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Microbiome samples harvested from urban environments can be informative in predicting

the geographic location of unknown samples. The idea that different cities may have

geographically disparate microbial signatures can be utilized to predict the geographical

location based on city-specific microbiome samples. We implemented this idea first;

by utilizing standard bioinformatics procedures to pre-process the raw metagenomics

samples provided by the CAMDA organizers. We trained several component classifiers

and a robust ensemble classifier with data generated from taxonomy-dependent and

taxonomy-free approaches. Also, we implemented class weighting and an optimal

oversampling technique to overcome the class imbalance in the primary data. In each

instance, we observed that the component classifiers performed differently, whereas the

ensemble classifier consistently yielded optimal performance. Finally, we predicted the

source cities of mystery samples provided by the organizers. Our results highlight the

unreliability of restricting the classification of metagenomic samples to source origins

to a single classification algorithm. By combining several component classifiers via

the ensemble approach, we obtained classification results that were as good as the

best-performing component classifier.

Keywords: metagenomics, machine learning, ensemble classifier, microbiome, geolocation

1. INTRODUCTION

The latest advancements in bioinformatics along with next-generation sequencing technologies
have made metagenomic analysis affordable and approachable. Data from metagenomic
sequencing technologies empower accurate estimation of the abundance of microbial communities
in samples from different locations and environments. For a few years, the MetaSUB consortium
has been collecting metagenomic samples from multiple cities around the globe with the aim of
improved understanding of city microbes. One of the objectives of the data provided is to identify
the source origin of metagenomic samples. Some previous studies have successfully mined the
gut microbiome for extracting information related to the geolocation of the microbiome samples
(Suzuki and Worobey, 2014; Clarke et al., 2017; Xia et al., 2019). For instance, the abundance of
gut microbes such as Firmicutes and Bacteroides is associated with the samples collected from
varying latitudes (Suzuki andWorobey, 2014). Likewise, microbiome samples collected from urban
environments can be a potential source of information for geolocation predictions. Microbiome
data analyzed by several teams that participated in previous critical assessment of massive data
analysis (CAMDA) challenge corroborate this idea. Participants who have worked on this challenge
in the past take different routes to analyze the data. For instance, Harris et al. (2019) use both
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assembly-based and read-based taxonomic profiling along with
machine learning algorithms to predict source locations. They
reported that the random forest gave the most promising
prediction results. Ryan (2019) employs Kaiju for the taxonomic
profiling of sequencing reads and utilized t-distributed stochastic
neighbor embedding (t-SNE) for dimension reduction. This was
followed by classification to city labels using the random forest.
Zhu et al. (2019) emphasize the use of functional profiling of
microbiome data over taxonomic profiling and applied support
vector machines (SVM) to predict geolocation of unknown
samples. While Kawulok et al. (2019) utilized a k-mer based
approach to design fingerprints for the identification of source
origins of metagenomics samples. In addition to predicting the
source origin of microbiome samples, this field of research may
also be advantageous from the public health point of view. Anti-
microbial resistance is a valid threat to the treatment of infectious
diseases. These studies can potentially play a significant role to
gauge the prevalence of disease-causing microorganisms in our
environment (Allen et al., 2010).

Issues encountered while analyzing metagenomic data are
high dimensionality, class imbalance, and selection of the best
classifier. In this study, we build a competent classification
model to predict the geographic location of a metagenomic
sample, along with addressing the aforementioned issues. Several
standard classifiers have been employed for the prediction of
the origin of a given microbial sample. The application of these
individual classification algorithms yields a varying degree of
classification accuracy, and the performance of such classifiers is
also dependent on the structure of the available data. Rather than
employing several individual classifiers, we adopt the adaptive
ensemble classification algorithm proposed by Datta et al. (2010).
The ensemble classifier, which is constructed by bagging and rank
aggregation, comprises a set of standard classification algorithms
where such individual algorithms are combined flexibly to
yield classification performance at least, as good as the best
classification algorithm in the ensemble. Besides, the modeling
techniques presented in this study suggested that the ensemble
classifier could be useful in other classification problems.

2. METHODS

2.1. Data
The primary dataset provided by the organizers of the CAMDA
challenge consists of (1) paired-end whole genome shotgun
(WGS) metagenomics data of 1,065 samples from 23 cities across
17 countries and (2) metadata comprising of the biome, weather,
and location information for these cities.

Furthermore, WGS data for 121 “mystery” samples from 10
different cities were subsequently provided by the organizers.
Among the 121 “mystery” samples, 56 samples originated from
cities that were not represented in the primary dataset. Cities
in the mystery data which were not represented in the primary
data include Bogota, Krakow, Marseille, Naples, and Vienna.
The primary dataset corresponds to the “training set,” while
the mystery samples make up the “test set” for validating the
classification models built during the analysis phase of the study.
Table 1 shows the information on the samples obtained from two

collections (CSD16 and CSD17) for both the primary data and
the mystery data.

