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Abstract

Detecting Alzheimer’s disease (AD) at an early stage brings a lot of benefits including disease 

management and actions to slow the progression of the disease. Here, we demonstrate that reduced 

creatine chemical exchange saturation transfer (CrCEST) contrast has the potential to serve as a 

new biomarker for early detection of AD. The results on wild type (WT) mice and two age-

matched AD models, namely tauopathy (Tau) and Aβ amyloidosis (APP), indicated that CrCEST 

contrasts of the cortex and corpus callosum in the APP and Tau mice were significantly reduced 

compared to WT counterpart at an early stage (6-7 months) (p < 0.011). Two main causes of the 

reduced CrCEST contrast, i.e. cerebral pH and creatine concentration, were investigated. From 

phantom and hypercapnia experiments, CrCEST showed excellent sensitivity to pH variations. 

From MRS results, the creatine concentration in WT and AD mouse brain was equivalent, which 

suggests that the reduced CrCEST contrast was dominated by cerebral pH change involved in the 
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progression of AD. Immunohistochemical analysis revealed that the abnormal cerebral pH in AD 

mice may relate to neuroinflammation, a known factor that can cause pH reduction.

1. Introduction

Alzheimer’s disease (AD) is the most common form of dementia and affects patients’ daily 

life in many ways, such as speaking, impairments in memory, changes in mood and 

personality, problem-solving and other basic life skills (Huang and Mucke, 2012). Early 

diagnosis of AD would allow earlier treatment of people at risk, which will likely improve 

the performance of clinical trials. Many non-invasive biomarkers have been investigated for 

detecting AD, such as (i) the accumulation of neuritic plaques, which consist of an amyloid-

beta (Aβ) core (Hardy and Selkoe, 2002; Selkoe and Kopan, 2003) and neurofibrillary 

tangles (NFT) that are composed of hyperphosphorylated tau (Ballatore et al., 2007; Lee and 

Trojanowski, 1999; Rojas and Boxer, 2016) in brain detected by positron emission 

tomography (PET) imaging (Saint-Aubert et al., 2017); (ii) levels of Aβ and tau in 

cerebrospinal fluid (CSF) (Barthelemy et al., 2020; Paterson et al., 2019); (iii) reduced 

glucose metabolism measured by 2-deoxy-2-(18F) fluoro-D-glucose (18FDG) PET (Mosconi 

et al., 2009) or MRI (Chen et al., 2021; Huang et al., 2020); (iv) brain atrophy revealed by 

structural imaging using MRI and CT (Frisoni et al., 2010). Despite the great detection 

sensitivity of PET imaging, the high cost and the use of radioactive tracers hinder its wide 

clinical application. Furthermore, the amyloid deposition detected by PET imaging can also 

occur in healthy aging, leading to falsely positive scan results. Brain atrophy revealed by 

structural imaging is a simple and less expensive alternative, but remains challenging to 

detect AD at the early stage since brain atrophy occurs at later stages of AD. Therefore, 

developing a cost-effective and widely available biomarker for early detection of AD has 

long been desired by patients, physicians, and scientists.

Chemical exchange saturation transfer (CEST) MRI is a versatile technique that can achieve 

enhanced sensitivity and spatial resolution on the standard clinical scanner by exploiting the 

exchange of protons between water and protein/metabolites (Jones et al., 2017; Kogan et al., 

2013; van Zijl and Yadav, 2011; Vinogradov et al., 2013; Zhou and van Zijl, 2006). 

Recently, CEST was used for measuring the protein aggregation involved in AD on both 

animal models (Chen et al., 2018; Wang et al., 2019) and human patients (Zhang et al., 

2020). In this study, we aimed to investigate the feasibility of the creatine chemical exchange 

saturation transfer (CrCEST) MRI in detecting AD at an early stage.

The creatine kinase reaction (CKR) plays a crucial role in energy transfer, and the PCr/Cr 

balance can provide valuable information on AD pathology (Burklen et al., 2006). In AD, 

CKR was found to decrease by as much as 86% (Pettegrew et al., 1994). To date, 

phosphorus-31 magnetic resonance spectroscopy (31P MRS) has been the established 

method for non-invasively detecting the in vivo CKR function (Arnold et al., 1984; Hoult et 

al., 1974; Kemp and Radda, 1994). However, the inherently low detection sensitivity of 31P 

MRS results in low spatial resolution and long acquisition times that hinder its wide 

application. In addition, 31P MRS is not available on most magnetic resonance imaging 

(MRI) scanners in clinical practice due to additional hardware costs associated with 31P 
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excitation/detection that are not used in clinical 1H MRI scanners. On the other hand, 

CrCEST MRI not only provides high-resolution Cr mapping (Chen et al., 2020a; Goerke et 

al., 2014; Haris et al., 2012; Kogan et al., 2014), but also does not require special system 

hardware or coils and thus can be performed on standard clinical MRI scanners.

CrCEST contrast is sensitive to both the concentration of exchangeable protons and pH, the 

latter since the exchange rate of creatine guanidinium protons is strongly pH-dependent 

(Chen et al., 2020a; Goerke et al., 2014; Haris et al., 2012; Kogan et al., 2014). Cerebral pH 

regulation is crucial for cell functioning, enzyme activity and protein folding and pH status 

provides information that pertains to cell viability and neuronal degeneration (Chesler, 

2003). Previous studies reveal that abnormal cerebral pH has an important role in the 

aggregation of Alzheimer-associated proteins (Atwood et al., 1998; Barrow and Zagorski, 

1991; Burdick et al., 1992). Some studies also indicate that the reduced intracellular cerebral 

pH is a consequence of neuroinflammation involved in the development of AD (Fang et al., 

2010; Morales et al., 2014; Schwartz et al., 2020). Hence, noninvasive in vivo assessment of 

cerebral pH could be a useful biomarker for the differentiation between early AD and 

healthy controls (Gonzales and Sumien, 2017; Lyros et al., 2020; Mandal et al., 2012). 

