas it deteriorates on previously unseen data. 

Although the bias-variance tradeoff is a key concept of the AI field, 
this classical concept also appears to be at odds with modern ML 
practice.82 For instance, in today’s practice, very complex models 
such as deep neural networks are developed to exactly fit the data. 
These models could be considered overfitted from a classical 
perspective. However, they usually achieve very high accuracy on 
unseen test data. In this respect, some authors suggest that classical 
understanding and modern practice can be reconciled within a 
unified performance curve (Figure 8).82

The ultimate purpose of any ML algorithm is to find the optimal 
point between bias and variance, which is the key to achieving the 
most generalizable model. An optimal model should have as low 
bias and variance as possible. Bias-variance tradeoff is affected by 

FIG. 7. Information leakage. All data splits should be done before any 
other step. Exclamation marks indicate potential information leakage 
zones. FIG. 8. Classical and modern bias–variance tradeoff.
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model complexity that is mainly related to model type, number of 
instances, number of parameters, and number of features. There 
is no direct measure of bias and variance. However, to achieve 
the optimal tradeoff, one can retrain a model several times and 
measure the performance by partitioning the dataset during model 
development. To gain a more honest assessment of performance, 
this assessment should be conducted using development or 
validation set, but not the test set.83 To achieve the optimal bias-
variance tradeoff, the following strategies can be utilized: early 
stopping with cross-validation or nested cross-validation, simpler 
models with fewer parameters (e.g., ResNet18 over ResNet50 or 
random forest over XGBoost), dimensionality reduction (drop out, 
feature selection, etc.), data expansion with data-augmentation 
strategies, appropriate selection of loss functions, regularization 
techniques, hyperparameter optimization, and use of transfer and 
ensemble learning.84

Proper Model Evaluation

The evaluation of an ML model presupposes the presence of a 
test set, distinct from the one on which it was trained, to obtain 
an unbiased estimate of its generalization performance, i.e., 
predictive performance on future, unknown data. In this regard, the 
test set is substantially different from the validation set, although 
these terms are sometimes used interchangeably. The latter 
represents the dataset used to select the optimal feature subset or 
hyperparameters (tuning parameters of an ML algorithm), often 
through a cross-validation approach. Only when the optimal 
pipeline of the model has been identified through this process that 
the model’s performance should be evaluated on an external test set  
(Figure 9) (Raschka S. 2020 preprint, https://doi.org/10.48550/
arXiv.1811.12808).85

A comprehensive summary of appropriate proper accuracy metrics 
in relation to a specific model should always be reported in clinical 
AI research. Several methods can be employed to assess model 
performance. The confusion matrix often represents the basis from 
which the accuracy metrics of a classification model are obtained. 
It consists of a matrix in which actual versus predicted outputs 
are presented. From the confusion matrix, several metrics derive 
accuracy (correctly predicted data out of the total), precision 
(percentage of positive instances out of the total predicted positive 
instances, i.e., positive predictive value), recall or sensitivity 
(percentage of positive instances out of the total actual positive 

instances), specificity (percentage of negative instances out of the 
total actual negative instances), and F1 score (harmonic mean of 
precision and recall). From the output of probabilistic models, the 
precision-recall and receiver operating characteristic curves can be 
built, with their respective area under the curve, which is another 
frequently employed metric in this setting.86 The logarithmic loss 
is a further performance index of a classification model in which 
the prediction input consists of a probability value between 0 and 
1. Besides predicting a class label, obtaining a probability of the 
respective label can be extremely useful to estimate the confidence 
level of the prediction. Calibration curves, which plot the true 
frequency of the positive label against its predicted probability, 
are available for this purpose. Reporting uncertainty metrics 
such as confidence intervals and standard deviation is extremely 
important. As regards regression models, their specific evaluation 
metrics include the mean squared error (the average of squared 
differences between the predicted and the actual outputs), R2 
coefficient (the amount of variance in the predictions explained by 
the dataset) (Botchkarev A. 2018 preprint, https://doi.org/10.48550/
arXiv.1809.03006), and explained variance [the proportion of 
the variability of the predictions (i.e., how much variance can be 
explained by the model)]. Notably, if the error of the predictor is 
unbiased, the R2 coefficient and explained variance are the same.