2.2. Bioinformatics Pipeline
To prepare WGS data for downstream machine learning
analysis, we construct a standard pipeline to carry out necessary
bioinformatics procedures. First, we obtain the raw paired-end
reads from the host server, and then, we perform some quality
control and filtering to obtain good quality reads. After the
quality control, we perform metagenomic taxonomic profiling of
the sequencing reads. At the termination of the bioinformatics
procedures, the final output is a relative abundance table. All
the bioinformatics procedures carried out in this phase of
our analysis were performed using the University of Florida
HiperGator supercomputer.

The first procedure in the bioinformatics procedure entails
the quality assessment of the WGS data using FastQC (Andrews,
2010) and MultiQC (Ewels et al., 2016). For each paired-end
WGS data, FastQC provides simple quality control checks while
we use MultiQC to aggregate the results from the FastQC reports
into a single report for each city. After careful inspection of the
city aggregated quality reports, we notice a good proportion of
low-quality bases and adapter sequences in the WGS data, hence,
we proceed to carry out quality filtering and trimming. Ideally,
we clean up the data as well as reduce the size of the data to
make the downstream analysis much convenient. We employed
KneadData (McIver et al., 2017) for quality trimming and
filtering, removal of adapter sequences, and discarding human
contaminated reads. KneadData provides a wrapper script for
some pre-processing tools to carry out quality control. First, we
use kneadData to invoke Trimmomatic (Bolger et al., 2014) for
trimming off reads or parts of reads that have low-quality scores,
as well as removing adapter sequences. We define the parameters
of the Trimmomatic program to ensure that adapter clipping is
carried out before trimming, reads with a minimum length of 60
are retained, and also define a sliding window that cuts a read
once the mean quality in a window size of 4 falls below a Phred
score of 30.

Bowtie (Langmead and Salzberg, 2012) is subsequently
employed to index the human reference genome, and reads
that align to this reference genome are discarded. The reference
genome was custom downloaded using the KneadData software
version 0.7.4. Upon reassessment of the trimmed and filtered
WGS data, we observe better quality and reduction in the file size.

After the standard bioinformatics pre-processing of the raw
WGS reads, we proceed to taxonomic profiling. Here, we utilize
the kraken2-bracken system (Lu et al., 2017; Wood et al., 2019)
for the taxonomic profiling. In particular, we utilize kraken2
for the assignment of sequence reads to taxonomic labels and
bracken for estimating taxa abundance. Kraken examines the k-
mers in the given sequence reads and assigns taxonomic labels to
the reads based on the similarity of the information in the k-mers
in the sequence reads to the k-mer content of a reference genome
database. The database maps k-mers to the lowest common
ancestor (LCA) of all genomes known to contain a given k-mer.
The LCA approach adopted by the Kraken system usually results
in the underestimation of the number of reads which are directly
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TABLE 1 | Number of samples from the primary data and the mystery data.

Primary data Mystery data

Location code Location Country # Samples Avg. # of reads Location # Samples

ARN Stockholm Sweden 50 1,621,983 Bogota 12

BCN Barcelona Spain 38 2,763,249 Hong Kong 15

BER Berlin Germany 41 6,095,554 Krakow 15

DEN Denver USA 45 2,293,732 Kyiv 11

DOH Doha Qatar 65 2,400,540 Marseille 10

FAI Fairbanks USA 48 6,860,242 Naples 9

HKG Hong Kong China 49 3,066,755 Taipei 11

ICN Seoul South Korea 50 3,053,297 Tokyo 14

IEV Kyiv Ukraine 49 2,179,260 Vienna 10

ILR Ilorin Nigeria 97 10,660,493 Zurich 14

KUL Kuala Lumpur Malaysia 30 2,310,143

LCY London England 37 2,477,320

LIS Lisbon Portugal 19 2,864,004

NYC New York City USA 99 3,170,947

OFF Offa Nigeria 26 22,772,079

SAO São Paulo Brazil 29 1,989,278

SCL Santiago Chile 26 10,399,795

SDJ Sendai Japan 32 1,571,323

SFO San Francisco USA 29 1,471,680

SGP Singapore Singapore 48 2,761,780

TPE Taipei China 50 2,755,260

TYO Tokyo Japan 75 1,996,146

ZRH Zurich Switzerland 33 2,827,183

The samples were sampled from two collections (CSD16 & CSD17) and obtained by the MetaSUB consortium. Average number of reads was obtained after performing quality control

and pre-processing.

classified at lower taxonomic levels (Lu et al., 2017). To overcome
this problem, bracken is preferred for the estimation of relative
abundance. Bracken (Lu et al., 2017) uses a Bayesian algorithm
and the classification results obtained from the Kraken for the
abundance estimation.

