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ABSTRACT

Metastasis, the leading cause of death in cancer patients, requires the invasion of tumor cells through the stroma in response to migratory
cues, in part provided by the extracellular matrix (ECM). Recent advances in proteomics have led to the identification of hundreds of ECM
proteins, which are more abundant in tumors relative to healthy tissue. Our goal was to develop a pipeline to easily predict which ECM
proteins are more likely to have an effect on cancer invasion and metastasis. We evaluated the effect of four ECM proteins upregulated in
breast tumor tissue in multiple human breast cancer cell lines in three assays. There was no linear relationship between cell adhesion to ECM
proteins and ECM-driven 2D cell migration speed, persistence, or 3D invasion. We then used classifiers and partial-least squares regression
analysis to identify which metrics best predicted ECM-driven 2D migration and 3D invasion responses. We find that ECM-driven 2D cell
migration speed or persistence did not predict 3D invasion in response to the same cue. However, cell adhesion, and in particular cell elonga-
tion and shape irregularity, accurately predicted the magnitude of ECM-driven 2D migration and 3D invasion. Our models successfully pre-
dicted the effect of novel ECM proteins in a cell-line specific manner. Overall, our studies identify the cell morphological features that
determine 3D invasion responses to individual ECM proteins. This platform will help provide insight into the functional role of ECM pro-
teins abundant in tumor tissue and help prioritize strategies for targeting tumor-ECM interactions to treat metastasis.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5143779

INTRODUCTION

Metastasis, the dissemination of cells from the primary tumor
to secondary organs in the body, is the leading cause of death in
cancer. Metastasis involves the local invasion of tumor cells into the
surrounding tissues, intravasation into the vasculature and lym-
phatics, and colonization of a distant site. All steps within tumor
progression require cell migration—growth, invasion,1 and meta-
static outgrowth.2 Understanding the mechanisms that drive cell
migration in cancer is essential to identify strategies to treat cancers
more effectively. Within tumors, several chemical and biophysical
cues have been shown to promote local invasion.3 In particular, the
extracellular matrix (ECM), which provides structure and support

to our tissues, drives local invasion of tumor cells and metastasis, as
well as colonization of secondary sites. For example, the glycopro-
tein Fibronectin, which is produced by both tumor and stromal
compartments in breast tumors,4 can drive directional migration of
breast cancer cells to drive metastasis.5 The optimization of proto-
cols to characterize the ECM of tumors has led to the identification
of multiple ECM proteins abundant in tumor tissue that may be
involved in promoting metastatic phenotypes.4,6 The present study
aims to develop a pipeline to easily assess which of these ECM pro-
teins, alone or in combination, are more likely to affect invasion
and metastasis, and are therefore better targets as biomarkers or for
drug development.
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Breast cancer cells sense ECM cues within their environment via
cell surface receptors and the extension of actin-rich protrusions such
as lamellipodia and filopodia. The activation of downstream signaling
pathways and the formation of focal adhesions promote cytoskeletal
dynamics, which help the cell propel itself forward, eventually retract-
ing its tail via disassembly of focal adhesions. Cell-ECM interactions
and their impact on cell behavior can be studied in different contexts.
Cell responses to ECM cues have been measured as alterations in the
cell shape following adhesion to a substrate, 2D migration on a sub-
strate, and 3D invasion into a matrix containing the ECM substrate.
However, we still do not understand the relationship between adhe-
sion to, 2D migration on, and 3D invasion in a given ECM substrate.
Therefore, there is a critical need to create a predictive model to use
cell morphology to predict cell invasion responses to ECM cues.

Existing models that predict cell migration have focused on
cell morphology or signaling pathways and mostly focused on a sin-
gle cue. First, cell morphology or shape is commonly used to char-
acterize cellular phenotypes, because it can be easily visualized and
quantified using traditional immunostaining and basic microscopy.
Epithelial keratocytes from fish skin have been used to generate var-
ious models due to their characteristic and homogeneous fan-like
shape. Various models have been published linking the cell shape
and geometry with cell migration and speed.7,8 This has been more
challenging for cancer cells given their more complex and heteroge-
neous cell morphologies. There have been efforts to identify signal-
ing pathways that regulate cell morphology. One study linked
breast cancer cell morphology in vitro in 3D Matrigel with gene
expression to identify dominant genes that are predictive of mor-
phological features.9 Quantitative morphological profiling has also
been used to evaluate the role of individual genes in regulating the
cell shape using genetic screens in drosophila cells, leading to the
identification of signaling networks that regulate cell protrusion
and adhesion.10 In response to Collagen I, 3D cell migration corre-
lated with cell protrusion and not with 2D migration speed or per-
sistence.11 However, these studies all focus on a single ECM cue.
One study investigated the relationship between membrane protru-
sion, 2D cell migration, and 3D invasion in response to growth fac-
tors, which can promote invasion and metastasis.12,13 Meyer et al.
demonstrated that cell protrusion in response to growth factors was
more predictive of 3D invasion, than 2D invasion. However, this
study focused on soluble cues, which passively diffuse into cells and
signal via receptor tyrosine kinases. There are currently no studies
dissecting the relationship between ECM-driven effects on the cell
shape, 2D migration, and 3D invasion and predicting mesenchymal
3D cell movement in response to ECM cues.

The goal of this study is to understand how ECM cues in the
tumor microenvironment promote invasion and metastasis of cancer
cells from the primary tumor. Using classification and regression mod-
els trained on cell morphology, 2D migration, and 3D invasion data,
we find that the cell shape in response to a particular ECM protein
can predict the ability of a cell line to invade through that ECM
protein in 3D.

RESULTS
ECM impacts breast cancer cell adhesion

We chose to build our model using four ECM proteins known to
be abundant in breast tumors: Collagen I, Collagen IV, Fibronectin,

and Tenascin C. These components were identified in xenograft 4T1
breast tumors6 and in highly metastatic LM2 tumors.4 Collagen I and
the glycoprotein Fibronectin are two of the most abundant ECM pro-
teins in mammary tumors, and both are known to contribute to breast
cancer invasion and metastasis.5,14 Another glycoprotein, Tenascin C,
has also been shown to contribute to breast cancer metastasis.15

Collagen IV is a major component of the basement membrane, which
breast cancer cells must break down to invade surrounding tissues.16,17

To investigate the effects of these ECM proteins, we used two human
triple-negative breast cancer cell lines, MDA-MB-231 and MDA-MB-
468. MDA-MB-231 is mesenchymal, with high metastatic potential in
mouse models, while MDA-MB-468 is epithelial, with lower meta-
static potential.18,19

