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Among the noncompactmatrix Lie groups, the special Euclidean group and the unipotentmatrix group play important roles in both
theoretic and applied studies. The Riemannian means of a finite set of the given points on the two matrix groups are investigated,
respectively. Based on the left invariant metric on the matrix Lie groups, the geodesic between any two points is gotten. And the
sum of the geodesic distances is taken as the cost function, whose minimizer is the Riemannian mean. Moreover, a Riemannian
gradient algorithm for computing the Riemannian mean on the special Euclidean group and an iterative formula for that on the
unipotent matrix group are proposed, respectively. Finally, several numerical simulations in the 3-dimensional case are given to
illustrate our results.

1. Introduction

A matrix Lie group, which is also a differentiable manifold
simultaneously, attracts more and more researchers’ atten-
tion from both theoretic interest and its applications [1–5].
The Riemannian mean on the matrix Lie groups is widely
studied for its varied applications in biomedicine, signal
processing, and robotics control [6–9]. Fiori and Tanaka
[10] suggested a general-purpose algorithm to compute the
average element of a finite set of matrices belonging to
any matrix Lie group. In [11], the author investigated the
Riemannianmean on the compact Lie groups and proposed a
globally convergent Riemannian gradient descent algorithm.
Different invariant notions of mean and average rotations on
SO(3) (it is compact) are given in [9]. Recently, Fiori [12] dealt
with computing averages over the group of real symplectic
matrices, which found applications in diverse areas such as
optics and particle physics.

However, the Riemannian mean on the special Euclidean
group SE(𝑛) and the unipotentmatrix groupUP(𝑛), which are
the noncompactmatrix Lie groups, has not been well studied.
Fletcher et al. [6] proposed an iterative algorithm to obtain
the approximate solution of the Riemannian mean on SE(3)
by use of the Baker-Cambell-Hausdorff formula. In [7], the

exponential mapping from the arithmetic mean of points on
the Lie algebra se(3) to the Lie group SE(3) was constructed
to give the Riemannian mean in order to get a mean filter.

In this paper, the Riemannian means on SE(𝑛) and those
on UP(𝑛), which are both important noncompact matrix
Lie groups [13, 14], are considered, respectively. Especially,
SE(3) is the spacial rigid body motion, and UP(3) is the
3-dimensional Heisenberg group 𝐻(3). Based on the left
invariantmetric on thematrix Lie groups, we get the geodesic
distance between any two points and take their sum as a
cost function. And the Riemannian mean will minimize
it. Furthermore, the Riemannian mean on SE(𝑛) is gotten
using the Riemannian gradient algorithm, rather than the
approximate mean. An iterative formula for computing the
Riemannian mean on UP(𝑛) is proposed according to the
Jacobi field. Finally, we give some numerical simulations on
SE(3) and those on𝐻(3) to illustrate our results.

2. Overview of Matrix Lie Groups

In this section, we briefly introduce the Riemannian frame-
work of the matrix Lie groups [15, 16], which forms the
foundation of our study of the Riemannian mean on them.
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2.1.The Riemannian Structures ofMatrix Lie Groups. Agroup
𝐺 is called a Lie group if it has differentiable structure: the
group operators, that is, 𝐺 × 𝐺 → 𝐺, (𝑥, 𝑦) 󳨃→ 𝑥 ⋅ 𝑦 and
𝐺 → 𝐺, 𝑥 󳨃→ 𝑥−1, are differentiable, 𝑥, 𝑦 ∈ 𝐺. A matrix Lie
group is a Lie group with all elements matrices. The tangent
space of𝐺 at identity is the Lie algebra g, where the Lie bracket
is defined.

The exponential map, denoted by exp, is a map from
the Lie algebra g to the group 𝐺. Generally, the exponential
map is neither surjective nor injective. Nevertheless, it is
a diffeomorphism between a neighborhood of the identity
𝐼 on 𝐺 and a neighborhood of the identity 0 on g. The
(local) inverse of the exponential map is the logarithmicmap,
denoted by log.

The most general matrix Lie group is the general linear
group GL(𝑛,R) consisting of the invertible 𝑛 × 𝑛 matrices
with real entries. As the inverse image of R − {0} under the
continuous map 𝐴 󳨃→ det(𝐴), GL(𝑛,R) is an open subset
of the set of 𝑛 × 𝑛 real matrices, denoted by 𝑀

𝑛×𝑛

, which is
isomorphic toR𝑛×𝑛, it has a differentiable manifold structure
(submanifold). The group multiplication of GL(𝑛,R) is the
usual matrix multiplication, the inverse map takes a matrix𝐴
on GL(𝑛,R) to its inverse𝐴−1, and the identity element is the
identity matrix 𝐼. The Lie algebra gl(𝑛,R) of GL(𝑛,R) turns
out to be 𝑀

𝑛×𝑛

with the Lie bracket defined by the matrix
commutator

[𝑋, 𝑌] = 𝑋𝑌 − 𝑌𝑋, ∀𝑋, 𝑌 ∈ gl (𝑛,R) . (1)

All other real matrix Lie groups are subgroups of
GL(𝑛,R), and their group operators are subgroup restrictions
of the ones on GL(𝑛,R). The Lie bracket on their Lie algebras
is still the matrix commutator.