Currently, 31P MRS (Jensen et al., 1988; Nishimura et al., 1989; Petroff et al., 1985) or 1H 

MRS after administration of agents (Coman et al., 2020; Gil et al., 1992; Lyros et al., 2020; 

Vermathen et al., 2000) are well-established methods for detecting pH changes in tissue. 

However, MRS-based methods suffer from low detection sensitivity and a consequently low 

spatial resolution. Here, we applied CrCEST that includes information of the Cr/PCr balance 

and the cerebral pH changes in two AD mouse models, the amyloid precursor protein/

presenilin-1 (APP) model (Drummond and Wisniewski, 2017) and the tau mouse model 

(Tau4RΔK) (Li et al., 2016). The feasibility to differentiate AD and wild type (WT) mice 

based on CrCEST was investigated. The two major contributions to the CrCEST signal 

variation, i.e. concentration and pH, were examined with the MRS based methods and 

hypercapnia experiments, respectively.

2. Materials and methods

2.1. Phantom preparation

The pH dependence of CrCEST signal was calibrated using two sets of phantoms. One set of 

phantoms consists of four Cr (50 mM) solutions mixed with 15% cross-linked BSA 

(CrossBSA). Here, CrossBSA was utilized to mimic the strong background signal present in 
vivo. BSA crosslinking was achieved using a 25 μL/mL glutaraldehyde solution. Another set 

of phantoms consists of four Cr (10 mM) solutions without CrossBSA. Phantoms were 

prepared in phosphate-buffered saline (PBS) and titrated to pH 6.4, 6.8, 7.2 and 7.6, 

respectively. One additional 15% CrossBSA phantom without Cr (pH 7.2) was prepared to 

validate the PLOF background fitting method. All phantoms were studied in 5 mm NMR 

tubes and maintained at 37 °C during MRI experiments by an air heater.

2.2. Ethics statement

All animal experiments were performed under the protocols based on the NIH Guidelines 

for Care and Use of Laboratory Animals. All experiments were performed in accordance 
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with the ARRIVE (Animal Research Reporting In Vivo Experiments) guidelines (Kilkenny 

et al., 2010), and approved by the Johns Hopkins University animal care and use committee.

2.3. Animal preparation

Five female mice (C57BL/6J) with an age of 6-7 months were employed for the 

optimization and comparison of the CEST contrasts. Thirty female mice with an age of 6–7 

months were employed for the AD study, of which ten were Tau4RΔK (Tau) (Li et al., 

2016), ten APPswe:PS1ΔE9 (APP), and another ten are age-matched C57BL/6J (WT). Seven 

mice in each group were used for MRI, while three mice were sacrificed for 

immunohistochemical analysis. The Tau and APP transgenic mice were bred at Johns 

Hopkins University, according to details in the literature (Li et al., 2016). The onset of the 

tau tangles in the Tau mice typically starts at approximately six months. The APP transgenic 

mice co-expressed the Swedish variant of the amyloid precursor protein and the exon-9 

deleted variant of presenilin1. The onset of neurotic plaques in biogenic APP mice typically 

starts at four to six months of age (Li et al., 2016). All mice were maintained under a 

12L:12D cycle in a centralized animal housing facility program managed by Research 

Animal Resources (RAR) at Johns Hopkins University.

Hypercapnia will cause a reduction in cerebral intracellular pH (Martoft et al., 2003). To 

evaluate the sensitivity of CrCEST in detecting pH changes, Z-spectra were recorded on five 

WT mouse brains before and during 20% CO2 inhalation, and the results compared with 

those obtained by amide proton transfer CEST (APT or amideCEST) MRI (Zhou et al., 

2003), which is a classical CEST pH mapping method. The 20% CO2 delivery was 

accomplished by mixing the air and pure CO2 with flow rates of 2 L/min and 0.5 L/min, 

respectively. During the CO2 inhalation, end-tidal CO2 (ETCO2) was measured constantly 

with a capnography monitor (Philips, Respironics NM3) in the mouse anesthesia nose cone. 

With a 20% CO2 flow, the ETCO2 is maintained at 90 ± 5 mmHg. To assure physiological 

stability, the during-CO2 inhalation experiments were started 5 min after CO2 delivery and 

took around 24 min.

2.4. MRI Experiments

All MRI experiments were performed on a horizontal bore 11.7 T Bruker Biospec system 

(Bruker, Ettlingen, Germany) equipped with actively shielded gradients with a maximum 

strength of 74 Gauss/cm. A 72 mm quadrature volume resonator was utilized for 

transmitting, and a 2 × 2 mouse phased array coil for detection. A double-tuned 31P/1H coil 

was employed for the collection of in vivo 31P MRS. All coils were provided by Bruker. 

Anesthesia was induced using 2% isoflurane in medical air, followed by 1% to 1.5% 

isoflurane for maintenance during the MRI scan. The mouse head was positioned using a 

bite bar and two ear pins. During the MRI scan, mice were placed on a water-heated animal 

bed that was equipped with temperature and respiratory controls. The respiratory rate was 

monitored via a pressure sensor (SAII, Stony Brook, NY, USA) and maintained at 80-90 

breaths per minute. The B0 field over the mouse brain was adjusted using field mapping and 

second-order shimming.
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All CEST experiments were performed using continuous-wave CEST (cwCEST). MR 

images were acquired using a Turbo Spin Echo (TSE) sequence with TE = 18 ms, TR = 5 s, 

TSE factor = 20, a matrix size of 64 × 64. For phantom experiments, the slice thickness was 