In application, we utilized a standard reference database
comprised of reference sequences from archaea, bacteria, viruses,
and the human genome to perform the taxonomic assignment. A
bracken database file was generated with a default k-mer length
of 35, and 150 base pair-reads. For each pre-processed pair-end
sample, kraken2 classification reports were generated, and these
reports were passed into the bracken program for estimation
of species relative abundance. Finally, a custom bracken script
was used to combine the taxonomic profile of each metagenomic
sample into a large relative abundance table.

Figure 1 shows ordination plots for the resulting species
abundance obtained from the Kraken2-Braken system. The
ordination analysis is based on the method of principal
coordinate analysis with a Unifrac distance (Lozupone and
Knight, 2005). The left panel of Figure 1 shows the ordination
plot for all 23 cities in the primary data set. For this plot, notice
that the cities are not well-separated, a good portion of the
samples overlap each other. While the right panel of Figure 1
shows the ordination plot for six unique cities with at least a
city drawn from each continent represented in the primary data.

Given the apparent overlap of the samples, it is an interesting
pursuit to build robust classifiers that will learn to separate the
cities using information from taxonomic abundance.

2.3. Pre-processing
At the termination of the bioinformatics pipeline, a species
abundance table with 6,152 taxa for the 1,047 samples in the
primary data is obtained from the Kraken2-Braken taxonomic
profiling system. We conducted additional downstream pre-
processing to identify and discard the least prevalent taxa in the
abundance data. We removed taxa that were present in fewer
than 1% of all samples, and further removed taxa with fewer than
ten reads. Following these pre-processing steps, we re-normalize
the data, and we obtain a species-level relative abundance table
with 4,770 taxa.

2.4. Feature Engineering
After the initial preprocessing of the species-level abundance
table, we get a data matrix X = ((Xij)), of dimension 1, 047 ×

4, 770 where the rows represent samples from different cities,
and the columns represent taxa. Here, the number of features
is greater than the number of samples. It is usually desirable to
reduce the feature space and thereby get a set of informative
features that explain the variation in the samples. Several
techniques exist for performing feature selection. For example,
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FIGURE 1 | Ordination plots based on principal coordinate analysis with a unifrac distance for the relative abundance matrix consisting of (A) all cities in the primary

data, and (B) at least one city from each continent represented in the primary data.

relevant features can be selected based on the k top-ranking
importance scores returned by a fitted random forests model. To
maximize classification accuracy, k can be chosen from a set of a
predetermined number of features via cross-validation. The final
classification model can then be trained with this set of k features.

For our analysis, we focus on the hierarchical feature
engineering (HFE) method (Oudah and Henschel, 2018).
In a nutshell, this technique uses correlation and taxonomy
information in the abundance table as a heuristic to exploit
the hierarchical structure of a set of different microbial
communities for determining which microbial taxa are
informative. Based on a predictive performance comparison
following the implementation of the HFE algorithm and other
standard feature selection methods such as Fizzy (Ditzler et al.,
2015) and MetAML (Pasolli et al., 2016) that do not take the
hierarchical structure of microbiome data into account, the
developers of the HFE showed that their technique outperforms
these methods. Motivated by this finding, we adopt the HFE
for feature selection in our analysis. After the application of
the HFE algorithm, we obtain a reduced feature version of
the abundance table with informative taxa comprising of 144
high-level aggregations of taxonomic features, on average.

2.5. Handling Class Imbalance
In the primary data, there are C = 23 class labels (sample
origins). There is an over-representation of certain classes in the
primary data. For instance, Ilorin and New York City have 98
and 96 samples, respectively, whereas there are only 19 samples
from Lisbon. Fitting machine learning models with an apparent
class imbalance in the training data is likely to make the models
to be biased toward the majority classes. In such a scenario,
the fitted classifier is likely to predict the label of a random
sample to be a majority class. Learning from imbalanced data is
a popular topic in machine learning research, and the literature
is rife with several techniques for handling such a problem.
Amongst these techniques include down-sampling, up-sampling,
hybrid methods, and class weighting. Down-sampling involves
randomly removing samples from the majority classes until class

frequencies are roughly balanced, while up-sampling involves
randomly replicating instances in the minority classes to achieve
the same size as the majority class. In practice, the utilization of
these sampling techniques usually comes at a cost. For instance,
down-sampling the majority classes results in potential loss of
relevant information. While oversampling the minority classes is
likely to introduce more bias into the fitted model.