Let 𝑆 denote a matrix Lie group and s its Lie algebra.
The exponential map for 𝑆 turns out to be just the matrix
exponential; that is, given an element 𝑋 ∈ s, the exponential
map is

exp (𝑋) =

∞

∑
𝑚=0

𝑋𝑚

𝑚!
. (2)

The inverse map, that is, the logarithmic map, is defined as
follows:

log (𝐴) =
∞

∑
𝑚=1

(−1)
𝑚+1

(𝐴 − 𝐼)
𝑚

𝑚
, (3)

for𝐴 in a neighborhood of the identity 𝐼 of 𝑆.The exponential
of a matrix plays a crucial role in the theory of the Lie groups,
which can be used to obtain the Lie algebra of a matrix Lie
group, and it transfers information from the Lie algebra to
the Lie group.

The matrix Lie group also has the structure of a Rieman-
nian manifold. For any 𝐴, 𝐵 ∈ 𝑆 and 𝑋 ∈ 𝑇

𝐴

𝑆, the tangent
space of 𝑆 at 𝐴, we have the maps that

𝐿
𝐴

𝐵 = 𝐴𝐵, (𝐿
𝐴

)
∗

𝑋 = 𝐴𝑋,

𝑅
𝐴

𝐵 = 𝐵𝐴
−1

, (𝑅
𝐴

−1)
∗

𝑋 = 𝑋𝐴,
(4)

where 𝐿 denotes the left translation, 𝑅 denotes the right
translation, and (𝐿

𝐴

)
∗

and (𝑅
𝐴

−1)
∗

are the tangent mappings
associated with 𝐿

𝐴

and 𝑅
𝐴

−1 , respectively. The adjoint action
Ad

𝐴

: s → s is

Ad
𝐴

𝑋 = 𝐴𝑋𝐴
−1

. (5)

It is also easy to see the formula that

Ad
𝐴

= 𝐿
𝐴

𝑅
𝐴

. (6)

Then, the left invariant metric on 𝑆 is given by

⟨𝑋, 𝑌⟩
𝐴

= ⟨(𝐿
𝐴

−1)
∗

𝑋, (𝐿
𝐴

−1)
∗

𝑌⟩
𝐼

= ⟨𝐴
−1

𝑋,𝐴
−1

𝑌⟩
𝐼

:= tr ((𝐴−1

𝑋)
𝑇

𝐴
−1

𝑌)
(7)

with 𝑋,𝑌 ∈ 𝑇
𝐴

𝑆 and tr denoting the trace of the matrix.
Similarly, we can define the right invariantmetric on 𝑆 as well.
It has been shown that there exist the left invariant metrics on
all matrix Lie groups.

2.2. Compact Matrix Lie Group. A Lie group is compact if
its differential structure is compact. The unitary group 𝑈(𝑛),
the special unitary group SU(𝑛), the orthogonal group 𝑂(𝑛),
the special orthogonal group SO(𝑛), and the symplectic group
Sp(𝑛) are the examples of the compact matrix Lie groups [17].
Denote a compact Lie group by 𝑆

1

and its Lie algebra by s
1

.
There exists an adjoint invariant metric ⟨⋅, ⋅⟩ on 𝑆

1

such that

⟨Ad
𝐴

𝑋,Ad
𝐴

𝑌⟩ = ⟨𝑋, 𝑌⟩ (8)

with 𝑋,𝑌 ∈ s
1

. Notice the fact that the left invariant metric
of any adjoint invariant metric is also right invariant; namely,
it is a bi-invariant metric; so all compact Lie groups have
bi-invariant metrics. Furthermore, if the left invariant and
the adjoint invariant metrics on 𝑆

1

deduce a Riemannian
connection ∇, then the following properties are valid:

∇
𝑋

𝑌 =
1

2
[𝑋, 𝑌] ,

⟨R (𝑋, 𝑌)𝑋, 𝑌⟩ = −
1

4
⟨[𝑋, 𝑌] , [𝑋, 𝑌]⟩ ,

(9)

where R(𝑋, 𝑌) is a curvature operator about the smooth
tangent vector field on the Riemannian manifold (𝑆

1

, ∇).
Therefore, the section curvatureK is given by

K (𝑋, 𝑌) =
⟨[𝑋, 𝑌] , [𝑋, 𝑌]⟩

4 (⟨𝑋,𝑋⟩ ⟨𝑌, 𝑌⟩ − ⟨𝑋, 𝑌⟩
2

)
≥ 0, (10)

which means that K is nonnegative on the compact Lie
group.

In addition, according to the Hopf-Rinow theorem, a
compact connected Lie group is geodesically complete. It
means that, for any given two points, there exists a geodesic
curve connecting them and the geodesic curve can extend
infinitely.
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2.3. The Riemannian Mean on Matrix Lie Group. Let 𝛾 :

[0, 1] → 𝑆 be a sufficiently smooth curve on 𝑆. We define
the length of 𝛾(𝑡) by

ℓ (𝛾) := ∫
1

0

√⟨ ̇𝛾 (𝑡) , ̇𝛾 (𝑡)⟩
𝛾(𝑡)

𝑑𝑡

= ∫
1

0

√tr {(𝛾(𝑡)−1 ̇𝛾 (𝑡))
𝑇

𝛾(𝑡)
−1 ̇𝛾 (𝑡)}𝑑𝑡,

(11)

where 𝑇 denotes the transpose of the matrix. The geodesic
distance between two matrices 𝐴 and 𝐵 on 𝑆 considered as
a differentiable manifold is the infimum of the lengths of the
curves connecting them; that is,

𝑑 (𝐴, 𝐵) := inf {ℓ (𝛾) | 𝛾 : [0, 1]

󳨀→ 𝑆with 𝛾 (0) = 𝐴, 𝛾 (1) = 𝐵} .
(12)

According to the Euclidean analogue (mean on Euclidean
space), a definition of the mean of 𝑁 matrices 𝑅

1

, . . . , 𝑅
𝑁

is
the minimizer of the sum of the squared distances from any
matrix to the given matrices 𝑅

1

, . . . , 𝑅
𝑁

on 𝑆. Now, we define
the Riemannian mean based on the geodesic distance (12).