First, we performed an adhesion assay, which has been com-
monly used to study cell-ECM interactions, where cells are plated
on a 2D ECM-coated surface and left to adhere for 2 h. The cells are
then fixed and immunostained to assess the cell shape. We focused
our efforts on the actin cytoskeleton, given that the cell shape is
associated with adhesion and cell migration [Fig. 1(a)]. We quanti-
fied 11 cell shape parameters via Cell Profiler, including the cell
area, radius, feret diameters, perimeter, aspect ratio, eccentricity
(elongation), compactness (irregularity), solidity (irregularity),
extent (spread), and form factor (circularity). Using these shape
parameters, we established effects of all four ECM proteins on the
cell shape. Collagen I, Fibronectin, and Collagen IV led to increased
cell area, eccentricity, which characterizes cell elongation, and com-
pactness, which quantifies cell shape irregularity. Tenascin C
decreased the cell area, eccentricity, and compactness [Figs.
1(b)–1(d)]. While MDA-MB-468 cells had a smaller cell area on
average, the effect of individual ECM proteins had similar relative
effects on cell morphology [Figs. 1(e)–1(h)]. These data compre-
hensively characterize the effect of four ECM proteins upregulated
in breast tumor tissue on the breast cancer cell shape.

To better visualize the effects of ECM proteins on shape parame-
ters, we used SPRING, a pipeline for data filtering, normalization, and
visualization using force-directed layouts of k-nearest neighbor algo-
rithms [Fig. 2(a)]. SPRING has been shown to reveal more detailed
biological relationships than existing approaches, with plots being
more reproducible than those of stochastic visualization methods such
as tSNE.20 Individual ECMs were mapped onto the individual cells on
the SPRING plot [Fig. 2(b)]. For the MDA-MB-231 cells, as was seen
in the clustering, cells on Tenascin C and no ECM cluster together.
Interestingly, cells on Collagen I are seen as very distinct from cells on
no ECM, with little overlap. Cells on Collagen IV are also distinct
from cells on no ECM, but are also separate from the cells on Collagen
I. Finally, the cells on Fibronectin are homogeneously distributed
throughout the cluster. For MDA-MB-468 cells, the distributions of
each ECM protein follow similar trends as seen in the clustering [Figs.
S1(c) and S1(d)].

Initial analysis of the entire dataset by unsupervised cluster-
ing demonstrated that ECM-driven effects on shape parameters
cluster into three main groups: one with compactness, aspect
ratio, and eccentricity, which quantify how elongated is a cell is, a
second group with solidity, form factor and extent, which describe
how irregular the shape of the cell is or how protrusive a cell is;
and a third group with the feret diameters, radius, perimeter, and
cell area, which quantify how large a cell is. The shape parameters
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for both cell lines clustered in these groups are shown in Figs.
S1(a) and S1(b). While the effect of the different ECM proteins on
these parameters clustered differently in each cell line, it is clear
that Tenascin C shape quantifications are more similar to the no

ECM shapes, while Fibronectin and Collagen IV shape character-
istics tend to cluster with each other [Figs. 2(c) and 2(d)]. Overall,
these clustering methods demonstrate that ECM proteins have
distinct effects on the cell shape.

FIG. 1. ECM proteins upregulated in breast tumor tissue have distinct cell line-specific effects on tumor cell adhesion. (a) Representative images of MDA-MB-231 cells plated
on plastic, Collagen I, Fibronectin, Tenascin C, or Collagen IV for 2 h, fixed and stained with Phalloidin (red) and DAPI (blue). The scale bar is 100lm. Quantification of cell
shape features using Cell Profiler to evaluate effects on MDA-MB-231: (b) area/cell (103 lm2), (c) eccentricity, and (d) compactness. Results show entire distribution, no ECM
(n¼ 793 cells), Collagen I (n¼ 907 cells), Fibronectin (n¼ 1154 cells), Tenascin C (n¼ 104 cells), or Collagen IV (n¼ 766 cells). Significance by one-way ANOVA,
���p< 0.005. (e) Representative images of MDA-MB-468 cells plated on plastic, Collagen I, Fibronectin, Tenascin C, or Collagen IV for 2 h, fixed and stained with Phalloidin
(red) and DAPI (blue). Scale bar is 100 lm. Quantification of cell shape features using Cell Profiler to evaluate effects on MDA-MB-468: (f) area/cell (103 lm2), (g) eccentricity,
and (h) compactness. Results show entire distribution, no ECM (n¼ 802 cells), Collagen I (n¼ 1016 cells), Fibronectin (n¼ 945 cells), Tenascin C (n¼ 101 cells), or
Collagen IV (n¼ 1073 cells). Significance by one-way ANOVA, ���p< 0.005, ns is not significant.
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ECM-driven 2D migration does not correlate with the
cell shape

We then investigated the effect of these same ECM cues on 2D
cell migration, by evaluating cell migration speed and persistence. Cell
speed measures how fast a cell is moving over a given distance, while
persistence, the Euclidean distance between start and finish over the
total distance traveled, informs whether the cell is moving in a straight
line (closer to 1) or taking a more winding path. In MDA-MB-231

cells, we find that Collagen I and Collagen IV increase both cell migra-
tion speed and persistence [Figs. 3(a)–3(c)]. Fibronectin has no effect
on cell migration speed or persistence; Tenascin C decreases cell
migration speed while increasing persistence. Similar results were
obtained with the MDA-MB-468 cell line, where Collagen I and
Collagen IV increased cell migration speed and persistence, and
Tenascin C reduced cell migration speed and persistence [Figs.
3(f)–3(h)]. We find that for all ECM conditions across both cell lines,

FIG. 2. Clustering of adhesion parameters reveals ECM-specific effects on cell shape. (a) Visualization of continuum of cell adhesion of MDA-MB-231 cells on different ECM
substrates based on all 11 cell shape parameters with SPRING plots. (b) Plots showing localization of the ECM factor-dependent cell adhesion shape on the combined
SPRING plot. Mean centered cell adhesion of MDA-MB-231 (c) and MDA-MB-468 (d) cells plated on plastic, Collagen I, Fibronectin, Tenascin C, or Collagen IV for 2 h. Each
cell adhesion parameter and ECM factor are clustered by rank correlation and mean linkage.
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there is no significant correlation between cell migration speed and
persistence at a population and single cell level [Figs. 3(d), 3(i), S2(a),
and S2(b)].