Hybrid methods such as SMOTE (and its variants), AdaSyn,
DSRBF, ProWsyn, and many others oversamples the minority
classes by creating synthetic samples from those classes. Kovács
(2019) gives an extensive comparison of minority oversampling
techniques when applied to a large number of imbalanced
datasets. Results presented in Kovács (2019) show variation in
the performance of the oversampling methods when applied to
several datasets. They suggested that careful investigation should
be carried out before applying any oversampling technique
to the classification problem. For the analysis of the data
in this study, we assessed the performance of a variety of
oversampling techniques presented in Kovács (2019) that apply
to multiclass classification problems. The evaluation metrics
presented in section 2.7 were utilized to assess performance.
Among the oversampling techniques assessed, we observed that
no single technique dominates others in performance. Further,
we observed that GaussNoise (the introduction of Gaussian
noise for the generation of synthetic samples) (Lee, 1999),
AdaSyn (adaptive synthetic sampling approach for imbalanced
learning) (He et al., 2008), and ProWsyn (Proximity Weighted
Synthetic Oversampling Technique for Imbalanced Data Set
Learning) (Barua et al., 2013) all gave a good performance.
Besides, GaussNoise required less computational time. Thus, we
utilized this technique to avoid increasing the complexity of the
analytical process.

Moreover, class weights can be used to train several classifiers.
In this sense, the algorithm puts more weight on the minority
classes, thereby imposing a heavier cost when an error is made in
the classification of labels from these classes. We define the class
weights as wc = 1

nc
for c = 1, . . . ,C where nc the number of

samples from city c.
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In a general sense, the implementation of these techniques
does not improve the overall fit of the model, and they do not
increase the information in the training data (Chen et al., 2004).
However, these methods are employed to put more weight on
the errors made in the minority classes. Consequently, they are
designed to improve the prediction accuracy of the minority
classes. In practice, these techniques are applied only to the
training set and should be applied after the implementation of
any resampling method (cross-validation (CV) or bootstrapping)
used to evaluate model performance. The application of these
techniques before train-test splitting or CV splitting will cause
the trained model to give an overly optimistic estimate of model
performance since the test set is likely to be familiar to the model.

2.6. Ensemble Classifier
In recent years, participants working on the metagenomic
geolocation challenge have used a variety of popular classification
algorithms. Support vectormachines (SVM), random forests, and
neural networks have been widely used for the prediction of the
origin of a given metagenomic sample. For instance, Casimiro-
Soriguer et al. (2019) used decision trees for the classification of
functional profiles created frommetagenomics data. The random
forest classifier was used by Ryan (2019), Harris et al. (2019), and
Walker and Datta (2019), while Zhu et al. (2019), and Walker
and Datta (2019) used the SVM classifier. In some cases, several
dimension reduction and feature engineering techniques have
been applied in conjunction with the classification algorithms
being utilized.

In principle, no single classification algorithm performs
optimally on all types of data. In particular, the performance of
the classification algorithm is likely to depend on the techniques
used during the bioinformatics preprocessing and taxonomic
profiling of the metagenomics data. The application of these
individual techniques is likely to yield variable competing results,
and notably, the classification accuracy from these methods
is likely to depend on the structure of the available data. A
similar observation was noted while discussing the results of
a classification competition based on proteomics data (Hand,
2008).

In this study, we adopt a method for combining a
variety of classification algorithms in addition to dimension
reduction techniques (if necessary) rather than employing stand-
alone classification algorithms for metagenomics classification
problems. Datta et al. (2010) developed an adaptive ensemble
classifier constructed by bagging and rank aggregation that
yields near-optimal classification performance for different data
structures. The ensemble classifier comprises a set of standard
classification algorithms where such individual algorithms are
combined flexibly to yield results that are better or as good as the
best classification algorithm in the list of algorithms that make
up the ensemble. In principle, the ensemble classifier adaptively
adjusts its performance depending on the data being analyzed,
and it reaches the performance of the best-performing individual
classifier without explicitly knowing such classifier.

Next, we outline the steps presented by Datta et al. (2010)
for the construction of the ensemble classifier. Consider the
normalized relative abundance matrix of n samples and p taxa,

Xnxp and the n-vector of classification labels, y. First, the data
is partitioned into training and test sets. Set N, the number
of independent bootstrap samples to draw from the training
set. Also, select M candidate classification algorithms and K
performance measures. Then the following iterative steps are
performed for j = 1, 2, ...,N

1. Obtain the jth bootstrap sample. The bootstrap sample is
obtained by simple random sampling with replacement and
the sampling is performed such that all classes in the primary
data are represented in the bootstrap sample. Samples that
are not included in the bootstrap sample are called out-of-bag
(OOB) samples.

2. Train allM classification models on the jth bootstrap sample.
3. Using the trained M classification models predict the class

labels for the OOB set.
4. Based on the true values of the OOB set, and the predicted

labels, compute the K performance measures.
5. Perform weighted rank aggregation: the performance

measures used in step (iv) ranks the classifiers according
to their performance under such measure, thereby
producing K ordered lists, L1, L2, ..., LK , each of size M.
Using weighted rank aggregation, the ordered lists are
aggregated to determine the best single performing classifier

denoted as A
j

(1)
.