Definition 1. The mean of 𝑁 given matrices 𝑅
1

, . . . , 𝑅
𝑁

on 𝑆

in the Riemannian sense corresponding to the metric (7) is
defined as

𝑅 = argmin
𝑅∈𝑆

1

2𝑁

𝑁

∑
𝑘=1

𝑑(𝑅
𝑘

, 𝑅)
2

. (13)

3. The Riemannian Mean on SE(𝑛)

In this section, we discuss the Riemannian mean on the
special Euclidean group SE(𝑛), which is a subgroup of GL(𝑛+
1,R). Moreover, the special rigid body motion group SE(3) is
taken as an illustrating example.

3.1. About SE(𝑛). The special Euclidean group SE(𝑛) in R𝑛 is
the semidirect product of the special orthogonal group SO(𝑛)
with R𝑛 itself [18]; that is,

SE (𝑛) = SO (𝑛) ⋉R
𝑛

. (14)

The matrix representation of elements of SE(𝑛) is

SE (𝑛) = {(
𝐴 𝑏

0 1
) | 𝐴 ∈ SO (𝑛) , 𝑏 ∈ R

𝑛

} . (15)

An element of SE(𝑛) physically represents a displacement,
where 𝐴 corresponds to the orientation, or attitude, of the
rigid body and 𝑏 encodes the translation. The Lie algebra
se(𝑛) of SE(𝑛) can be denoted by

se (𝑛) = {(
Ω V
0 0

) | Ω
𝑇

= −Ω, V ∈ R
𝑛

} . (16)

Specially, when 𝑛 = 3, the skew-symmetric matrix Ω can
be uniquely expressed as

Ω = (

0 −𝜔
𝑧

𝜔
𝑦

𝜔
𝑧

0 −𝜔
𝑥

−𝜔
𝑦

𝜔
𝑥

0

) (17)

with 𝜔 = (𝜔
𝑥

, 𝜔
𝑦

, 𝜔
𝑧

) ∈ R3. ‖𝜔‖
𝐹

gives the amount of
rotation with respect to the unit vector along 𝜔, where ‖ ⋅ ‖

𝐹

denotes the Frobenius norm. Physically, 𝜔 represents the
angular velocity of the rigid body, whereas V corresponds to
the linear velocity [19]. In [18], the author presents a closed-
form expression of the exponential map se(3) → SE(3) by

exp (𝑉) = 𝐼
4

+ 𝑉 +
1 − cos (𝜃)

𝜃2
𝑉

2

+
𝜃 − sin (𝜃)

𝜃3
𝑉

3 (18)

with 𝑉 ∈ se(3) and 𝜃2 = 𝜔2

𝑥

+ 𝜔2

𝑦

+ 𝜔2

𝑧

. Note that it can
be regarded as an extension of the well-known Rodrigues
formula on SO(3). The logarithmic map SE(3) → se(3) is
yielded as

log (𝑄) = 𝑞
1

(𝑞
2

𝐼
4

− 𝑞
3

𝑄 + 𝑞
4

𝑄
2

− 𝑞
5

𝑄
3

) , (19)

where

𝑞
1

=
1

8
csc3 (𝜃

2
) sec(𝜃

2
) ,

𝑞
2

= 𝜃 cos (2𝜃) − sin (𝜃) ,

𝑞
3

= 𝜃 cos (𝜃) + 2𝜃 cos (2𝜃) − sin (𝜃) − sin (2𝜃) ,

𝑞
4

= 2𝜃 cos (𝜃) + 𝜃 cos (2𝜃) − sin (𝜃) − sin (2𝜃) ,

𝑞
5

= 𝜃 cos (𝜃) − sin (𝜃) ,

(20)

tr(𝑄) = 2 + 2 cos(𝜃), for −𝜋 < 𝜃 < 𝜋.

3.2. Algorithm for the Riemannian Mean on SE(𝑛). Denote
𝑃,𝑄 ∈ SE(𝑛) by

𝑃 = (
𝐴

1

𝑏
1

0 1
) , 𝑄 = (

𝐴
2

𝑏
2

0 1
) . (21)

Taking the corresponding exponential mappings on man-
ifolds SO(𝑛) and R𝑛 into consideration, the geodesic 𝛾

𝑃,𝑄

between 𝑃 and 𝑄 on the Lie group SE(𝑛) is given by

𝛾
𝑃,𝑄

(𝑡) = (
𝛼
𝐴

1

,𝐴

2

(𝑡) 𝛽
𝑏

1

,𝑏

2

(𝑡)

0 1
)