To understand whether there is a correlation between cell adhe-
sion and 2D migration, we evaluated how well cell area correlated with
cell migration speed and persistence. We found that for both individ-
ual cell lines, there was no significant correlation between the cell area
and cell migration speed [Figs. 3(e) and 3(j)]. We also find no

significant correlation between the cell area and persistence [Figs.
S2(c) and S2(d)]. Although the correlation between the cell area and
cell migration speed when combining both cell lines is statistically sig-
nificant, the fit of the linear correlation, R2, is low suggesting poor cor-
relation [Fig. S2(e)]. There is no significant correlation between the
cell area and persistence when combining the cell lines [Fig. S2(f)]. We
also evaluated model prediction accuracy using a leave-one-out cross
validation metric, Q2, where values lower than 0.5 indicate poor

FIG. 3. ECM-driven effects on 2D cell migration speed do not correlate with effects on persistence. (a) Representative roseplots for MDA-MB-231 cells plated on glass,
Collagen I, Fibronectin, Tenascin C, or Collagen IV for 16 h and imaged every 10 min. Each line represents an individual cell. Axis length is 500lm. Quantification of cell
migration speed (lm/min) (b) and persistence (c). Results show entire distribution, no ECM (n¼ 128 cells), Collagen I (n¼ 45 cells), Fibronectin (n¼ 91 cells), Tenascin C
(n¼ 25 cells), or Collagen IV (n¼ 39 cells). Correlation between 2D persistence and 2D cell migration speed (d) and between cell area (lm2) and 2D cell migration speed (e).
Correlation characterized by r2, p value, and Q2. (f) Representative roseplots for MDA-MB-468 cells plated on glass, Collagen I, Fibronectin, Tenascin C, or Collagen IV for
16 h and imaged every 10 min. Each line represents an individual cell. The axis length is 500 lm. Quantification of cell migration speed (lm/min) (g) and persistence (h).
Results show entire distribution, no ECM (n¼ 220 cells), Collagen I (n¼ 68 cells), Fibronectin (n¼ 126 cells), Tenascin C (n¼ 24 cells), or Collagen IV (n¼ 63 cells).
Correlation between 2D persistence and 2D cell migration speed (i) and between the cell area and 2D cell migration speed (j). Correlation characterized by r2, p value, and Q2.
Significance determined by one-way ANOVA, �p< 0.05, ��p< 0.01, ���p< 0.005, ns is not significant.

APL Bioengineering ARTICLE scitation.org/journal/apb

APL Bioeng. 4, 026105 (2020); doi: 10.1063/1.5143779 4, 026105-5

VC Author(s) 2020

https://scitation.org/journal/apb


prediction accuracy. All of the correlations investigated had a Q2 value
below 0.5, suggesting that the cell area alone cannot accurately predict
cell migration speed or persistence. Overall, these findings suggest that
ECM-driven effects on cell speed and persistence are distinct, and that
effects on cell adhesion may not correlate with effects on 2D
migration.

ECM-driven 3D invasion does not correlate with 2D
migration or cell shape

It is well established that 3D invasion is a more physiologically
relevant model of in vivo cell migration; therefore, we quantified the
effect of the individual ECM proteins on 3D invasion in Collagen I
gels. We used a spheroid model of 3D invasion, which constitutes
microtumors recapitulating various clinically important characteristics
like hypoxia, nutrient, and pH gradients and deposition of ECM. All
spheroid gels contain Collagen I as a matrix to support spheroid for-
mation, given that it is the most abundant ECM component of breast
tissue, and that all ECM proteins present in tumors would be in the
presence of Collagen I. We find that all four ECM proteins drive a sig-
nificant increase in invasion relative to Collagen I only in MDA-MB-
231 cells [Figs. 4(a) and 4(b)]. Similarly, the four ECM proteins also
increase invasion of MDA-MB-468 cells [Figs. 4(d) and 4(e)], although
these cells migrate more individually than the MDA-MB-231 cells.

We then evaluated the correlation between cell adhesion and 3D
invasion and between 2D migration and 3D invasion. For both cell
lines individually and combined, we do not find a significant correla-
tion between the effects of these proteins on 3D invasion and either
2D migration or cell area [Figs. 4(c), 4(f), and S3]. Additionally, the Q2

for each of these models is negative, indicating poor prediction of 3D
invasion using cell area, cell migration speed, or persistence. Overall,
these findings suggest that ECM-driven effects on 3D invasion may
not correlate with effects on the cell area and 2Dmigration.

Generation of the classifier-based model suggests that
cell adhesion can be used to categorize 2D migration
and 3D invasion

To dissect the relationship between ECM-driven cell adhesion,
2D migration, and 3D invasion and develop methods to predict ECM-
driven effects on breast cancer cells, we first used machine learning
classifier models. Our goal was to evaluate the ability of a learning
algorithm to predict 2D migration based on cell adhesion parameters
and 3D invasion based on either adhesion parameters or 2D migra-
tion. We focused on the AdaBoost classifier, originally developed by
Freund and Shapiro in 1995, which is an approach founded on the
notion of using a set of weak classifiers and pooling the classification
results of such classifiers to produce a provably strong classifier. It is
well suited for smaller datasets and also less susceptible to overfitting
than other learning algorithms.

First, we assessed the predictive relationship between cell adhe-
sion and 2D cell migration in response to different ECM proteins. We
assigned each ECM protein as either as “low” or “high,” based on its
ability to induce 2D cell migration within a cell line. Based on the
results in Fig. 3, 2D cell migration speed of MDA-MB-231 cells on no
ECM, Fibronectin, and Tenascin C was classified as low [Fig. 5(a)].
The ability of an algorithm to accurately predict whether an ECM

protein has a low or high effect is assessed via the Area Under the
Curve Receiver Operating Characteristic (AUROC) score, a perfor-
mance measurement for classification problems. We used AdaBoost to
rank single features by their performance on the training set as a one-
feature classifier [Fig. S4(a)]. Then we look at ten different AdaBoost
classifiers, the first one using just the most informative feature, the sec-
ond using the five most informative features, and the last one using all
11 features. A grid search of the hyperparameters on the training set
showed that it was quite robust to different settings for these classifica-
tions (Fig. S4). We chose a combination hyperparameter values with
an average AUROC value of 0.75, to prevent overtraining.

Interestingly, using all 11 cell shape parameters were able to pre-
dict 2D migration, with an AUROC score higher than 0.80 [Fig. 5(b)].
We then tested whether any of the groups of cell features identified in
Fig. 2, cell size, irregularity, and elongation could independently pre-
dict 2D migration. We found that the cell size parameters (area/cell,
perimeter, mean radius, min, and max feret diameter) could also accu-
rately predict 2D migration speed with AUROC scores of 0.75, while
cell elongation and irregularity could not. We found similar results
with the MDA-MB-468 cells, where for 2D cell migration, we classified
no ECM, Tenascin C and Fibronectin as low, and Collagen I and
Collagen IV as high [Fig. S5(a)]. All 11 parameters were able to accu-
rately predict 2D cell migration with an AUROC over 0.75 [Fig.
S5(b)]. These data demonstrate that the cell shape of cells adhered to a
particular ECM protein is a reliable metric for predicting how this pro-
tein will impact 2D migration speed.