The ensemble is a set of
{

A1
(1)
, ...,A

j

(1)
, ...,AN

(1)

}

classifiers.

To avoid overfitting the classifiers, the performance of
each classifier is evaluated based on their prediction of the
OOB samples. This approach is similar to the cross-validation
procedure, and the misclassification error from the OOB samples
approximates the testing set error.

Given a new sample x1xp, prediction using the ensemble
classifier is based on the following procedures.

1. Each classifier, A1
(1)
, ...,AN

(1)
, in the ensemble is used the to

predict the class label of x1xp. Let ŷ1, ..., ŷN denote the class
predictions from the N models in the ensemble.

2. The final prediction is obtained by majority voting, that is, the
most frequent label among the N predicted classes.

2.7. Analysis
For the analysis of the species abundance data obtained after
bioinformatics pre-processing of the WGS data, we performed
three distinct analyses for both the abundance table with a
complete feature space and the table with a reduced feature
space. We aimed to classify the species abundances of each
metagenomic sample to a source city that is present in the
primary data set. Our analyses focused on training standard
classification algorithms, classification algorithms with class
weights, and implementing an optimal over-sampling technique
when training the classifiers. The implementation of the last two
techniques was to handle the problem of class imbalance. Here,
the candidate classifiers considered for the analyses include the
random forest (RF) (Breiman, 2001), support vector machines
(SVM) (Cortes and Vapnik, 1995) with a radial basis kernel,
recursive partitioning (RPart) (Breiman et al., 1984), extreme
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gradient boosting (XGBoost) (Chen and Guestrin, 2016), and
multilayer perceptron (MLP). These classifiers, in particular, RF
and SVM have been used for metagenomics-based classification
problems. However, we observed that the XGBoost classifier has
not been frequently utilized. Also, we trained modifications of
some of the mentioned classifiers, particularly we use principal
component terms to train the RF classifier (denoted as PCA+RF)
and partial least squares to train the RF, RPart, and XGBoost
classifiers (denoted as PLS+RF, PLS+RPart, PLS+XGB).

Furthermore, for each analytical method presented, we
constructed the ensemble classifier discussed in section 2.6
which comprises the chosen candidate classifiers. Note, the
ensemble classifier may not be restricted to only distinct
individual classifiers. Classifiers with different tuning parameter
combinations can also be considered as candidate classifiers.
Moreover, hyperparameters of the candidate classifiers can
be tuned to attain optimal performance. However, tuning
hyperparameters will increase the time it takes to construct the
ensemble classifier.

A significant property of the ensemble classifier is its ability
to simultaneously optimize classification results based on pre-
specified model evaluation measures through weighted rank
aggregation (Pihur et al., 2007) (see section 2.6). We chose to
use Cohen’s Kappa statistic (Cohen, 1960), multiclass geometric
mean (denoted as G-mean) (Sun et al., 2006), and multiclass
AUC (denoted as MAUC) (Hand and Till, 2001) as measures
for performing weighted rank aggregation. The G-mean is the
geometric mean of recall values for all classes, while the MAUC
is the average AUC for all pairs of classes. These performance
measures are defined as follows

κ =
P0 − PE

1− PE
,

G-mean =

(

K
∏

i=1

Recalli

)

1
K

,

MAUC =
1

K(K − 1)

K
∑

i=1

K
∑

i6=j

AUC(i, j),

where P0 is the relative observed agreement among classifiers
(i.e., the overall accuracy of the model), PE is the probability
that agreement is due to chance, K is the number of classes,
and Recalli is the recall for class i. For classification problems
with imbalance data, these measures are usually preferred over
say, the classification accuracy. Since accuracy is only marginally
impacted by rare classes in the data, the classification accuracy
is often not an appropriate measure to employ for imbalance
learning (Joshi et al., 2001).

3. RESULTS

We present the results of the classification analysis in two
sections. First, we describe results based on the primary data
that consists of species abundance of metagenomic samples
obtained from the 23 cities. Secondly, we present classification
results from the analysis of the mystery samples. We also

demonstrate the application of the ensemble classifier on the data
generated from a taxonomy-free approach. This is described in
detail in section 3.3.

3.1. Classification Results of the Primary
Data
Species abundance data were obtained after taxonomic profiling
with the kraken2-bracken system, the data were subjected
to further downstream pre-processing as discussed in section
2.3, and the final abundance matrix contained 4,770 taxa.
We refer to this data as the primary data with a complete
feature space. Furthermore, the application of the HFE to
the primary data resulted in about an 83% reduction of the
feature space, on average. This section describes classification
results for the analysis for both the primary data with
a complete feature space and the data with a reduced
feature space.