= (
𝐴

1

(𝐴𝑇

1

𝐴
2

)
𝑡

𝑏
1

+ (𝑏
2

− 𝑏
1

) 𝑡

0 1
) ,

(22)

where 𝛼 : [0, 1] → SO(𝑛) and 𝛽 : [0, 1] → R𝑛 are the
geodesics expressed, respectively, by

𝛼
𝐴,𝐵

(𝑡) = exp
𝐴

(𝑡 log (𝐴𝑇

𝐵)) = 𝐴(𝐴
𝑇

𝐵)
𝑡

, 𝐴, 𝐵 ∈ SO (𝑛) ,

𝛽
𝑏

1

,𝑏

2

(𝑡) = exp
𝑏

1

(𝑡 (𝑏
2

− 𝑏
1

))

= 𝑏
1

+ (𝑏
2

− 𝑏
1

) 𝑡, 𝑏
1

, 𝑏
2

∈ R
𝑛

.

(23)

Then, the midpoint of 𝑃 and 𝑄 is defined by

𝑃 ∘ 𝑄 = (
𝐴

1

(𝐴𝑇

1

𝐴
2

)
1/2 1

2
(𝑏

1

+ 𝑏
1

)

0 1

) . (24)
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Before the geodesic distance on SE(𝑛) is given, we first
introduce a lemma which is a known conclusion in linear
algebra [20].

Lemma 2. If 𝐸 ∈ R𝑛×𝑛 and 𝐻 ∈ R𝑚×𝑚 are invertible
matrices, then the block matrix

(
𝐸 𝐹

0 𝐻
) (25)

is invertible, where 𝐹 ∈ R𝑛×𝑚. Furthermore,

(
𝐸 𝐹

0 𝐻
)

−1

= (
𝐸−1 −𝐸−1𝐹𝐻−1

0 𝐻−1

) . (26)

Now, we give the geodesic distance on SE(𝑛) as follows.

Lemma 3. The geodesic distance between two points 𝑃 and 𝑄
on SE(𝑛) induced by the scale-dependent left invariant metric
(7) is given by

𝑑 (𝑃, 𝑄) = (
󵄩󵄩󵄩󵄩󵄩
log (𝐴𝑇

1

𝐴
2

)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
󵄩󵄩󵄩󵄩𝑏2 − 𝑏

1

󵄩󵄩󵄩󵄩
2

𝐹

)
1/2

. (27)

Proof. As mentioned above, the geodesic distance between
two matrices 𝑃 and 𝑄 on SE(𝑛) is achieved by the length of
geodesics connecting them; thus, we will compute it through
substituting (22) into (11).

From Lemma 2, we get

𝛾
−1

𝑃,𝑄

(𝑡)

= (
(𝐴𝑇

1

𝐴
2

)
−𝑡

𝐴𝑇

1

−(𝐴𝑇

1

𝐴
2

)
−𝑡

𝐴𝑇

1

(𝑏
1

+ (𝑏
2

− 𝑏
1

) 𝑡)

0 1

) .

(28)

Then, according to the principle about the derivatives of the
matrix-valued functions, the following formula is valid:

̇𝛾
𝑃,𝑄

(𝑡) = (
𝐴

1

(𝐴𝑇

1

𝐴
2

)
𝑡

log (𝐴𝑇

1

𝐴
2

) 𝑏
2

− 𝑏
1

0 0
) . (29)

Moreover, we have that

tr ((𝛾−1
𝑃,𝑄

(𝑡) ̇𝛾
𝑃,𝑄

(𝑡))
𝑇

𝛾
−1

𝑃,𝑄

(𝑡) ̇𝛾
𝑃,𝑄

(𝑡))

= −log2 (𝐴𝑇

1

𝐴
2

) + (𝑏
2

− 𝑏
1

)
𝑇

(𝑏
2

− 𝑏
1

) .

(30)

Therefore, the geodesic distance on SE(𝑛) between 𝑃 and
𝑄 is given by

𝑑 (𝑃, 𝑄) = ∫
1

0

(−log2 (𝐴𝑇

1

𝐴
2

) + (𝑏
2

− 𝑏
1

)
2

)
1/2

𝑑𝑡

= (
󵄩󵄩󵄩󵄩󵄩
log (𝐴𝑇

1

𝐴
2

)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
󵄩󵄩󵄩󵄩𝑏2 − 𝑏

1

󵄩󵄩󵄩󵄩
2

𝐹

)
1/2

.

(31)

This completes the proof of Lemma 2.

In addition, it is valuable to mention that the distance
‖log(𝐴𝑇

1

𝐴
2

)‖
𝐹

, induced by the standard bi-invariant metric
on SO(𝑛), stands for the rotation motion from the point 𝑃
to 𝑄 and the distance ‖𝑏

2

− 𝑏
1

‖
𝐹

stands for the translation
motion on R𝑛. Therefore, considering an object undergoing
a rigid body Euclidean motion, then, this motion can be
decomposed into a rotation with respect to the center of mass
of the object and a translation of the center of mass of the
object.