Next, we assessed the predictive relationship between cell
adhesion or 2D cell migration and 3D invasion in response to dif-
ferent ECM proteins. Based on the results from Fig. 4, 3D invasion
of MDA-MB-231 cells embedded in no ECM and Collagen I was
classified as low, while 3D invasion in Fibronectin, Tenascin C, and
Collagen IV was classified as high [Figs. 5(c) and 5(e)]. We per-
formed a similar hyperparameter grid search to prevent overtrain-
ing [Fig. S4(e)]. For both MDA-MB-231 and MDA-MB-468 cells,
the AUROC scores for the AdaBoost classifier model are insignifi-
cant (around 0.5), suggesting that the classifier was operating with
a similar accuracy to that of a random classification assignment
[Figs. 5(d) and S5(d)].

Finally, we assessed the predictive relationship between cell adhe-
sion and 3D cell invasion in response to different ECM proteins. We
used AdaBoost to rank single features by their performance on the
training set as a one-feature classifier [Fig. S4(d)]. Then, we look at ten
different AdaBoost classifiers, the first one using just the most infor-
mative feature (perimeter), the second using the five most informative
features, and the last one using all 11 features. A grid search of the
hyperparameters on the training set showed that it was quite robust to
different settings for these classifications [Fig. S4(e)]. We chose a com-
bination hyperparameter values with an average AUROC value of
0.75, to prevent overtraining. For both MDA-MB-231 and MDA-MB-
468 models, using all shape parameters yielded the highest AUROC
scores [Figs. 5(f) and S5(f)]. Models constructed with cell size parame-
ters, cell irregularity parameters, and cell elongation parameters did
not have significant AUROC scores. It is notable that the results from
classifying with all parameters were all higher than the AUROC scores
obtained from just relying on parameters associated with cell size. This
demonstrates that cell adhesion can classify 3D cell invasion more
accurately than 2D cell migration.
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FIG. 4. ECM-driven 3D invasion does not correlate with effects on 2D cell migration. (a) Representative images of spheroids made from 231-GFP cells embedded in media,
Collagen I, Fibronectin, Tenascin C, or Collagen IV gels for 5 days. The scale bar is 200 lm. (b) Quantification of fold change in 231-GFP spheroid area on day 5 relative to
day 1. Data pooled from at least five biological replicates, with three technical triplicate per experiment. ���p< 0.001 by one-way ANOVA and Dunn’s multiple comparison test.
(c) Correlation between mean fold change in spheroid area and 2D cell migration speed for 231-GFP cells. Correlation characterized by r2, p value and Q2. (d) Representative
images of spheroids made from 468-GFP cells embedded in media, Collagen I, Fibronectin, Tenascin C, or Collagen IV gels for 5 days. Scale bar is 200lm. (e) Quantification
of fold change in 468-GFP spheroid area on day 5 relative to day 1. Data pooled from at least four biological replicates, with three technical triplicate per experiment.
���p< 0.001 by one-way ANOVA and Dunn’s multiple comparison test. (f) Correlation between mean fold change in spheroid area and 2D cell migration speed for 468-GFP.
Correlation characterized by r2, p value, and Q2.
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PLS models suggest that cell adhesion accurately
predicts 3D invasion

We then used data-driven modeling to more precisely determine
the relationship between ECM-driven cell adhesion, 2D migration,
and 3D invasion. First, we used principal components analysis (PCA)
to reduce the dimensionality of the cell adhesion dataset. The PCA cre-
ates a new set of principal components (PCs), which maximize the
covariance captured between the parameters.21 Using two principal
components, over 80% of the variation in cell adhesion is described,
and the distinct effects of each ECM substrate can be identified [Figs.
S6(a)–S6(d)]. The PCA shows similar ECM-specific distributions of
cell adhesion seen in the SPRING plots, indicating that this data
dimensionality reduction method still captures the important ECM-
driven trends.

Next, we used a partial least squares regression (PLS) to identify
covariation between cell adhesion, 2D migration, and 3D invasion.
The PLS model reduces the data to a set of principal components
(PCs) to optimally describe the proposed relationship between the
input, cell adhesion, and the outputs, 2D migration, and 3D inva-
sion.21 We constructed the PLS model with MDA-MB-231 cells only
(Fig. 6), MDA-MB-468 cells only (Fig. S7), and combining both cell
lines (Fig. S8). The scores plot of principal component one (PC1) and
PC2 describes how strongly each ECM factor projects on each princi-
pal component [Fig. 6(a)]. For example, in MDA-MB-231 cells,
Collagen I and Collagen IV project negatively on PC1, whereas no
ECM, Fibronectin, and Tenascin C project positively on PC1.
Therefore, using both PC1 and PC2, we can distinguish the variation

between the effects of different ECM substrates. For the combined
model, both PC1 and PC2 are required to describe variation between
different cell lines and ECM substrates [Fig. S8(a)]. For no ECM,
Fibronectin, and Tenascin C, both cell lines project similarly onto the
principal components. However, for Collagen I and Collagen IV, the
cell lines project differently onto the principal components.

To understand the effects of cell adhesion parameters in the
model, we projected the loading vectors, which describe how strongly
each parameter projects onto each principal component [Fig. 6(b)].
We find that measures of cell size, irregularity and elongation project
in distinct clusters, such that cell irregularity projects positively on
PC1 and cell size and elongation project negatively. To evaluate
model fitness, we calculated R2 to measure the variance captured by
the model. Model prediction accuracy was evaluated with Q2 using a
leave-one-out cross validation [Fig. 6(c)]. A permutation test was
used to validate the actual Q2 value from a distribution of all possible
Q2 values obtained when constructing a PLS model from a scrambled
data matrix [Figs. S6(e)–S6(g)]. We determined the ideal number of
principal components to use such that the Q2 and R2 are maximized,
without overfitting. Overfitting occurs when the R2 is high, but the
Q2 value is low or negative. Two principal components were used for
prediction in the MDA-MD-231 model, and three principal compo-
nents were used for the MDA-MB-468 and combined cell line
models.