The classification results are based on a 10-fold split of
the data into 80% training set and 20% test set. We ensured
that at least three samples from each city were present in
both training and test sets. The training sets were used to
fit classification models while the test sets were utilized for
validation. Consequently, the classification results presented here
are based on the performance of the classifiers on the test
sets. For the construction of the ensemble classifier, we set N,
the number of bootstrap samples, to be 50. G-mean, Cohen’s
kappa statistic, and MAUC were all utilized for performing
weighted rank aggregation, and for the overall evaluation of
classification performance.

For the analysis of the primary data set with a complete
feature space, the averaged performance measures for the
set of candidate classifiers and the ensemble classifier are
shown in Supplementary Table 1, a subset of this large table
is presented in Table 2. The sub-tables of Table 2 shows the
results for the standard classifiers, the classifiers trained with
class weights, and the classifiers for which an over-sampling
procedure is implemented, respectively. For the analysis of
the data with a reduced feature space, Supplementary Table 2

shows the classification results. Again, we present a subset
of the large table for the results on the classification of the
HFE data in Table 3. Since the classification accuracy may
be of interest to some readers, we have also supplied this
information in the tables shown in the Supplementary Material.
Also, the last columns of the sub-tables show the number
of times each candidate classifier was the best performing
local classifier in 500 instances (10 replicates each with 50
bootstrap samples).

To assess the impact of the (HFE) dimension reduction
technique applied in the analysis, we compare the classification
results shown in Tables 2, 3. For most classifiers and each
model fitting procedure, there is only little variation between
the performance measures when the classifiers are trained on
data with a complete feature space and with a reduced feature
space. A superficial examination of both tables might suggest
that classifiers trained with complete feature space give a slightly
better overall performance. However, in terms of computational
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TABLE 2 | The mean performance measures for a set of candidate classifiers and the ensemble classifier.

Standard Weighted Over-sampling

Classifier Kappa MAUC Count Kappa MAUC Count Kappa MAUC Count

Ensemble 0.89 0.93 – 0.87 0.92 – 0.87 0.93 –

MLP 0.84 0.91 125 0.80 0.89 159 0.80 0.90 118

PCA+RF 0.03 0.64 0 0.04 0.66 0 0.03 0.66 0

PLS+RF 0.88 0.92 239 0.87 0.92 235 0.86 0.92 199

PLS+RPART 0.55 0.74 0 0.51 0.76 0 0.49 0.75 0

PLS+XGB 0.83 0.89 0 0.81 0.89 1 0.80 0.88 1

RF 0.85 0.91 18 0.84 0.92 47 0.81 0.91 38

RPART 0.54 0.76 0 0.56 0.79 1 0.54 0.78 0

SVM 0.76 0.87 1 0.00 0.50 0 0.72 0.86 0

XGB 0.88 0.93 117 0.86 0.91 57 0.84 0.91 144

Each classifier was trained on the primary data with a complete feature space. Three different scenarios are considered—the standard classifiers, classifiers trained with class weights,

and classifiers trained with the implementation of an over-sampling procedure.

TABLE 3 | The mean performance measures for a set of candidate classifiers and the ensemble classifier.

Standard Weighted Over-sampling

Classifier Kappa MAUC Count Kappa MAUC Count Kappa MAUC Count

Ensemble 0.85 0.92 - 0.86 0.92 – 0.82 0.91 –

MLP 0.73 0.86 8 0.71 0.86 9 0.69 0.84 5

PCA+RF 0.04 0.65 0 0.04 0.64 0 0.06 0.67 0

PLS+RF 0.77 0.86 4 0.75 0.86 9 0.71 0.85 5

PLS+RPART 0.36 0.68 0 0.31 0.71 0 0.30 0.71 0

PLS+XGB 0.70 0.82 2 0.70 0.84 2 0.67 0.83 0

RF 0.85 0.92 260 0.86 0.92 372 0.83 0.91 290

RPART 0.53 0.76 1 0.55 0.79 0 0.51 0.76 0

SVM 0.36 0.69 0 0.00 0.50 0 0.41 0.72 0

XGB 0.85 0.92 225 0.84 0.90 108 0.82 0.90 200

Each classifier was trained on the primary data with a reduced feature space. Three different scenarios are considered—the standard classifiers, classifiers trained with class weights,

and classifiers trained with the implementation of an over-sampling procedure.

efficiency, the computational burden of training the classifiers
is substantially reduced when they are trained on the data with
reduced feature space.

Furthermore, to assess the impact of the methods used
to handle the class imbalance problem, we compare the
classification results across the standard models, the models
with class weighting, and models for which an oversampling
procedure is implemented. For the classifiers trained with
class weights, the weights were computed as wc = 1

nc
,

where nc is the number of samples in class c. For the
oversampling procedure, we employed the GaussNoise
oversampling technique. For each classifier in either
Table 2 or Table 3, we observe that there are only marginal
differences among the three methods. The set of candidate
classifiers that give good classification performance for one
method is largely the same for the other methods. This
result expounds on the point that the techniques used to
address class imbalance do not improve the overall fit of the
classification model.