Theorem 4. For𝑁 given points on SE(𝑛)

𝑃
𝑘

= (
𝐴

𝑘

𝑏
𝑘

0 1
) , (32)

where 𝐴
𝑘

∈ SO(𝑛) and 𝑏
𝑘

∈ R𝑛, 𝑘 = 1, 2, . . . , 𝑁, if the
Riemannian mean of 𝐴

1

, 𝐴
2

, . . . , 𝐴
𝑁

and the Riemannian
mean of 𝑏

1

, 𝑏
2

, . . . , 𝑏
𝑁

(i.e., arithmetic mean) are denoted by
𝐴 and 𝑏, respectively, then, one has the Riemannian mean 𝑃 of
𝑃
1

, 𝑃
2

, . . . , 𝑃
𝑁

∈ SE(𝑛) by

𝑃 = (
𝐴 𝑏

0 1
) . (33)

Proof. In theRiemannian sense, by (13), themean𝑃 is defined
as

𝑃 = arg min
𝑃∈SE(𝑛)

1

2𝑁

𝑁

∑
𝑘=1

𝑑(𝑃
𝑘

, 𝑃)
2

= arg min
𝑃∈SE(𝑛)

1

2𝑁

𝑁

∑
𝑘=1

(
󵄩󵄩󵄩󵄩󵄩
log (𝐴𝑇

𝑘

𝐴)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
󵄩󵄩󵄩󵄩𝑏𝑘 − 𝑏

󵄩󵄩󵄩󵄩
2

𝐹

)

= arg min
𝐴∈SO(𝑛)

1

2𝑁

𝑁

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩
log (𝐴𝑇

𝑘

𝐴)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+ argmin
𝑏∈R𝑛

1

2𝑁

𝑁

∑
𝑘=1

󵄩󵄩󵄩󵄩𝑏𝑘 − 𝑏
󵄩󵄩󵄩󵄩
2

𝐹

.

(34)

From [9], the geodesic distance between 𝐴
𝑘

and 𝐴 on SO(𝑛)
is given by

𝑑(𝐴
𝑘

, 𝐴)
2

=
󵄩󵄩󵄩󵄩󵄩
log (𝐴𝑇

𝑘

𝐴)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

, (35)

so we have that

arg min
𝐴∈SO(𝑛)

1

2𝑁

𝑁

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩
log (𝐴𝑇

𝑘

𝐴)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

= arg min
𝐴∈SO(𝑛)

𝑑(𝐴
𝑘

, 𝐴)
2

= 𝐴.

(36)

On the other hand, for 𝑏
𝑘

∈ R𝑛, 𝑘 = 1, 2, . . . , 𝑁, it is easy to
see that

argmin
𝑏∈R𝑛

1

2𝑁

𝑁

∑
𝑘=1

󵄩󵄩󵄩󵄩𝑏𝑘 − 𝑏
󵄩󵄩󵄩󵄩
2

𝐹

=
1

𝑁

𝑁

∑
𝑘=1

𝑏
𝑘

= 𝑏. (37)

Therefore, the fact is shown that the Riemannian mean 𝑏 of
{𝑏

𝑘

} is equivalent to the arithmetic mean.
Consequently, we prove that equality (33) is valid.
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In addition, let 𝐿 denote the cost function of the mini-
mization problem (34) on SE(𝑛); that is,

𝐿 (𝑃) = 𝐿 rota (𝐴) + 𝐿 trans (𝑏)

=
1

2𝑁

𝑁

∑
𝑘=1

󵄩󵄩󵄩󵄩󵄩
log (𝐴𝑇

𝑘

𝐴)
󵄩󵄩󵄩󵄩󵄩

2

𝐹

+
1

2𝑁

𝑁

∑
𝑘=1

󵄩󵄩󵄩󵄩𝑏𝑘 − 𝑏
󵄩󵄩󵄩󵄩
2

𝐹

,
(38)

where 𝐿 rota and 𝐿 trans stand for the rotation and the transla-
tion components of the cost function 𝐿, respectively.We have
the gradient of 𝐿 rota(𝐴) for 𝐴 ∈ SO(𝑛) as follows [21]:

grad (𝐿 rota) = −𝐴

𝑁

∑
𝑘=1

log (𝐴𝑇

𝐴
𝑘

) . (39)

Consequently, the Riemannian gradient descent algorithm
is applied to calculate 𝐴, taking the geodesic on SO(𝑛) as
the trajectory and the negative gradient (39) as the descent
direction.

Finally, we achieve the following algorithm for computing
the Riemannian mean 𝑃 on SE(𝑛).

Algorithm 5. Given 𝑁 matrices 𝑃
𝑘

, 𝑘 = 1, 2, . . . , 𝑁, on
SE(𝑛), their Riemannianmean𝑃 is computed by the following
iterative method.

(1) Store (1/𝑁)∑
𝑁

𝑘=1

𝑏
𝑘

to 𝑏.

(2) Set 𝐴 = 𝐴
1

as an initial input, and choose a desired
tolerance 𝜀 > 0.

(3) If ‖∑𝑁

𝑘=1

log(𝐴𝑇

𝐴
𝑘

)‖
𝐹

< 𝜀, then stop.

(4) Otherwise, update 𝐴 = 𝐴 exp{−𝜀∑𝑁

𝑘=1

log(𝐴𝑇

𝐴
𝑘

)},
and go to step (3).