Proven Clinical Utility

Once model accuracy metrics have been obtained, it is critical to 
demonstrate the clinical utility of the developed AI application 
to bridge the development-to-implementation gap to avoid 
overemphasizing the technical aspects of the proposed algorithms 
while losing sight of the possible benefits from a clinical 
perspective. The specific difficulties encountered when deciding 
to introduce AI-based clinical decision support systems should 
also be considered, including the frequent lack of the explanability 
of the model, the so-called black box problem, and the possibility 
of generating sometimes unexpected results. These elements 
may contribute to the algorithmic aversion by clinicians, further 
exacerbated by the ambiguity of who should be responsible for the 
model’s decisions.87 Thus, bringing these solutions to the patient’s 
bedside can be an extremely complex task.88 The starting point is 
definitely to compare standard clinical practices with and without 
the proposed AI-based decision support system, and this should 
be addressed in any clinical research relevant to AI to assess its 
feasibility before simulating real-world conditions in a multi-
stage evaluation approach.89 Embedding the developed model in 
the clinical environment and not merely providing model outputs 
are essential. For instance, in a radiomics study, comparing the 
radiologist’s ability to classify different entities with that of the 
algorithm, but more importantly with that resulting from using 
a hybrid approach (radiologist with software assistance), may 
be appropriate.90-92 Indeed, although the majority of AI clinical 
studies have focused on a direct comparison of AI with humans, 
real-life clinical practice is more likely to involve humans actively 
collaborating with AI systems (Figure 10).93

Another key aspect to consider, and only addressed in a minority 
of clinical research pertaining to AI, is the economic value of 

FIG. 9. Optimal data split for proper performance evaluation. 
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clinical AI. Specifically, the cost-effectiveness ratio, which is the 
main outcome of the health technology assessment methodology, 
represents the primary metrics and consists of summed incremental 
health outcomes divided by the incremental costs associated with 
using the intervention under consideration.94 However, acquiring 
data on AI-associated health outcomes is challenging. As most 
evidence on clinical AI performance comes from retrospective 
studies, AI performance is often compared with clinician 
performance unrealistically, and the effects of AI on clinician 
productivity are uncertain. These difficulties represent an important 
opportunity for health economists, who should be prepared to 
examine AI data collection and methods that may affect AI’s future 
value.

Transparent Reporting

Presenting experimental details and results with sufficient 
thoroughness remains an issue in AI research within the medical 
field.95 This limitation is relevant as it hinders the build-up of trust 
in physicians and ultimately patients, limiting clinical adoption 
of tools based on ML technologies. Accordingly, several entities, 
including scientific societies, journal editorial offices, and domain 
experts, have attempted to set common reporting standards for AI 
studies61,96-99 These have taken the form of white/position papers 
or checklists, the second of which may include a quantitative 
methodological quality assessment, as in the case of the Radiomics 
Quality Score.61

To understand what the current state of the art is, assessing the 
situation in medical imaging can be useful. This healthcare domain 
represents one of the fields with more potential applications, 
such as image quality improvement, automated lesion detection 
and/or segmentation, pathology characterization, and prediction 
of clinical outcomes based on imaging data.100 However, the 
exponential growth in the number of publications and commercial 
products has not been matched by an equal increase in the quality 
or transparency of study methodology.101,102 This is supported by a 

recent survey of all systematic review papers using the Radiomics 
Quality Score to assess methodological quality and transparency in 
medical imaging. Of the 44 included articles, each evaluating an 
average of 32 research papers, the median score was 21%, with a 
stable trend over the years (ranging from 2018 to 2021).