Now, we turn our attention to the performance of each
classification algorithm. Across the different analyses conducted
and for the performance measures utilized, the ensemble
classifier gives classification results as good as the best
performing candidate classifier. Also, we observe the variation
of classification performance among the candidate classifiers.
The MLP, PLS+RF, RF, PLS+XGB, and XGB classifiers were
mostly the best-performing candidate classifiers. Also, the
RPart, PLS+RPart, and the SVM give moderate classification
performance. For the analysis of the data with complete feature
space, the classifiers trained with integrated PLS terms give
very good classification performance. On the contrary, classifiers
trained with integrated PCA terms were the worst performing
classifiers. Figure 2 shows the mean MAUC scores for each
classifier when trained and evaluated with both the data with
complete feature space and the data with reduced feature space.
From the evaluation of classification performance from this plot,
most classifiers give better results when trained with the complete
data than the reduced feature version.
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FIGURE 2 | Mean multiclass AUC (MAUC) score for nine candidate classifiers, and an ensemble classifier comprising of the candidate classifiers. These classifiers are

trained with the primary data with a complete feature space and the data with a reduced feature space.

Moreover, from the last column of the subtables of Tables 2, 3,
we observe that the ensemble classifier is mostly dominated
by the MLP, PLS+RF, RF, and XGB classifiers when these
classifiers are trained with the data with complete feature space,
while for the data with a reduced feature space, the ensemble
classifier is mostly dominated by the RF and XGB classifiers.
The effectiveness of the PLS terms incorporated for dimension
reduction is substantially reduced for the analysis of the data
with a reduced feature space, and the MLP classifier gives better
performance for the analysis of the high-dimensional data. Both
RF and XGB classifiers perform well in either setting.

For the prediction of the source origins, the classifiers give
a varying performance for predicting the cities in the primary
data. To elaborate on this point, we describe the prediction
performance of the ensemble classifier that was trained on data
with complete feature space. Figure 3 shows boxplots for the
precision values for all cities in the primary data that were
based on predictions from the ensemble classifier. To train the
classifier, we employed the standard technique as well as the
class weighting and over-sampling procedures. Irrespective of
the technique applied, the classifier gives excellent prediction
results for Stockholm, Barcelona, Berlin, Denver, Doha, Hong
Kong, Seoul, Ilorin, Kuala Lumpur, London, New York City, São
Paulo, Santiago, Sendai, San Francisco, Taipei, and Tokyo. The
average precision value for these cities was at least 85%. On
the other hand, the classifier gave only moderate prediction
result for Kyiv, Lisbon, Singapore, and Zurich. For the prediction
Lisbon, which is a minority class in this study, the average
precision value substantially increases from 66 to 73% when the
class weighting procedure is employed as against the standard

fit. However, we do not see the same effect when the over-
sampling technique is applied. This empirical finding may
be due to oversampling employed, further investigation will
be done elsewhere to understand the impact of oversamplers
in the analysis of microbiome data. Further, we observe the
classifier does not perform well in distinguishing samples from
Kyiv and Zurich, this pattern also persists for Ilorin and Offa.
Geographically, Ilorin and Offa are two urban centers that are
about 59.6 km apart in the same territory in Nigeria, whereas
Kyiv and Zurich are European cities that are over 2,000 km apart.
Also, we noticed a reverse misclassification between Singapore
and Kyiv, these cities lie on different continents.

The boxplots in Figure 4 show some of the top microbial
species that were found to be differentially abundant across
various cities. Figure 5 shows the feature importance plot of the
top 20 species from the RF classifier in the ensemble. Variable
importance plot consists of many species belonging to genus
Bradyrhizobium which is a soil bacteria and is also found in the
roots and stems of plants (Giraud et al., 2013). It is interesting to
note that species Pseudomonas.sp.CC6.YY.74 is highly abundant
in Ilorin and Offa that are geographically closer.

3.2. Analysis of Mystery Samples
In section 2.1, we described the mystery samples provided by
the organizers of the challenge. For the bioinformatics and
downstream pre-processing of the raw WGS data, we follow the
same procedures discussed in sections 2.2 and 2.3, respectively.

From Table 1, there are 56 samples in the mystery data whose
origins were not represented in the primary data. Since the
ensemble classifier is a supervised classifier, it will not be able to
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FIGURE 3 | Precision values for all cities in the primary data with complete feature space. The results are based on predictions from an ensemble classifier for which

the candidate classifiers were respectively trained using their standard version, and when class weighting and over-sampling procedures were implemented.

be capable of predicting source cities that were not in the training
data. For this reason, we restrict the analysis of the mystery
data to samples for which their source cities were represented
in the primary data. To predict these source cities, we use the
entire primary data to train the ensemble classifier. For the
construction of the ensemble classifier, the standard classifiers
presented in section 2.7 were the base classifiers. Also, each
classifier was trained with class weights on 50 bootstrap samples.
Other elements of the ensemble classifier follow the input values
presented in section 3.1.