3.3. Simulations on SE(3). Let us consider a rigid object 𝑊
in the Euclidean space undergoing a rigid body Euclidean
motion SE(3). Suppose that the coordinate of the center of
gravity in 𝑊 is 𝑑

𝑊

∈ R3; then, the optimal trajectory from
the configuration 𝑃 to 𝑄 is the curve𝐷(𝑡) such that

(
𝐷 (𝑡)

1
) = 𝛾

𝑃,𝑄

(𝑡) (
𝑑
𝑊

1
) , (40)

where 𝑡 ∈ [0, 1] and 𝛾
𝑃,𝑄

(𝑡) denotes the geodesic connecting
𝑃 and𝑄 on SE(3) (see Figure 1). For the configuration of two
points 𝑃 and 𝑄, as shown in Figure 2, given by the angular
velocity 𝜔

𝑃

, 𝜔
𝑄

of the rigid body and the linear velocity
V
𝑃

, V
𝑄

, we choose 𝜔
𝑃

= (𝜋/2)(0, 1, 1), V
𝑃

= (0, 0, 0), 𝜔
𝑄

=

𝜋(1/4, 0, −1/2), and V
𝑄

= (4.380, −1.348, 3.690); then, we
obtain their Riemannian mean according to Algorithm 5,
which is just the middle point 𝑃 ∘ 𝑄 from (24).

4. The Riemannian Mean on UP(𝑛)

In this section, the Riemannian mean of 𝑁 given points on
the unipotent matrix group UP(𝑛) is considered. UP(𝑛) is
a noncompact matrix Lie group as well. Moreover, in the
special case 𝑛 = 3, it is the Heisenberg group𝐻(3).
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Figure 1: The rigid motion𝐷(𝑡) from 𝑃 to 𝑄.
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Figure 2: The Riemannian mean 𝑃 ∘ 𝑄.

4.1. About UP(𝑛). The set of all of the uppertriangular 𝑛 ×

𝑛 matrices with diagonal elements that are all one is called
unipotent matrices group, denoted by UP(𝑛).

In fact, given an invertible matrix 𝐶 ∈ UP(𝑛), there is
a neighborhood 𝑈 of 𝐶 such that every matrix in 𝑈 is also
in UP(𝑛), so UP(𝑛) is an open subset of R𝑛×𝑛. Furthermore,
the matrix product 𝑃 ⋅ 𝑄 is clearly a smooth function of
the entries of 𝑃 and 𝑄, and 𝑃−1 is a smooth function of
the entries of 𝑃. Thus, UP(𝑛) is a Lie group. On the other
hand, it can be verified that UP(𝑛) is of dimension 𝑛(𝑛 − 1)/2

and is nilpotent. Since we can use the nonzero elements
𝐶

𝑖𝑗

, 𝑖 < 𝑗, directly as global coordinate functions for UP(𝑛),
the manifold underlying UP(𝑛) is diffeomorphic toR𝑛(𝑛−1)/2.
Therefore, UP(𝑛) is not compact, but simply connected.

The Lie algebra up(𝑛) of UP(𝑛) consists of uppertriangu-
lar matrices 𝑇 with diagonal elements 𝑇

𝑖𝑖

= 0, 𝑖 = 1, . . . , 𝑛.
It is an indispensable tool which gives a realization of the
Heisenberg commutation relations of quantummechanics in
the 3-dimensional case [17].
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Moreover, it is the fact that both 𝐶 − 𝐼 and 𝑇 are all
nilpotent matrices, for any 𝐶 ∈ UP(𝑛) and 𝑇 ∈ up(𝑛). Thus,
from (2) and (3), the infinite series representations of the
exponential mapping in up(𝑛) and the logarithmmapping in
UP(𝑛) can be given, respectively, by

log (𝐶) =
𝑛

∑
𝑚=1

(−1)
𝑚+1

(𝐶 − 𝐼)
𝑚

𝑚
, (41)

where 𝐶 ∈ UP(𝑛), ‖𝐶 − 𝐼‖
𝐹

< 1, and

exp (𝑇) =
𝑛

∑
𝑚=0

𝑇𝑚

𝑚!
(42)

with 𝑇 ∈ up(𝑛).
Notice that UP(𝑛) is connected, whichmeans that, for any

given pair 𝐴, 𝐵, we can find a geodesic curve 𝛾(𝑡) such that
𝛾(0) = 𝐴 and 𝛾(1) = 𝐵, namely, by taking the initial velocity
as ̇𝛾(0) = log(𝐴−1𝐵). Let the geodesic curve 𝛾(𝑡) be

𝛾 (𝑡) = 𝐴 exp (𝑡 log (𝐴−1

𝐵)) ∈ UP (𝑛) (43)

with 𝛾(0) = 𝐴, 𝛾(1) = 𝐵, and 𝛾󸀠(0) = log(𝐴−1𝐵) ∈ up(𝑛).
Then, the midpoint of 𝐴 and 𝐵 is given by

𝐴 ∘ 𝐵 = 𝐴 exp(1
2
log (𝐴−1

𝐵)) , (44)

and from (11) the geodesic distance 𝑑(𝐴, 𝐵) can be computed
explicitly by

𝑑 (𝐴, 𝐵) =
󵄩󵄩󵄩󵄩󵄩
log (𝐴−1

𝐵)
󵄩󵄩󵄩󵄩󵄩
𝐹

. (45)

4.2. Algorithm for the Riemannian Mean on UP(𝑛). For 𝑁
given points 𝐵1, 𝐵2, . . . , 𝐵𝑁 in UP(𝑛), 𝐿 denotes the cost
function of the minimization problem (13); that is,

min
𝐴∈UP(𝑛)

𝐿 (𝐴) = min
𝐴∈UP(𝑛)

1

2𝑁

𝑁

∑
𝑘=1

𝑑(𝐵
𝑘

, 𝐴)
2

. (46)