We then identified how different cell adhesion parameters con-
tribute to prediction of 2D speed, 2D persistence, and 3D invasion
using the variance importance parameter (VIP) score for each cell

FIG. 5. Adhesion classifies ECM-driven 2D migration and 3D invasion. (a) Cell adhesion to predict binary classification of 2D cell migration speed of MDA-MB-231 cells on
plastic, Collagen I, Fibronectin, Tenascin C, or Collagen IV. (b) AUROC scores of binary AdaBoost classifier models (a) using all 11 cell shape parameters, cell size parameters
(area/cell, perimeter, mean radius, min feret diameter, max feret diameter), cell irregularity parameters (solidity, extent, form factor), and cell elongation parameters (eccentricity,
aspect ratio, compactness). (c) 2D cell migration to predict binary classification of mean fold change of spheroid area of 231-GFP cells embedded in media, Collagen I,
Fibronectin, Tenascin C, or Collagen IV. (d) AUROC scores of binary classifier models (c) using 2D cell migration (cell migration speed and persistence alone or together). (e)
Cell adhesion to predict binary classification of mean fold change of spheroid area of 231-GFP cells embedded in media, Collagen I, Fibronectin, Tenascin C, or Collagen IV.
(f) AUROC scores of binary classifier models (e) using all 11 cell shape parameters, cell size parameters, cell irregularity parameters, and cell elongation parameters.
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adhesion parameter [Figs. 6(d)–6(f)]. The VIP score reports the
amount of variation in 2D speed, 2D persistence, and 3D invasion that
is explained by each adhesion parameter. We find that in the
MDA-MB-231 and combined cell lines models, all the cell adhesion
parameters rank similarly for predicting 2D speed, indicating that all
parameters are important for prediction [Figs. 6(d) and S8(d)].
However, in the MDA-MB-468 model, we find that the mean radius,
cell area, and min feret diameter, which are measures of cell size, are
important for predicting 2D speed [Fig. S7(d)]. Interestingly, in the
MDA-MB-231 and combined cell lines models, measures of cell
irregularity and elongation are important for predicting 2D persis-
tence and 3D invasion [Figs. 6(e), 6(f), S8(e), and S8(f)]. In the
MDA-MB-468 model, we find that measures of cell size and elonga-
tion are important for predicting 2D persistence and 3D invasion
[Figs. S7(e) and S7(f)]. We find between cell migration speed and
persistence, persistence is more important for predicting 3D invasion
in both MDA-MB-231 and MDA-MB-468 cells [Fig. 6(f)]. However,
in the combined cell line model, cell migration speed is ranked as
more important [Fig. S8(f)]. Overall, these models demonstrate
the importance of individual shape parameters in predicting
ECM-driven migration responses in 2D and 3D.

Models can be used to accurately predict 2D and 3D
ECM-driven responses

We first tested the ability of our three data-driven models to pre-
dict the effects of a new ECM protein, within the same cell line: simple
correlation, classification, and PLS regression. We chose Matrigel, iso-
lated from the Engelbreth–Holm–Swarm (EHS) mouse sarcoma,
which is rich in basement membrane components laminin, Collagen
IV, and heparan sulfate proteoglycans. We measured cell adhesion, 2D
migration and 3D invasion of MDA-MB-231 and MDA-MB-468 cells
in response to Matrigel [Figs. 7(a), 7(b), S9(a), and S9(b)]. We first
used the simple correlation models to predict the cell responses to
Matrigel [Figs. 7(c), 7(d), S9(c), S9(d), and S10(a)–S10(d)]. The cell
area was used to predict 2D cell migration speed and 2D persistence.
3D invasion was predicted from the cell area, cell migration speed, and
persistence. Although the cell area predicted Matrigel-driven responses
of MDA-MB-231 cells in both 2D and 3D with low percent error, the
model fit, R2, and cross-validation accuracy, Q2, were very low [Figs.
7(c) and 7(d)]. Additionally, the cell area did not accurately predict
Matrigel-driven responses of MDA-MB-468 cells [Figs. S9(c) and
S9(d)]. This indicates that a simple correlation is not adequate to pre-
dict responses to new ECM proteins in 2D and 3D.

FIG. 6. A partial least squares regression model constructed to predict ECM-driven 2D migration and 3D invasion from cell adhesion. (a) Scores plot for PLS model with MDA-
MB-231 cells. Principal components reflect covariation between adhesion, 2D migration, and 3D invasion for each cell line on each ECM protein. (b) PLS loading plot for 11
cell adhesion shape parameters and three cell responses. (c) R2 and Q2 for the PLS model built with increasing numbers of principal components. R2 reports model fit, and Q2

reports model prediction accuracy using leave-one-out cross validation. Ranked VIP scores for predicting 2D cell migration speed (d), 2D persistence (e), and 3D invasion (f)
from cell adhesion or 2D migration. VIP score >1 indicates important parameters to predict the cell invasion response.
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FIG. 7. Correlation, classifier, and PLS models accurately predict Matrigel-driven responses in MDA-MB-231 breast cancer cells. (a) Representative cell adhesion, 2D migra-
tion, and 3D invasion of MDA-MB-231 cells on or in Matrigel. Representative cell adhesion images show cells fixed and stained with Phalloidin (red) and DAPI (blue) after 2 h
on Matrigel. The scale bar is 100 lm. 2D migration roseplots show individual cell tracks on Matrigel for 16 h. The axis length is 500 lm. Representative 3D invasion spheroids
are made from 231-GFP cells embedded in Matrigel gels for 5 days. The scale bar is 200lm. (b) Quantification of cell migration speed, persistence, and 3D invasion of MDA-
MB-231 cells in response to no ECM and Matrigel. Prediction of 2D cell migration speed, 2D persistence (c), and 3D invasion (d) of MDA-MB-231 cells on Matrigel based on
the simple correlation, assessed by percent error, R2 and Q2. Accuracy of prediction of 2D cell migration speed (e) and 3D invasion (f) from classifier models determined by
percent error and AUROC. Prediction of 2D cell migration speed, 2D persistence (g), and 3D invasion (h) of cells on Matrigel from MDA-MB-231 cells using the PLS model built
with two principal components, assessed by percent error, R2 and Q2.
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Next, we used the classifier models with all parameters to predict
the cell responses to Matrigel, since using either all cell adhesion
parameters or all cell migration parameters had the best AUROC
scores (Figs. 5 and S5). We find that these models have low error in
predicting 2D speed, but higher percent error for predicting the mag-
nitude of 3D invasion in Matrigel [Figs. 7(e), 7(f), S9(e), and S9(f)].
Predicting 3D invasion from adhesion shape parameters had lower
error and high confidence compared to predictions made from 2D
speed and persistence [Fig. 7(f)]. Similar results were obtained for
MDA-MB-468 cells [Figs. S9(e) and S9(f)]. These studies suggest that
cell adhesion parameters are better able to predict 3D invasion than
2D cell migration.

We used the PLS models to quantitatively predict cell responses
to Matrigel in 2D and 3D [Figs. 7(g) and 7(h)]. We found that in gen-
eral, the PLS models using cell adhesion were able to predict cell
responses in 2D as seen from the low percent error and high model
confidence (both R2 and Q2) [Fig. 7(g)]. Next, we looked at how cell
adhesion, 2D migration, and both performed in predicting 3D inva-
sion in Matrigel. In MDA-MB-231 cells, we find that cell adhesion and
the combination of cell adhesion and 2D migration predicted the
effects of Matrigel in 3D accurately, but 2D migration alone did not
perform well in predicting responses in 3D [Fig. 7(h)]. We find that
only 2D persistence and 3D invasion, but not 2D speed, are well pre-
dicted in the MDA-MB-468 model (Figs. S9(g) and S9(h)]. Prediction
of Matrigel from the combined model has a larger error, indicating cell
line specificity [Figs. S10(e) and S10(F)]. Additionally, using both cell
adhesion and 2D migration to predict 3D invasion performed similar
to using cell adhesion alone to predict 3D invasion. Overall, cell adhe-
sion can be used to predict ECM-driven responses in both 2D and 3D;
however, 2D migration cannot be used to accurately predict 3D
invasion.