2 mm and the field of view (FOV) was 15 × 15 mm2. For animal experiments, the slice 

thickness was 1.5 mm and the FOV was 16 × 16 mm2. The saturation field strength (B1) and 

length for CrCEST were 2 μT and 1 s, respectively, according to previous studies (Chen et 

al., 2019b). The optimum saturation length was determined by the water rotating frame 

relaxation time and was found to be 2–3 s with 1 μT power and 1s with 2 μT power for 

CrCEST (Chen et al., 2019b). The optimum saturation power was found to be around 1 μT 

for amideCEST (Jin et al., 2013). As the acquisition parameters are similar for the two 

CEST contrasts, a saturation length of 2 s was implemented for the amideCEST. The 

frequency range measured to assess CrCEST was 1 to 3.5 ppm with an increment of 0.05 

ppm, and the one for amideCEST was 2.3 ppm to 5 ppm with an increment of 0.1 ppm. S0 

images for the CEST studies were acquired by setting the offset at 200 ppm. For the set of 

phantoms without CrossBSA, the saturation frequency was swept from −4 to 4 ppm with an 

increment of 0.2 ppm. A T1 map was acquired using the RAREVTR sequence (RARE with 

variable TR = 0.5, 1, 1.5, 2, 3.5, 5, and 8 s) and a T2 map was obtained using multi-slice 

multi-echo (MSME) MRI with geometry identical to that of the T1 map and an echo spacing 

of 10 ms. The image slice was parallel to the coil and set to approximately −1.4 mm with 

respect to the anterior commissure (AC).

31P MRS was performed to measure the cerebral pH change after CO2 inhalation. The 

intracellular pH was calculated from the chemical shift of the Pi peak relative to the PCr 

peak (δpi) as follows (Petroff et al., 1985):

pH = 6.66 + log (δ − 3.08) ∕ (5 ∕ 57 − δ) (1)

In vivo 31P MRS experiments were performed using a single BIR-4 adiabatic pulse with a 2 

ms pulse width (TR = 2 s, NA = 512, bandwidth = 50 ppm, acquisition time = 100 ms). The 

total experimental time was 16 min. The coil was positioned above the center of the mouse 

brain, and the carrier frequency was set to the offset of the phosphocreatine (PCr) peak. All 
31P MRS were aligned by setting PCr peak as 0 ppm. One 31P spectrum was collected as 

baseline, and another one five minutes after the start of CO2 inhalation.

2.5. CEST data analysis

All CEST MRI images were processed using custom-written MATLAB scripts (MathWorks, 

www.mathworks.com, version 9.8.0.1417392 (R2020a) Update 4). The extraction and 

quantification of the CEST signal were achieved using polynomial and Lorentzian line-

shape fitting (PLOF) as detailed previously (code available at https://github.com/

LinChenMRI/PLOF.git) (Chen et al., 2019a; Chen et al., 2020a; Chen et al., 2020b; Chen et 

al., 2017). Briefly, the normalized steady-state Z-spectral intensity Zss can be converted to 

the longitudinal relaxation rate in the rotating frame, R1ρ, e.g. the rotating-frame relaxation 

spectrum (R-spectrum) (Jin et al., 2011; Trott and Palmer, 2002; Zaiss and Bachert, 2013a; 

Zaiss and Bachert, 2013b). Asymmetry analysis, i.e. subtracting the label and control images 

acquired at two symmetric offsets with respect to water resonance, is the most commonly 
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used method to quantify CEST signal. This method was used for the quantitation of the 

CrCEST signal of the Cr solutions without CrossBSA, i.e. Z(−2 ppm) - Z(2 ppm). However, 

tissue contains many types of exchangeable protons on both sides of water in the Z-

spectrum, such as the amine protons from proteins and glutamate at 2.5 ppm, the hydroxyl 

groups from proteins and Myo-inositol around 1 ppm, the relayed nuclear Overhauser effect 

(rNOE) CEST signals from choline at −1.6 ppm, and from the aliphatic protons in proteins 

and lipids between −4 and 0 ppm, making asymmetry analysis vulnerable to contaminations 

from lipids, proteins, semisolid macromolecules and other metabolites. The advantages of 

using the R-spectrum are that the rotating frame relaxation rate is linearly dependent on the 

concentration of the exchanging protons and that the rotating frame relaxation rates can be 

easily superimposed on each other when multiple exchanging pools present. Both 

amideCEST and CrCEST peaks (R) in the R-spectrum can be represented by a Lorentzian 

function:

R = Rexcℎ
(w ∕ 2)2

(w ∕ 2)2 + (Δ − Δexcℎ)2 (2)

where w is the peak full-width-at-half-maximum (FWHM) of the Lorentzian line-shape. Δ is 

the offset. Δexch is the chemical shift offset of the CEST peak relative to the water signal, i.e. 

3.5 ppm for amideCEST and 1.95 ppm for CrCEST; Rexch is the intensity of the amideCEST 

(Ramide) or CrCEST (RCr) peaks in the R-spectrum. The broad background (Ramide) in the 

R-spectrum can be represented by a polynomial function:

Rback = ∑n = 1
M Cn(Δ − Δexcℎ)n

(3)

where Cn terms are the zero to M-order polynomial coefficients. In this study, M was set to 

three for amideCEST. For CrCEST study, the peak is much close to the water signal. In 

order to improve the fitting, an updated background function was introduced by including 

one Lorentzian function to account for the water direct saturation (DS) (Sui et al., 2021):

Rback = C0(C1 ∕ 2)2

(C1 ∕ 2)2 + Δω2 + C2 + C3 ⋅ Δω (4)

where the polynomial function (C2 + C3 · Δω) was implemented to fit the background, 

consisting of magnetization transfer contrast (MTC) and exchanging protons such as amines 

and hydroxyls. We found that a linear function was sufficient to fit this combined 

background line shape between 1–3.5 ppm. A higher-order polynomial function may be 

needed when fitting a wider range. For both CrCEST and amideCEST, the Z-spectral range 

between [δini − 0.4, δini + 0.4] (ppm) was excluded from the background fitting, where δini 

stands for the frequency offset of corresponding CEST peak. Multilinear singular value 

decomposition (MLSVD) was applied to enhance the CEST signal-to-noise ratio (SNR) 

(Chen et al., 2020a).