Following [22, 23], it has been shown that the Jacobi field is
equal to zero at the Riemannianmean.The Jacobi field for the
Riemannianmean is equal to the sum of tangent vectors to all
geodesics (from mean to each point). Noticing the fact that
the geodesic between two points 𝐴 and 𝐵 has already been
given by (43), we can then compute the Jacobi field at point
𝐴 to𝑁 points 𝐵𝑘 (at 𝑡 = 0) such that

𝛾
𝑘

(𝑡) = 𝐴(𝐴
−1

𝐵
𝑘

)
𝑡

= 𝐴 exp (𝑡 log (𝐴−1

𝐵
𝑘

)) ,

𝑑𝛾
𝑘

(𝑡)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝐴 log (𝐴−1

𝐵
𝑘

) , 𝑘 = 1, . . . , 𝑁.

(47)

Then, we suppose that the summation of all these vectors
should be equal to zero; that is,

𝐿
𝐴

=

𝑁

∑
𝑘=1

𝑑𝛾
𝑘

(𝑡)

𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0
= 𝐴

𝑁

∑
𝑘=1

log (𝐴−1

𝐵
𝑘

) = 0, (48)

so the Riemannian mean 𝐴 of the 𝑁 matrices {𝐵𝑘} should
satisfy

𝑁

∑
𝑘=1

log (𝐴−1

𝐵
𝑘

) = 0. (49)

From the logarithm of the matrices on UP(𝑛) given by (41),
we can rewrite (49) as

𝑁

∑
𝑘=1

𝑛

∑
𝑚=1

(−1)
𝑚+1

(𝐴−1𝐵𝑘 − 𝐼)
𝑚

𝑚
= 0. (50)

Therefore, the Riemannian mean 𝐴 of the 𝑁 given matrices
{𝐵𝑘} can be given explicitly by solving (50).

For the case of 𝑛 = 2, from (50), it is shown that the
Riemannian mean 𝐴

2

of 𝑁 given matrices {𝐵𝑘

2

} in UP(2) is
their arithmetic mean; that is,

𝐴
2

=
1

𝑁

𝑁

∑
𝑘=1

𝐵
𝑘

2

. (51)

Next, for 𝑛 = 3, we obtain theRiemannianmeanonUP(3)
(𝐻(3)) as follows.

Theorem 6. Given 𝑁 matrices {𝐵𝑘

3

} on the Heisenberg group
𝐻(3) by

𝐵
𝑘

3

= (

1 𝑏𝑘
12

𝑏𝑘
13

0 1 𝑏
𝑘

23

0 0 1

), (52)

where 𝑘 = 1, 2, . . . , 𝑁, then, one has the Riemannian mean 𝐴
3

on the Heisenberg group𝐻(3) such that

𝐴
3

= (

1 𝑏
12

𝑏
13

−
1

2
cov (𝑏

12

, 𝑏
23

)

0 1 𝑏
23

0 0 1

), (53)

where 𝑏
𝑖𝑗

:= (1/𝑁)∑
𝑁

𝑘=1

𝑏𝑘
𝑖𝑗

, 𝑖, 𝑗 = 1, 2, 3 (𝑖 < 𝑗), and cov(𝑏
12

,

𝑏
23

) := (1/𝑁)∑
𝑁

𝑘=1

(𝑏
12

− 𝑏
𝑘

12

)(𝑏
23

− 𝑏
𝑘

23

).

Proof. First, let us denote the Riemannian mean 𝐴
3

by

𝐴
3

= (

1 𝑎
12

𝑎
13

0 1 𝑎
23

0 0 1

) . (54)
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Then, note that, for the given matrices {𝐵𝑘

3

} on 𝐻(3), their
Riemannian mean 𝐴

3

has to satisfy (50), so we get the
following solutions:

𝑎
12

=
1

𝑁

𝑁

∑
𝑘=1

𝑏
𝑘

12

,

𝑎
23

=
1

𝑁

𝑁

∑
𝑘=1

𝑏
𝑘

23

,

𝑎
13

=
1

𝑁

𝑁

∑
𝑘=1

(𝑎
12

− 𝑏
𝑘

12

) (𝑎
23

− 𝑏
𝑘

23

) .

(55)

As a matter of convenience, supposing that 𝑏
𝑖𝑗

:= (1/𝑁)∑
𝑁

𝑘=1

𝑏𝑘
𝑖𝑗

, 𝑖, 𝑗 = 1, 2, 3 (𝑖 < 𝑗), and cov(𝑏
12

, 𝑏
23

) := (1/𝑁)∑
𝑁

𝑘=1

(𝑏
12

−

𝑏𝑘
12

)(𝑏
23

− 𝑏𝑘
23

), we show that (54) is valid.
This completes the proof of Theorem 6.

More generally, while 𝑛 > 1, we can get the Riemannian
mean on UP(𝑛) given by the following theorem.