We then tested the ability of our PLS models to predict the
responses of new cell lines, given that this model provided the lowest
error and the highest confidence. For these experiments, we used
BT-549, another human triple-negative breast cancer cell line. We
evaluated the effects of Fibronectin, Tenascin C, and Matrigel on
cell adhesion, 2D migration, and 3D invasion of BT-549 cells
[Figs. 8(a)–8(d)]. We find that these ECM proteins have distinct effects
on the shape, 2D migration, and 3D invasion of the cells, consistent
with our previous data. Next, we evaluated how well the MDA-MB-231,
MDA-MB-468, and combined models predict the responses of BT-549
to these ECM proteins. We did this with and without training the mod-
els with BT-549 data [Fig. 8(e)]. We find that when we trained the origi-
nal models with BT-549 response to no ECM, the error reduced.
Training the models with BT-549 responses to both no ECM and
Fibronectin also increases how accurately Tenascin C and Matrigel are
predicted, as seen by the lower percent error [Fig. 8(e)]. Interestingly,
the MDA-MB-231 model predicts BT-549 response to Tenascin C and
Matrigel better than the MDA-MB-468 model. We also find that the
models more accurately predict responses to Tenascin C thanMatrigel.

DISCUSSION

Our goal was to identify the relationship between ECM responses
in adhesion, 2D migration, and 3D invasion assays to develop strate-
gies to easily predict the effect of novel ECM proteins on 3D cancer
cell invasion, which is more relevant to the study of cancer metastasis.
3D invasion assays can be more complex, time consuming, and more

challenging for follow up analysis, while 2D migration and adhesion
assays are quicker, easy to analyze, and to use with other experimental
approaches such as cell sorting, atomic force microscopy, or immu-
nostaining. By evaluating the response of two triple-negative breast
cancer cell lines to four ECM proteins known to be upregulated in
metastatic breast cancers, we found that there is no linear relationship
between metrics used to quantify these three assays. Using the
AdaBoost machine learning algorithm, we found that cell adhesion
can successfully and accurately classify 2D migration speed and 3D
invasion, while 2D migration speed and persistence are unable to clas-
sify ECM-driven 3D invasion. ECM proteins have distinct effects on
cell adhesion, which is characterized by features that characterize the
cell size, irregularity, and elongation. Using data-driven modeling, we
find that some shape parameters, such as those that quantify cell elon-
gation and irregularity, are more important for predicting 2D migra-
tion and 3D invasion. Finally, we use the correlation, classification,
and regression models to predict the effect in 2D and 3D of a new
ECM protein. From these data, we see that while the predictions
obtained by simple correlation have low percent error, the R2 and Q2

values are low, suggesting that the confidence in the prediction is low.
The predictions obtained by classification are accurate, but do not
report an actual value. Finally, the PLS predictions have low percent
error, and positive R2 and Q2 values, which indicate good capture of
the variance and high predictive power. We also find that predictions
are cell-line specific and that models generated for one cell line cannot
be used for another without additional training. Overall, these studies
suggest that the shape a cell takes in response to an ECM protein, and
not 2D migration speed is more predictive of 3D invasion and our
data provide a pipeline to predict the effect of novel ECM proteins in
driving invasion and metastasis based on a simple adhesion assay.

In this study, we found that both machine learning classifier
models and data-driven PLS models could be used to accurately pre-
dict 2D and 3D responses of cells to a new ECM protein. We focused
on the AdaBoost classifier, originally developed by Freund and
Shapiro in 1995, an approach found on the notion of using a set of
weak classifiers and pooling the classification results of such classifiers
to produce a provably strong classifier. It is therefore less susceptible to
overfitting than other learning algorithms. We acknowledge that our
sample size is too low to completely rule out the possibility of over-
training, but we were successfully able to classify a new ECM protein
for two different cell lines. The limitations of predictions with classifier
models could be addressed by using a more quantitative PLS model.
We find that our PLS model was able to quantitatively define the rela-
tionships between cell adhesion and the 2D and 3D responses of cells
by iteratively reducing the dimensionality of the training dataset. With
PLS modeling, we are able to extract which cell shape parameters are
most strongly connected with cell responses in 2D and 3D, which
allows us to generate hypotheses and quantitatively support them.21

Nevertheless, the PLS model still had important limitations. When
predicting the effects of Tenascin C and Matrigel in the new cell line,
the PLS model was more accurate at predicting the effects of Tenascin
C. Matrigel is known to be a mixture of several growth factors and
ECM proteins, suggesting that its effect on cell migration is more com-
plex. Indeed, we have shown that there can be synergy between growth
factors and ECM protein, suggesting that combinations of cues from
multiple growth factors and ECM proteins can lead to more complex
results.22 We also found that the PLS model constructed with
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FIG. 8. ECM-driven predictions are cell-line specific. (a) Representative cell adhesion images show cells fixed and stained with Phalloidin (red) and DAPI (blue) after 2 h on
Matrigel. The scale bar is 100 lm. Quantification of cell migration speed (b) and persistence (c). Data show entire distribution, with no ECM (n¼ 30), FN (n¼ 36), TNC
(n¼ 19), Matrigel (n¼ 36). (d) Quantification of fold change in BT-549-GFP spheroid area on day 5 relative to day 1. Data pooled from 1 biological replicate, with 11 technical
triplicate. ���p< 0.001 by one-way ANOVA and Dunn’s multiple comparison test. (e) Prediction of 2D cell migration speed, 2D persistence, and 3D invasion of BT-549 cells on
Tenascin C and Matrigel from MDA-MB-231, MDA-MB-468, and combined PLS models built with two principal components for MDA-MB-231 model and three principal compo-
nents for MDA-MB-468 and combined cell lines models. Predictions were done without BT-549 data, with the addition of BT-549 no ECM, and with the addition of BT-549 no
ECM and Fibronectin. Numbers represent the actual and predicted values for each metric. Colors represent percent error, where green is a low error and red is a high error
value, indicated by the color gradient.
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MDA-MB-231 cells predicted ECM-driven effects in BT-549 cells bet-
ter than the PLS model with MDA-MB-468 cells. MDA-MB-231 cells
are known to be more mesenchymal, and it has been found that BT-
549 cells express characteristics of more mesenchymal cells, as seen by
lower surface levels of Integrin B4.18 BT-549 was also found to have a
similar metastatic potential to MDA-MB-231 cells, suggesting that the
two mesenchymal cell lines would respond similarly to different ECM
proteins.19 Therefore, our model may be best suited for studies within
a single cell line and with individual ECM proteins. Future studies
will have to address how combinations of ECM cues, with and
without other pro-migratory such as growth factors, impact cancer cell
invasion.