A two-sample t-test was performed between the RCr, T1 and T2 values for the WT, APP and 

Tau mice groups using the MATLAB built-in function “ttest2”. A paired-sample t-test was 
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performed for the comparison between pre and post CO2 inhalation using the MATLAB 

built-in function “ttest”. t-test was considered statistically significant for p < 0.05 and highly 

significant when p < 0.001.

2.6. Validation of Cr Concentration Difference for AD and WT Mice Using 31P and 1H MRS

CEST contrast is sensitive to both pH and metabolite concentration. To account for non-pH 

effects, the Cr concentration in AD and WT mice was measured using 31P and 1H MRS. The 

concentration of total Cr (tCr=Cr+PCr) was determined by 1H MRS, which was performed 

with a voxel of 3 × 3 × 3 mm3 using a stimulated echo acquisition mode (STEAM) sequence 

(TE = 3 ms, TM = 10 ms, TR = 2.5 s, NA = 256) with outer volume suppression (OVS). The 

water signal was suppressed by the variable power RF pulses and optimized relaxation 

delays (VAPOR) method (Tkac et al., 1999). An unsuppressed water signal was acquired 

before each 1H MRS experiment with the same parameters except that the number of 

averages was one. First- and second-order shims were adjusted for each VOI using a field-

mapping method. Brain Cr concentrations measured by in vivo 1H MRS spectra were 

estimated using LCModel analysis as detailed in previous work (Chen et al., 2019a). A 

calibration phantom with 20 mM Cr mixed with CrossBSA (20% w, pH=7.2) was used for 

the calibration of the MRS quantification. The PCr and ATP concentration ratios on mouse 

brain were determined using 31P MRS with identical experimental parameters, as previously 

mentioned. The ATP concentrations were considered constant in brain. The PCr and ATP 

concentration ratios were determined from the peak areas extracted by fitting the PCr peak at 

0 ppm as well as the two ATP peaks at −2.6 ppm and −7.6 ppm using Lorentzian functions.

2.7. Immunohistochemical analysis of brains

To determine possible causes for the reduced pH values in AD animals, we performed 

immunohistochemical analysis on WT, APP and Tau mouse brain (n = 3). Four types of 

immunostaining were performed with antibodies specific to human Aβ (6E10: 1:1,000; 

SIG-39300, Covance) to monitor plaque accumulation, as well as antibodies specific to 

endogenous phosphorylated S422 of tau (pS422: 1:2,000; 44764G, Invitrogen, Carlsbad, 

CA) for examining tangle formation. Neuroinflammation in the AD brain was examined by 

looking at reactive astrocytes and microglia using polyclonal antiserum against Glial 

Fibrillary Acidic Protein (GFAP: Z0334, Dako Cooperation, Carpinteria, CA) and Ionized 

calcium-Binding Adapter molecule 1 (IBA1: CP290, Biocare Medical, CA), respectively. 

The preparation of the Immunohistochemical analysis has been detailed previously (Li et al., 

2016). Briefly, the primary antibody prepared in blocking buffer (10% normal goat serum in 

PBS with 0.3% Triton-X) was applied overnight at 4 °C, followed by a secondary antibody 

for 30 min incubation at room temperature. Sections for immunofluorescence were 

examined under a Zeiss LSM 510 laser scanning fluorescence confocal microscope. For the 

secondary antibody and avidin-biotinylated peroxidase system, we used the Vectastain 

Universal Elite ABC kit (Vector Laboratories). The proteins were visualized with DAB, and 

if required, slides were counterstain with Hematoxylin.
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3. Results

3.1. Phantom validation of CrCEST in detecting pH change

The typical Z-spectrum (Z = S/S0) of CrossBSA without Cr and its PLOF fitting are shown 

in Fig. 1a. It can be seen that the combined MTC and DS background is well represented by 

the background function in Eq. 4. The representative Z-spectrum of CrossBSA with 50 mM 

Cr is shown in Fig. 1b, where a well-defined CEST peak at 2 ppm is observed. These data 

show that PLOF is able to fit both the background and extract the CEST peak. The fitted 

CrCEST signal (ΔZCr) and apparent relaxation rate (RCr) are plotted as a function of pH in 

Figs. 1c,d. From the results, the relationship between ΔZCr, RCr and pH within the 

physiologically relevant range (6.4-7.6) can be described with the following linear functions:

ΔZCr = 0.18 ⋅ pH − 1.10 (5)

RCr = 0.06 ⋅ pH − 0.34 (6)

The typical Z-spectra of the Cr solutions without CrossBSA are plotted in Fig. 1e. The Cr 

peak coalesced with water when pH reached 7.6. The pH dependence of the CrCEST signal 

in the Cr solutions is shown in Fig. 1f. The CrCEST signal is inversely dependent on the pH 

values when pH value is larger than 6.8 with a saturation power of 2 μT and 1 s saturation 

length.

3.2. Validation of the use of CrCEST for detecting subtle cerebral pH changes

To validate the feasibility of CrCEST MRI in detecting subtle cerebral pH changes, Z-

spectra were recorded of WT mouse brain before and during 20% CO2 inhalation, as shown 

in Figs. 2c and 2d, respectively. AmideCEST MRI was also performed for comparison, as 

shown in Figs. 2a, b. The CEST signals ΔZ and corresponding apparent relaxation terms R 
extracted by PLOF are plotted in Figs. 2e,f. The ΔZ and R obtained by CrCEST before CO2 

inhalation were larger than those from amideCEST ΔZCr : 2.91 ± 0.35%, ΔZamide : 1.87 ± 

0.39%, p < 0.01; RCr : 0.103±0.014, Ramide : 0.023 ± 0.005, p < 0.01, n = 5). During CO2 

inhalation, CrCEST showed significantly reduced (ΔZ and R ΔZCrdiff : 1.10 ± 0.47%, p < 

0.01; RCrdiff : 0.032 ± 0.015, p = 0.016), while no significant difference was observed in 

amideCEST (ΔZamidediff : 0.64 ± 0.59%, p = 0.075; Ramidediff : 0.008 ± 0.007, p = 0.069). B0 

and B1 maps on the mouse brain were measured and are shown in the Supplementary 

Materials Fig. S1. Both B0 and B1 were homogeneous across brain with standard deviations 

of around 0.09 ppm and 0.12, respectively.