Theorem 7. Take 𝑛 > 1. For𝑁 given matrices {𝐵𝑘

𝑛

} in UP(𝑛),
one assumes that they are in the form of

𝐵
𝑘

𝑛

= (
𝐵𝑘

𝑛−1

𝑏𝑘
𝑛−1

0 1
) (56)

with 𝐵𝑘

𝑛−1

∈UP(𝑛 − 1) and 𝑏𝑘
𝑛−1

∈ R𝑛−1; then, the Riemannian
mean 𝐴

𝑛

of the𝑁matrices 𝐵𝑘

𝑛

is given by

𝐴
𝑛

= (
𝐴

𝑛−1

𝑎
𝑛−1

0 1
) , (57)

where𝐴
𝑛−1

is the Riemannianmean of {𝐵𝑘

𝑛−1

} and 𝑎
𝑛−1

is given
by the formula that

𝑎
𝑛−1

= 𝐴
𝑛−1

(

𝑁

∑
𝑘=1

𝑛−1

∑
𝑚=0

(−1)
𝑚

𝑚 + 1
(𝐴

−1

𝑛−1

𝐵
𝑘

𝑛−1

− 𝐼)
𝑚

)

−1

× (

𝑁

∑
𝑘=1

𝑛−1

∑
𝑚=0

(−1)
𝑚

𝑚 + 1
(𝐴

−1

𝑛−1

𝐵
𝑘

𝑛−1

− 𝐼)
𝑚

𝐴
−1

𝑛−1

𝑏
𝑘

𝑛−1

) .

(58)

Proof. For simplicity of exposition, we suppose that the
Riemannian mean 𝐴

𝑛

is the block matrix in the form of

𝐴
𝑛

= (
𝐴

𝑛−1

𝑎
𝑛−1

0 1
) (59)

with 𝐴
𝑛−1

∈ UP(𝑛 − 1) and 𝑎𝑘
𝑛−1

∈ R𝑛−1. Since the Rie-
mannian mean 𝐴

𝑛

of the 𝑁 matrices {𝐵𝑘

𝑛

} should satisfy
(50), we substitute the block matrix forms (59) and (57) into
(50). Then, we obtain the following matrix equation for the
Riemannian mean 𝐴

𝑛

:
𝑁

∑

𝑘=1

𝑛

∑

𝑚=1

(−1)

𝑚−1

𝑚

×(

(𝐴

−1

𝑛−1

𝐵

𝑘

𝑛−1

− 𝐼)

𝑚

(𝐴

−1

𝑛−1

𝐵

𝑘

𝑛−1

− 𝐼)

𝑚−1

𝐴

−1

𝑛−1

(𝑏

𝑘

𝑛−1

− 𝑎

𝑛−1

)

0 0

) = 0,

(60)
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Figure 3: The geodesic triangle on𝐻(3).

which means that (58) is valid and𝐴
𝑛−1

satisfies the equation

𝑁

∑
𝑘=1

𝑛

∑
𝑚=1

(−1)
𝑚−1

𝑚
(𝐴

−1

𝑛−1

𝐵
𝑘

𝑛−1

− 𝐼)
𝑚

= 0. (61)

Moreover, from (41), we have that

log (𝐴−1

𝑛−1

𝐵
𝑘

𝑛−1

) = 0. (62)

Furthermore, it is shown that 𝐴
𝑛−1

is the Riemannian mean
of {𝐵𝑘

𝑛−1

}. At last, we write 𝐴
𝑛−1

as 𝐴
𝑛−1

, so the proof of
Theorem 7 is completed.

As shown above, we give the iterative formula for com-
puting the Riemannianmean for any dimension 𝑛 > 1. Either
(51) or (54) can be chosen as the initial formula.

4.3. Simulations on 𝐻(3). In this section, we take two
examples to illustrate the results about the Riemannian mean
on the Heisenberg group 𝐻(3), which is the 3-dimensional
space.

Example 8. Consider the Riemannian mean of three points
𝐵
1, 𝐵2, 𝐵3 on the Heisenberg group 𝐻(3). Using (43), we

can get the geodesics of three points on 𝐻(3), which form a
geodesic triangle. In Figure 3, all of the curves are geodesics.
Moreover, as shown in Figure 4, the midpoint of each
geodesic is easy to be obtained by (44). Thus, each centerline
connects a vertex to the midpoint of its opposing side. On
𝐻(3), these centerlines always meet in a single point which
is coincident with the Riemannian mean computed by (54),
denoted by a red dot as shown in Figure 4.

Example 9. Given four points 𝐵1, 𝐵2, 𝐵3, 𝐵4 on the Heisen-
berg group 𝐻(3), we can get a geodesic tetrahedron from
(43) (see Figure 5), where all curves are geodesics. Moreover,
similar to Example 8, theRiemannianmeans of three vertexes
on each curved face are obtained, denoted by red circles
(see Figure 6). Then, we plot each centerline which connects
a vertex to the Riemannian mean of its opposing side. It
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is shown that these centerlines still meet in a single point,
denoted by a red pentacle. In fact, the point is the Riemannian
mean of 𝐵1, 𝐵2, 𝐵3, 𝐵4 applying (54).

5. Conclusion

In this paper, we consider the Riemannian means on the
special Euclidean group SE(𝑛) and the unipotent matrix
group UP(𝑛), respectively. Based on the left invariant metric
on the matrix Lie groups, we get the geodesic distance
between any two points and take their sum as a cost function.
Furthermore, we get the Riemannian mean on SE(𝑛) using
the Riemannian gradient algorithm. Moreover, we give an
iterative formula for computing the Riemannian mean on
UP(𝑛) according to its Jacobi field. Finally, we make advan-
tages of several numerical simulations on SE(3) and 𝐻(3) to
illustrate our results.
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Figure 6: The Riemannian mean of four points.
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