These studies also shed light on the heterogeneity of responses to
ECM proteins in all these assays, particular for the adhesion and
migration, where the data are quantified at the single cell level. Some
ECM proteins, like Tenascin C and Collagen I, induce more homoge-
neous responses in terms of cell shape parameters, while others like
Fibronectin and Collagen IV have a range of effects (Fig. 2). Previous
studies have linked heterogeneity of cell shape to metastatic potential.
For example, lower variation in morphology is predictive of cells
derived from metastatic sites, but not associated with any particular
somatic mutations.23 More recently, cell morphology of breast cancer
cells was found to predict distinct tumorigenic and metastatic poten-
tials in vivo using multiple mouse models of breast cancer.24 In addi-
tion, the dynamics of breast cancer cell shape heterogeneity can
impact response to therapy. Indeed, time series modeling that captures
the heterogeneous dynamic cellular responses can improve drug classi-
fication and provide insight into mechanisms of drug action.25 The
mechanisms that govern this heterogeneity in breast cancer remain
poorly understood.We have shown that changes in alternative splicing
of the actin regulator Mena can impact sensitivity to Fibronectin (FN)
gradients in vivo. Breast cancer cells that express the MenaINV isoform,
which includes a 19 amino acid exon, are more sensitive to FN which
increases their metastatic potential.5,26 Expression of MenaINV is regu-
lated by the acidity of the local environment,27 suggesting that feed-
back between the tumor microenvironment and the cancer cells
themselves is critical in regulating the signaling pathways that will
impact cell shape heterogeneity. It will be important to evaluate how
the heterogeneity of response to ECM proteins impacts metastasis and
response to therapy.

Migration responses in 2D are quantified with two main metrics:
cell migration speed and persistence; however, it is not clear what
migration response is more relevant to metastasis. Interestingly, in the
World Cell Race, speed and persistence correlated for the migration of
over 50 cell types on fibronectin coated lines.28 In a follow-up study,
persistence was found to be robustly coupled to cell migration speed;29

however, these studies were performed in epithelial and myeloid cells
and are not in response to a given cue. We find no correlation between
ECM-driven cell speed and persistence, and that the cell shape is more
predictive for persistence than it is of cell speed. Persistence may be
more relevant to study in response to a directional cues, such as in the
context of haptotaxis or chemotaxis.3,13 For example, directed migra-
tion of breast cancer cells to gradients of Fibronectin increases direc-
tional persistence to promote metastasis, without affecting cell speed.5

Therefore, the nature and organization of the cue driving cell migra-
tion may play an important role in determining which metric is more
predictive of metastasis potential.

Our studies further demonstrate that in the context of ECM
responses, the cell shape is predictive of 3D invasion, with ECM-
driven effects on 2D speed not predictive of 3D invasion. Cell trajecto-
ries in 2D vs 3D environments have also been shown to be different,
requiring different methods to predict responses within each context.
A persistent-random walk model can be used to accurately model 2D
cell migration, while anomalous diffusion models are better suited to
describe 3D cell migration in confined environments.30 Several studies
have reported on the relationship between 2D and 3D migration in
the ECM. Fraley et al. demonstrated that in Collagen I, changes in 3D
cell migration speed did not correlate with changes in 2D cell speed or
persistence, but that the extent of focal adhesion protein-mediated
protrusion activity is directly correlated with 3D cell speed.11

However, this study was done with fibrosarcoma cells embedded in
Collagen I, and did not look at these parameters in the context of other
ECM proteins. Furthermore, comprehensive analysis of cell motility
measurements in 2D and 3D models reveals that only the percent of
migrating cells in 2D positively correlates with the cell migration in
3D environments, although these studies did not take into account dif-
ferences in ECM or biomaterial tissue composition.31 Overall, these
studies established correlative relationships between these different
metrics, but did not evaluate the ability of these quantitative relation-
ships to predict the effects of unknown conditions. Here, we robustly
show using different models that we can accurately predict the effect
of an ECM protein on 3D invasion based on its effect on cell shape.
Finally, these data are similar to what was found for response to
growth factors, another pro-migratory cue. Whereas 2D migration
properties did not correlate well with 3D behavior across multiple
growth factors, Meyer et al. found that increased membrane protru-
sion elicited by growth factor stimulation did relate robustly to
enhanced 3D migration properties in several breast cancer cells.12

Overall, these studies further support the importance of considering
the properties of the cue to best evaluate its role on breast cancer
metastasis. Future studies should address the importance of cell speed,
persistence, and invasion to metastasis in vivo.

METHODS

There are no experiments on human or animals in this study;
therefore, ethics approval is not required.

ECM substrates

Reagents were purchased from Fisher Scientific (Hampton, NH)
or SIGMA (St. Louis, MO) unless otherwise specified. We used the fol-
lowing ECM proteins: Collagen I protein (CB-40236; Fisher Scientific,
Hampton, NH), Fibronectin protein (F1141; SIGMA, St. Louis, MO),
Tenascin C (R&D systems, 3358TC050), Collagen IV protein (Abcam,
ab7536), and Matrigel (growth-factor reduced, Corning, CB-40230C).

Cell culture

MDA-MB-231, MDA-MB-468, and BT-549 cells were obtained
from ATCC (Manassas, VA). MDA-MB-231 and MDA-MB-468 cells
were cultured in Dulbecco’s Modified Eagle’s Medium (DMEM) with
10% serum and Pen-Strep Glutamine and BT-549 were grown in
RPMI-1640 þ 10%PBS þ Insulin (1lg/ml). Cells were checked every
2months for the presence of mycoplasma by a polymerase chain reac-
tion (PCR) based method using a Universal Mycoplasma Detection
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Kit (30–1012K; ATCC, Manassas, VA). Only mycoplasma negative
cells were used in this study. Cell lines were made to stably express
GFP by lentiviral transduction and labeled as 231-GFP, 468-GFP, or
BT-549-green fluorescent protein (GFP).