The lack of transparency is not a novelty in science, and other 
research fields have gone through reproducibility or replicability 
crises, with psychology representing one of the most notable 
recent examples.103 Even assuming good faith from all actors in 
the research field, several potential causes for this situation are 
still possible.104 In the future, these limitations should be examined 
to obtain insights on how to avoid repeating the same errors as 
certainly possible for AI in healthcare.105 Increasing journal article 
transparency requirements certainly represents one of the viable 
solutions to increase study replicability. 

However, while detailed methodological reporting (i.e., sufficient 
detail to exactly reproduce a scientific experiment) should be 
expected from any single paper, this should not represent the final 
endpoint in the quest for scientific transparency or robustness. 
The replicability of the experiment using different data and/
or experimental setups (i.e., inferential replicability) may be of 
greater value in developing a more robust theory behind the use of 
ML in healthcare.106

Open Science

The concept of “open” science is based on the premise of 
incentivizing public sharing of research data, either raw or 
processed, experimental methods and results (e.g., trained 
ML models and/or related code), and freely accessible papers. 
Intuitively, this should facilitate the development of large datasets 
that can be the basis for better-performing ML models and easier 
translation to clinical practice.107 In healthcare, this is mostly 
materialized through efforts in building public repositories of 
data, freely accessible to researchers. Some notable examples 
are represented by the Genomic Data Commons, National 
Cancer Institute Imaging Data Commons, Cancer Research Data 
Commons, and the Cancer Imaging Archive.108-110 However, several 
hurdles and issues pertaining to open science practice in healthcare 
should be acknowledged and accounted for by researchers who 
are either planning on sharing their datasets or employing already 
publicly available ones.

Generally, researchers must account for the varied nature of 
healthcare data, which may be considered more or less challenging 
to share based on different local legal frameworks. For example, 
the use of genomic data is extremely restricted under South African 
legislation,107 and the European Union’s General Data Protection 
Regulation may have yet unforeseen implications on data-sharing 
practices.111 This issue is further compounded by the fact that 
legislation specifically regarding medical (and ethical) use of AI 
is not yet well established and can be expected to further evolve 
over the years as awareness of potential biases and experience on 
practical implementation grows.112,113

From a different perspective, researchers should also consider the 
potential risks derived from the public sharing of biological data. 

FIG. 10. Clinical utility. Although AI models are usually compared with 
physicians only, more emphasis should be given to the collaboration of 
AI and physicians, being closer to real-world clinical practice. 
AI, artificial intelligence
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Openly accessible information is, by definition, also available to 
malevolent entities. While this is not an issue affecting all types 
of patient data equally, it would also be an error not to consider 
edge cases (e.g., data on infective agents) given the potential 
risks entailed.114 Similarly, a lack of quality control or unknown 
biases in public data may lead to undetected, undesirable issues in 
models built using these datasets. Problems have often emerged 
after external auditing, which may not be easily detectable from 
researchers with less domain-specific knowledge (e.g., ML 
researchers using public imaging data).39,40

Potential misuse is partly tied to misinformation in alternative 
avenues of article accessibility. In recent years, the use of preprint 
repositories, either prior to submitting an article to a traditional 
journal or bypassing the peer review and editorial process entirely, 
has increased.115 While this practice has its benefits, as it speeds up 
the dissemination of novel scientific ideas, it also presents potential 
limitations in the quality of the presented information. This issue 
variably affects preprint servers because of different policies 
employed, but these may not be well known to the general public 
accessing the papers.114

In conclusion, for the critical evaluation of clinical AI research, 
we believe that knowledge of fundamental characteristics is of 
utmost relevance. In this context, we discussed a selection of the 
essential qualities of clinical AI research: valid scientific purpose, 
high-quality data set, robust reference standard, robust input, no 
information leakage, optimal bias-variance tradeoff, proper model 
evaluation, proven clinical utility, transparent reporting, and 
open science. Although it was not possible to cover all important 
concepts, we hope that this work may provide a fresh perspective 
for general readers and thus improve their AI literacy and critical 
thinking.
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