31P MRS was performed to quantify both the pH change and PCr concentration variation 

during CO2 inhalation. The averaged 31P MRS spectra (n = 4) collected before and during 

CO2 inhalation are plotted in Fig. 2g. The 31P coil coverage is illustrated by the T2-weighted 

image shown in the inlet figure of Fig. 2g. The typical 31P peaks in mouse brain, such as 

PCr, adenosine triphosphate (ATP), Pi, and lipids, can be well observed in the spectrum. The 

Pi peak shifted from 5.07 ± 0.06 ppm to 4.77 ± 0.08 ppm during CO2 inhalation, which 

indicates a cerebral pH change from 7.26 ± 0.07 to 6.99 ± 0.07 according to Eq. 1. The PCr 
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peak broadened and also the concentration decreased by approximately 9.6 ± 5%, as 

determined from the integral (before: 2.18 ± 1.1 × 104, after: 1.97 ± 1.0 × 104), which is 

caused by the conversion of PCr to Cr as pH decreases (Litt et al., 1985; Nishimura et al., 

1989). With 20% CO2 inhalation, the T1 value of the cortex was reduced from 1.90 ± 0.07 s 

(n = 5) to 1.82 ± 0.07 s (n = 5), while the T2 value changed from 37.9±0.7 ms (n = 5) to 

37.3±1.2 ms (n = 5). To remove MTC and T1-induced CEST signal changes, the apparent 

relaxation rate of Cr (RCr) was calculated according to Eqs. 2 and 4. The averaged RCr for 

the whole brain decreased from 0.103 ± 0.014 s−1 to 0.071 ± 0.019 s−1 after CO2 inhalation, 

which gives the relation between the CrCEST variation (RCrdiff) and the pH changes:

RCrdiff = 0.12 ⋅ ΔpH (7)

3.3. Differentiating AD and WT mice using CrCEST MRI

Typical CrCEST Z-spectra of the WT and AD cortex (red ROI) are plotted in Figs. 3 d-f 

together with the PLOF fitting curves. The MTC and other CEST background could be fitted 

well with Eq. 4. Due to the strong macromolecular background, a small change in B1 value 

can introduce shifts in the Z-spectra between different mice. However, the Z-values at 1 and 

3.5 ppm were similar for all mice and not correlated with the disease as demonstrated by the 

background values at both 1 and 3.5 ppm for the three groups of mice (supplemental Fig. 

S2). RCr maps of AD and WT mouse brain, together with corresponding S0 images, T1 

maps, and T2 maps, are shown in Fig. 3. Here, RCr, instead of ΔZCr, was selected to 

represent CrCEST data because RCr can compensate for the scaled-down effect introduced 

by MTC or T1 differences (Chen et al., 2019b). Compared to the WT results, reduced RCr 

intensities are observed for the Tau and APP mouse brains, especially in the cortical regions. 

The T1 and T2 maps were similar between different mice.

Extracted regional RCr, T1 and T2 values are summarized in Fig. 4 and Table 1. Three 

regions of interest (ROIs), namely cortex (cx), thalamus (th), and corpus callosum (cc), were 

chosen, as illustrated in Fig. 3a. Significant differences were obtained between WT and the 

APP RCr values for the cortex and corpus callosum. The APP RCr values of the thalamus 

were significantly lower than those for WT, while the Tau thalamus RCr values showed a 

nonsignificant trend to be lower than WT. No significant difference was observed for the 

regional T1 values among the three types of mice. For all mouse types, the thalamic T1 was 

smaller than that of the cortex (p < 0.01) (Table 1 and Fig. 4). The T2 values were similar for 

WT, APP and Tau mice. Similar to the T1 values, the thalamic T2 values were smaller than 

those in the cortex for all mice (p < 0.01) (Table 1 and Fig. 4).

3.4. Cr concentration measured by 31P and proton MRS

CEST contrast is sensitive to metabolite concentration and pH. To exclude potential 

contributions from concentration variations to the reduced CrCEST contrast observed in 

APP and Tau mouse brains, the PCr and total Cr (tCr = PCr + Cr) concentrations were 

measured using 31P and 1H MRS, respectively. Typical 1H MRS brain spectra of WT, Tau 

and APP mice are plotted in Figs. 5-c, respectively. With a voxel size of 27 mm3, high-

resolution proton MR spectra were achieved on all mice. The tCr quantification results from 
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the LCModel are reported in Fig. 5d, showing no distinct difference between the three types 

of mice (WT: 6.5±0.9 mM; APP: 6.9±1.1 mM, p = 0.6; Tau: 6.8± 0.8 mM, p = 0.7). To 

examine the neuronal integrity, the NAA concentrations were also extracted and found to be 

5.5 ± 0.8 (WT), 4.7±1.2 (APP) and 5.1 ± 1.0 (Tau), respectively. While the NAA 

concentrations of APP and Tau AD mice were slightly lower than those of WT mice, this 

difference was not significant (APP vs WT p = 0.24; Tau vs WT p = 0.45). The averaged 31P 

spectra in Figs. 5e-g show similar PCr intensities for the three types of mice (WT: 