Adhesion assay

Plastic-bottomed dishes (Thermo Fisher Nunc, 96 Well Optical-
Bottom Plates, 165305) were coated with 20lg/ml ECM protein for
1 h at 37 �C and then washed with phosphate-buffered saline (PBS).
Cells were trypsinized, resuspended in media, and plated on the coated
plates at 4000 cells/per well. After 2 h, cells were then fixed for 15min
in 4% paraformaldehyde, then permeabilized with 0.2% TritonX-100,
blocked with 3% bovine serum albumin (BSA) and incubated with
primary antibodies overnight at 4 �C. Cells were stained with 40,6-
diamidino-2-phenylindole (DAPI) (D1306; Thermo Fisher Scientific,
Waltham, MA) and Phalloidin (A12390; Thermo Fisher Scientific,
Waltham, MA) along with incubation with fluorescently labeled sec-
ondary antibodies at room temperature for 2 h. Imaging was per-
formed using a Keyence BZ-X710 microscope (Keyence, Elmwood
park, NJ) and CellProfiler v3.1.8 was used for imaging analysis using a
custom pipeline.32 Cells were first identified from the nucleus, and the
outline of each cell was determined from the cytoplasm staining. Cells
at the edge of an image were discarded. 2D adhesion was quantified by
11 parameters: area/cell (number of sq. lm in the cell cytoplasm),
aspect ratio (the ratio of the major axis length and the minor axis
length of the cell), compactness (mean squared distance of the cell
cytoplasm from the centroid divided by the area, where a filled circle
has a value of 1, and an irregular shape has a value greater than 1),
eccentricity (ratio of the distance between the foci of the ellipse and its
major axis length, where a perfect circle has a value of 0, and more
elongated cells have a value of 1), extent (proportion of pixels in the
bounding box that are also in the cell cytoplasm, where larger values
indicate more spread out cell cytoplasm), form factor (calculated as 4
� p � Area/Perimeter2, where a perfect circle has a value of 1), max.
and min. feret diameter (minimum and maximum distance between
two parallel lines that are tangent to the cell cytoplasm edge), mean
radius, perimeter, and solidity (proportion of pixels that are in the con-
vex hull that are also in the cell cytoplasm, where a perfect circle has a
value of 0). Data are the result of three independent experiments with
three technical replicates per experiment.

2D migration assay

For 2D migration, 12-well glass-bottomed dishes (MatTek,
Ashland, MA) were coated with 20lg/ml ECM protein for 1 h at
37 �C. ECM was washed off with PBS, and cells were plated at 7500
cells/well on and allowed to adhere. After 1 h, the plate was placed on
the microscope and cells were imaged overnight with images acquired
every 10min for 16 h in an environmentally controlled chamber
within the Keyence BZ-X710 microscope (Keyence, Elmwood park,
NJ). Cells were then tracked using VW-9000 Video Editing/Analysis
Software (Keyence, Elmwood park, NJ) and both cell speed and persis-
tence were calculated using a custom MATLAB script vR2018a
(MathWorks, Natick, MA). 2D migration was quantified by two
parameters: cell migration speed and persistence. Data are the result of
three independent experiments with six fields of view per experiment
and an average of six cells tracked per field of view.

Spheroid invasion and migration assay

Cells were seeded in low-attachment plates in media (CorningTM

96 Well Ultra-Low Attachment Treated Spheroid Microplate, 12–456-
721), followed by centrifugation at 3000 rpm for 3 min to form
spheroids. Spheroids were grown for 3 days after which ECM was
added to each well, which included (depending on the condition)
Collagen I protein to a 1mg/ml concentration, ECM protein of inter-
est at 20lg/ml, 10mM NaOH, 7.5% 10� DMEM and 50%
1� DMEM. The spheroids in ECM were then spun down at 3000 rpm
for 3 min, and the ECM gel left to polymerize for 1 h at 37 �C. After
this, a further 50ll of media added to each well. Following another
5 days of growth, spheroids were imaged as a Z-stack using a Keyence
BZ-X710 microscope (Keyence, Elmwood park, NJ) and Z-projection
images analyzed using a Hybrid Cell Count feature within the BZ-X
Analyzer software v1.3.1.1 (Keyence, Elmwood park, NJ). 3D invasion
was quantified by one parameter: increase in surface area on day 5 of
ECM relative to day 1. Data are the result of three independent experi-
ments with six technical replicates per experiment.

Clustering analyses

SPRING plots were constructed from single cell adhesion quanti-
fication using the methods described in Weinreb et al.20 For large scale
quantification of cell adhesion on different ECM substrates, each pro-
file was averaged and mean centered. The ECM factors and adhesion
metrics were clustered by rank correlation and mean linkage, using the
seaborn package for Python. Cell adhesion shape metrics were com-
pared by calculating the Spearman correlation between each pair of
metrics.

Machine learning classification

ECM-driven effects on 2D migration and 3D invasion were clas-
sified as either low or high (see Fig. 5). For classification of 2D migra-
tion in MDA-MB-231 and MDA-MB-468 cells, ECM substrates that
caused a mean cell migration speed of above 0.5lm/min were classi-
fied as high. For classification of 3D invasion in MDA-MB-231 cells,
ECM substrates that caused a mean fold change in spheroid area of
above ten were classified as high. For classification of 3D invasion in
MDA-MB-468 cells, ECM substrates that caused a mean fold change
in the spheroid area of above eight were classified as high. The
machine learning algorithm AdaBoost in the sk learn package was
used. We first verify in a grid search of the two hyperparameters
(learning rate and number of estimators) that AdaBoost is quite robust
to different settings. Since many combinations of hyperparameters
gave an average AUROC value of 0.75 or higher on the training set
(Fig. S5), we decided to set the hyperparameters to the recommended
defaults in the sk learn package (learning rate of 1, number of estima-
tors at 50). AUROC area under the curve was used to assess the accu-
racy of the classifiers. The optimized models were tested using a new
unknown ECM protein. All machine learning classifications were per-
formed using Python.

Principal component analysis and partial least-squares
regression

Principal component analysis and partial least squares regression
were performed as described previously.21 Model fitness was evaluated
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using R2, which reports the variance captured by the model. Model
prediction accuracy was first evaluated using a leave-one-out cross val-
idation metric, Q2, previously described.33 A permutation test was
used to validate the actual Q2 value from a distribution of all possible
Q2 values obtained when constructing a PLS model from a scrambled
data matrix. The model was tested with a new condition (ECM protein
or cell line), and this prediction was evaluated using percent error. VIP
scores were calculated from reference.34 Adhesion parameters with
VIP scores above 1 were considered as important cell adhesion param-
eters for prediction. All data were scaled to nondimensionalize the dif-
ferent metrics. PCA was performed using Python, and the PLS model
was implemented using Matlab.

Statistical analysis

GraphPad Prism v7.04 was used for generation of graphs and sta-
tistical analysis. All statistical comparisons were done between no
ECM condition and each ECM condition individually. A one-way
analysis of variance (ANOVA) was used with a corrected p-value of
�0.05 considered significant.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional figures (Figs.
S1–S10), which provide data for the MDA-MB-468 cell line, model
optimization data, and predictions for MDA-MB-468 cells from the
single cell line dataset and from the dual cell line dataset.
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