1372±326; Tau: 1357±141, p = 0.8; APP: 1416±263, p = 0.9). The PCr intensities were 

scaled based on the averaged ATP peak intensities at −2.5 ppm and −7.7 ppm. The PCr 

concentration ratios with respect to ATP were extracted and did not significantly differ 

between the three types of mice (WT: 2.42±0.14; Tau: 2.45±0.34, p = 0.9; APP: 2.38±0.43, 

p = 0.9), which is consistent with the 31P MRS observation in Figs. 5e-g. These 31P and 1H 

data show that the concentrations of PCr and Cr in AD and WT mouse brain were not 

significantly different. This result suggests that pH change is the dominant contribution to 

the reduced CEST contrast observed in AD mouse brains. The Pi chemical shifts in the 

averaged 31P MRS are 5.07 ppm (WT), 4.92 ppm (Tau) and 4.87 ppm (APP), respectively 

(Figs. 5e,f and g), which further confirms the pH reduction in the AD mice.

3.5. Immunohistochemical results of AD brains

Typical immunohistochemical analysis results for the cortex region of the WT, APP and Tau 

mouse brains are plotted in Fig. 6. At this age (e.g. 6–7 months), plaques were abundant in 

APP mice, while not yet detectable in Tau and WT mice (Fig. 6a). Tau tangles were still 

very rare at this age (Fig. 6b), which is consistent with a previous observation that 

widespread tangles occur after 9 months on mouse brain (Li et al., 2016). Hypertrophic 

GFAP positive astrocytes were observed in cortical regions of APP mice but not Tau mice 

(Fig. 6c). Similar to the astrocyte results, the IBA1 histological analysis confirmed activation 

of microglia in the APP mice, while weak microglial activation was observed in the Tau 

mice.

4. Discussion

In this study, we demonstrated that reduced CrCEST contrast has the potential to 

differentiate AD and WT mice at an early stage (6-7 months). CrCEST MRI can be 

performed on a standard MRI scanner without requirements for additional (heteronuclear) 

hardware or contrast agents, which is promising for widespread applications. From 1H MRS 

and 31P MRS results, Cr concentration did not show a significant difference between this 

group of AD and WT mice at an age of 6–7 months. Hence, the main factor that altered the 

CrCEST contrast in AD mice was attributed to cerebral pH change. From the calibration 

function in Eq. 7, the cortical pH reduced by about 0.26±0.07 in APP mice and about 

0.18±0.16 in Tau mice.

Currently, due to the lack of sensitive and routine methods for non-invasively mapping pH in 
vivo, only limited studies have been performed to investigate pH effects in AD mouse brain 

(Lyros et al., 2020; Mandal et al., 2012; Rijpma et al., 2018). The pH detection sensitivity of 

CEST MRI is proportional to the change in the exchange rate change induced by pH 
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variations. Even though amideCEST MRI has been successful in measuring the large pH 

change in acute ischemia and other diseases (Chen et al., 2020a; Goerke et al., 2014; Haris 

et al., 2012; Kogan et al., 2014; Leigh et al., 2018), the slow exchange rate of amide protons 

(<400 Hz range) (Heo et al., 2019) at physiologically relevant temperature and pH limits its 

sensitivity in detecting subtle pH changes, as demonstrated in CO2 inhalation experiments. 

Compared to amide protons, Cr guanidinium protons possess an exchange rate of around 

1000 Hz (Goerke et al., 2014), resulting in a larger absolute exchange rate change with pH.

According to previous studies (Saab et al., 2002; Sugden and Fuller, 1991), Cr is located in 

the intracellular compartment, which suggests that the pH measurements obtained by 

CrCEST reflect mainly the intracellular environment, which is consistent with the 

measurements obtained by 31P MRS (Gasparovic et al., 1998). Currently, there is no 

consensus on the cause of intracellular pH reduction in AD. Some studies imply that 

abnormal cerebral pH may arise from neuroinflammation and consequent changes in cellular 

metabolism (Eikelenboom et al., 2010; Fang et al., 2010; Jonsson et al., 2013; Mandal et al., 

2012; Schwartz et al., 2020). In this study, the comparison between Tau mice and APP mice 

provides some indication of the cause of abnormal cerebral pH in AD. It is known that the 

pH in the mammalian central neural system is regulated by several types of acid transport 

mechanisms such as Na+/H+ pumps (Tse et al., 1993), Cl−/HCO3
− pumps (Thomas, 1976, 

1977) and Na+/HCO3
− cotransporters (Boron and Boulpaep, 1983). The ability of the cell to 

regulate pH reflects the neuronal viability since the membrane Na+/H+ channel pumps 

require a continuous supply of ATP molecules to maintain cellular homeostasis. Minimal 

neuronal loss was observed in the APP mice even at the late stage of AD (>20 months), and 

no neuronal loss was observed in Tau mice at 6-7 months (Li et al., 2016). Hence, the 

significant pH reduction in the two mouse models at this early stage occurs before impaired 

neuronal function, which has been postulated to be a consequence of cellular apoptosis 

signaling due to intracellular pH decrease (Fang et al., 2010; Schwartz et al., 2020). On the 

other hand, inflammation is a well-established pathological feature in the brains of patients 

with Alzheimer’s disease, as illustrated by an accumulation of activated microglia and 

astrocytes around both plaques and tau tangles (Jonsson et al., 2013; Maeda et al., 2011). 

Studies of P301S tau transgenic mice established that hippocampal synaptic pathology and 

microgliosis precede tau tangle formation and neurodegeneration (Maeda et al., 2011; 

Yoshiyama et al., 2007). The co-localization of neuroinflammation and Tau pathology was 

further confirmed in a recent study of frontotemporal dementia (Bevan-Jones et al., 2020). 

Presence of significant neuroinflammation in terms of activation of astrocytes/microglia in 

APP mice was confirmed by immunohistochemical analysis (Fig. 6). Recent direct evidence 

suggests that neuroinflammation can also contribute to the production of amyloid-β through 

an interferon-induced transmembrane protein 3 IFITM3–γ-secretase complex (Hur et al., 

2020; Tomiyama et al., 2010). Hence, neuroinflammation could be a major cause of the 

intracellular pH reduction in both APP and Tau mice (Fang et al., 2010; Schwartz et al., 

2020). In the current study, significant neuroinflammation was observed in the early stage of 

AD in APP mouse (Fig. 6c), which is consistent with another in vivo observation that 

inflammation is an early event in AD patients and can be detected in MCI subjects, even 

when amyloid deposition is not detectable (Eikelenboom et al., 2010). However, there was 

no clear neuroinflammation in Tau mice (Fig. 6d) at this stage, which suggests that factors in 
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addition to neuroinflammation contribute to the pH reduction, which needs further 

investigation. A previous 31P MRS study on AD patients reported an elevated PCr 

concentration in AD (approximately 5% increment) (Rijpma et al., 2018), which may 

contribute to a small portion of the CrCEST reduction in this study, assuming that the tCr is 

constant. In our study, we did not observe significant PCr changes in the AD models.

Previous pathology studies on the APP and Tau animal models showed that the tangles and 

plaques just begin to appear at the age of 6-7 months (Li et al., 2016). Thus, the pH 

reduction appears to precede or coincide with this pathology and the CrCEST based pH 

mapping has potential as a non-invasive biomarker for early diagnosis of AD. This method 

also provides a sensitive pH mapping method for understanding the mechanisms that 

underlie AD and potentially for monitoring therapeutic outcomes. Compared to the 

commonly applied 31P MRS, CEST MRI not only offers much higher detection sensitivity 

but also works on most MRI scanners in clinical practice without additional hardware costs.

A previous study demonstrated that protein aggregation has the potential to alter the 

background signal due to changes in amide and aromatic rNOE contributions. (Chen et al., 

2018; Kleimaier et al., 2020) However, the protein aggregation in the APP mice is expected 

to be dominant at the late stage (>12 months) and protein aggregation has not been reported 

in Tau mice (Li et al., 2016). Therefore, the reduced CrCEST signal in both APP and Tau 

mice can not be explained by protein aggregation. The Z-values at both 1 and 3.5 ppm, 

which include the amide and aromatic rNOE values, showed similar values, as demonstrated 

in the supplemental Fig. S2. This further confirms that protein aggregation did not contribute 

to the observed CrCEST reduction in the AD mice at early stage.

In vivo tissue contains various exchangeable protons, and their CEST signals are modulated 

by the saturation parameters (van Zijl et al., 2018). In this study, a saturation pulse of 2 μT 

power and 1 s length was adopted. From the Cr phantom study, the Cr signal is positively 

dependent on the pH value when mixing with CrossBSA, which is consistent with the 

observation in the hypercapnia study on mouse brain (Fig. 2e) as well as the previous 

CrCEST study on the ischemic stroke animal model (Chen et al., 2020a). However, the 

CrCEST signal is inversely dependent on the pH in the Cr solutions (Fig. 1f) between the 

physiologically relevant pH range (6.8–7.2) In order to understand this pH dependence, we 

performed Bloch simulation by assuming three pools, i.e. water, creatine and 

macromolecular pool, and the simulation results were presented in the Supplementary 

Materials Fig. S3. From the simulation results (Fig. S3b), it suggested that the exchange rate 

of CrCEST in both CrossBSA and mouse brain is significantly slower than that in the Cr 

solutions, which has been observed previously (Zaiss et al., 2015). The exact exchange rate 

of Cr in brain still needs to be further validated, which is beyond the scope of the current 

study. According to our previous studies (Chen et al., 2019b; Chen et al., 2017) and work 

from another group (Zhang et al., 2017), the guanidinium (Guan) protons from arginine side 

chains in mobile proteins also contribute (less than 20%) to the CEST signal at 2 ppm with 

these saturation parameters. Lower saturation power and longer saturation length will lead to 

a larger contribution from Guan proton to CEST signal at 2 ppm. On contrary to CrCEST in 

brain, GuanCEST contrast shows an opposite trend regarding pH reduction, which means 

lower pH yields higher GuanCEST contrast as evidenced by both eggwhite phantom (Sui et 
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al., 2021) and ischemic stroke studies (Jin et al., 2017; Zhou et al., 2019). Therefore, in 

practice, appropriate saturation parameters should be chosen to ensure the CEST signal at 2 

ppm is dominated by Cr. As demonstrated in the Bloch simulation (Fig. S3b), the CrCEST 

signal is dominant at high saturation powers (>2 μT) by assuming the Cr exchange rate in 

mouse brain is 500 Hz. It should be noticed that the saturation parameters used in this study 

were designed for high magnetic fields. However, the CEST contrast depends on field 

strength and while PCr has been detected at 3T, Cr is more difficult. Thus, further studies 

will have to prove the use of this approach in the clinic. The fitting method is also crucial for 

extracting accurate CEST contrast. In this study, we improved the polynomial function (Eq. 

4) to fit the background from MTC and contributions from fast-exchanging protons, as 

demonstrated in Fig. 1a. Another benefit of the updated background function was excellent 

robustness against signal oscillation. From Figs. 3 d-f, the updated background function 

worked well even with obvious signal oscillation between 3.0 ppm to 3.5 ppm.

The current approach is ready to be transferred to high-field clinical scanners, such as 7T 

scanners. When the magnetic field is reduced to 3 T, the exchange rate of Cr can no longer 

be considered to be in the intermediate exchange regime. The guanidinium peak of Cr 

coalesces with the water peak because of the reduced shift difference at these lower fields 

and overlaps with many other exchanging protons. As a consequence, the separation of the 

Cr CEST signal will be very challenging. Fortunately, it was recently shown that the 

detection of PCr is feasible at 3T because of its much slower exchange rate (Chen et al., 

2020b), which may serve as an appropriate alternative at lower magnetic field.

5. Conclusion

The feasibility of using CrCEST MRI to differentiate AD and WT mice at an early stage was 

demonstrated. The results indicate that AD mice (APP and Tau) at 6-7 months have reduced 

intracellular pH compared to age-matched WT mice, which preceded the tangle and plaque 

formation. This finding was tentatively attributed to the neuroinflammation of AD mice. The 

results suggest that reduced CrCEST contrast has the potential to serve as a new biomarker 

for detecting AD at an early stage.
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Fig 1. 
Typical phantom CrCEST Z-spectra of (a) 15% CrossBSA only and (b) 50mM Cr with 15% 

CrossBSA (pH 7.2), acquired using a B1 of 2 μT and a saturation length of 1 s. Solid lines 

are the fitted background and the CEST peaks with the PLOF method. Identical PLOF 

fitting parameters were used for the fitting range and peak range in (a) and (b). In the fitting, 

the measured water T1 of 2.8 s−1 was used. (c) pH dependence of the Cr CEST signal. The 

solid line stands for the linear fit (R2 = 0.99). (d) pH-dependence of the RCr signal. The solid 

line stands for the linear fit (R2 = 0.99). (e) Typical phantom CrCEST Z-spectra of 10 mM 

Cr solutions with pH = 7.6, 7.2, 6.8 and 6.4. (f) The CrCEST signal as a function of pH 

value for the Cr solutions. The CrCEST was extracted by subtracting the Z-values at ±2 

ppm.
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Fig 2. 
Sensitivity of amideCEST and CrCEST MRI for detecting pH changes in mouse brain 

during CO2 inhalation. Representative Z-spectra for the amideCEST experiments (a) pre-

CO2 and (b) during CO2 inhalation for the cortex region in Fig. 3a. Representative Z-spectra 

of CrCEST experiment (c) pre-CO2 and (d) during CO2 inhalation for this cortex region. 

Solid lines are the background fitted using the PLOF method. (e) Scatter plots showing the 

difference for amideCEST and CrCEST experiments obtained by PLOF (n= 5) and the 

corresponding changes in the apparent relaxation rate in the rotating frame of amide (Ramide) 

and creatine (RCr ) protons (f). (g) Averaged 31P spectra (n=4) for the WT mice pre (red) and 

during (green) CO2 inhalation. The shift of the inorganic phosphate (Pi) due to the pH 

change is indicated. The PCr peaks clearly showed signal reduction and broadening after 

CO2 inhalation, while the adenosine triphosphate concentration showed a negligible change. 

A typical T2w image of the mouse brain is shown to judge the coverage of the 31P/1H 

surface coil.
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Fig 3. 
Typical S0 images (a, b, c), cortical CrCEST Z-spectra (d, e, f), CrCEST maps (g, h, i), T1 

maps (j, k, l), and T2 maps (m,n,o) for WT (a, d, g, j, m), Tau (b, e, h, k, n), and APP (c, f, i, 

l, o) mice. Both CrCEST Z-spectra and CrCEST maps (RCr) of Tau and APP mice show a 

clear signal reduction compared to WT mice, while the T1 and T2 maps closely resemble 

each other among the three types of mice. The ROIs used to extract regional values are 

indicated in (a). The Z-spectra in d, e and f are from the cortical ROI in (a).
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Fig 4. 
The CrCEST apparent relaxation rates in the rotating frame (RCr) for cortex (a), thalamus 

(b), and corpus callosum (c) in WT (green square), Tau (red circle), and APP (blue diamond) 

mice. The CrCEST effect of Tau and APP mice shows a clear reduction compared to WT 

mice. The T1 values for cortex (d), thalamus (e), and corpus callosum (f) in WT (green 

square), Tau (red circle) and APP (blue diamond) mice are not significantly different. The T2 

values for cortex (g), thalamus (h), and corpus callosum (i) in WT (green square), Tau (red 

circle) and APP (blue diamond) mice are not significantly different.
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Fig 5. 
Typical in vivo proton MRS spectra for (a) WT, (b) Tau and (c) APP mouse brains. (d) The 

tCr concentrations extracted from the proton spectrum through fitting with LCModel. There 

are no clear tCr concentration differences between the three types of mice. The averaged 31P 

MRS spectra (n=4) of (e) WT, (f) Tau, and (g) APP mouse brains. The coil coverage was 

identical to that in Fig. 1g. (e) The PCr to ATP concentration ratios (n = 4) extracted from 

the 31P MRS.
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Fig 6. 
Brain sections of WT, APP and Tau mice stained by antibodies specific to Aβ (6E10) (a), 

phosphorylated tau: Tau-pS422 (b), reactive astrocytes (GFAP) (c), and microglia (IBA1) 

(d). Scale bars are 200 μm in (a-c) and 100 μm in (d).
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Table 1

Averaged values of RCr, T1, and T2 for the WT, Tau and APP mice (n = 7) for three different brain regions: 

cortex (cx), thalamus (th) and corpus callosum (cc). The error indicates the standard derivation among seven 

mice in each group.

RCr (s−1) T1 (s) T2 (ms)

WT cx 0.105±0.017 1.90±0.07 38.05±0.60

th 0.135±0.046 1.72±0.06 35.56±0.60

cc 0.127±0.026 1.84±0.05 37.47±2.04

Tau cx 0.084±0.083 1.86±0.07 37.37±1.04

th 0.099±0.012 1.72±0.06 35.29±0.59

cc 0.097±0.006 1.77±0.10 36.33±1.92

APP cx 0.074±0.019 1.84±0.12 38.18±2.35

th 0.086±0.011 1.71±0.06 36.34±0.90

cc 0.092±0.017 1.82±0.06 38.87±1.55
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