The ensemble classifier reached an overall classification
accuracy of 72% for the prediction of the subset of mystery
samples. The best performing candidate classifiers were PLS+RF
and XGB both of which also reached 72% accuracy, while the
MLP and RF classifiers reached 68 and 57% accuracy respectively.
Upon investigation of the classification results obtained from
the ensemble classifier, we observed a high misclassification rate
for the prediction of samples that originated from Kyiv and
Zurich. Similar to findings presented in section 2.7, the ensemble
classifier tends to misclassify the source origin of a sample from
Zurich as being from Kyiv, and samples from Kyiv as Singapore.

As an alternative to the prediction of a mystery sample, the
source city that minimizes the Kullback-Leibler (KL) distance
between the mystery sample and the samples in the primary
data is obtained as the prediction for the mystery sample. In
this projection approach, for each mystery sample, we compute
the KL distance between the mystery sample and all samples in
the primary data. The city in the primary data that minimizes
the KL distance is selected as the prediction of the source origin
for the mystery sample. Following this approach, we obtained a

classification accuracy of 52%. For each mystery sample, we also
considered the source cities corresponding to the least three KL
distances, we noticed that the true source origin falls in the set of
the three cities 66% of the time.

3.3. Taxonomy-free Approach
The results discussed in section 3.1 were based on the analysis
of the abundance data obtained after taxonomic profiling of
the WGS data with the kraken2-bracken system. Typically,
the taxonomic profiling step involves classification or mapping
of sequence reads to their taxon of origin using a well-
curated reference database of microbial genomes. For instance,
kraken2 (Wood et al., 2019) utilizes the National Center
for Biotechnology Information’s (NCBI) RefSeq database for
taxonomy classification. The software also gives users the choice
of utilizing custom-built databases. Abundance estimation of
each taxon in the metagenomic sample follows after the mapping
step. In several cases, a good portion of the sequence reads
remains unclassified after the taxonomic profiling step. A
potential reason for the non-classification of sequence reads is
that the taxa for some novel genetic materials in themetagenomic
samples are not represented in the reference database. Therefore,
a possible drawback of constructing microbial fingerprints with
only information from taxonomic profiles is that unclassified
DNA reads that may correspond to novel taxa are not considered
during downstream analysis.

To overcome this drawback, several studies have suggested
the construction of microbial fingerprints based on the primary
modeling of the information contained in the sequence reads.
For instance, (Kawulok et al., 2019) constructed a fingerprint that
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FIGURE 4 | Boxplots of relative abundances of species (A) Bradyrhizobium.sp..ORS.285 (B) Pseudomonas.sp..CC6.YY.74, (C) Rhodococcus.hoagii, and (D)

Bradyrhizobium.sp..WSM471 across all 23 cities.

comprises a set of k-mers derived frommetagenomics samples. In
their approach, they studied the similarity between a sample and
a reference k-mer database obtained at the reads level. Further,
they showed that their method yields results that are as good
as methods that rely on taxonomic/functional profiles of the
metagenomics samples.

In this section, we describe the design of a microbial
fingerprint by the direct modeling of DNA fragments obtained

from metagenomics samples using an ensemble classifier. The
DNA fragments are derived by breaking down the sequence
reads into short sequences composed of k symbols (k-mers).
For each sample obtained after the bioinformatics pre-processing
step described in section 2.2, we utilize the KMC 3 (Kokot et al.,
2017) software to obtain the frequency of unique k-mers. The
KMC 3 software extracts k-mers with nucleotide alphabets (“A”,
“C", “G", “T"), and it ignores k-mers containing “N" symbol
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FIGURE 5 | Species importance for RF classifier in the ensemble.

(ambiguous nucleotides). We set k = 31, and we filtered out
k-mers occurring less than 20 times (this threshold was set to
50 for samples gotten from Offa and Ilorin). For each city, we
merged the k-mer frequency vectors generated for all samples.
We observed a significant variation in the total number of unique
k-mers obtained for the samples in each of the 23 cities in the
primary set. For instance, there were a total of 6M, 47M, 268M,
and 39M unique k-mers for the samples obtained from Denver,
Hong Kong, Offa, and Zurich, respectively. We observed the
samples in the mystery set generated a total of just 17M unique k-
mers. Supplementary Table 3 shows the total number of unique
k-mers corresponding to each of the 23 cities in the primary set
and the mystery set.

After combining the k-mer frequency vectors from all
available samples, we obtain a large sparse matrix with 923M
unique k-mers. We performed some pre-processing on the
matrix. First, we filter the data matrix to retain only k-mers
that are present in at least 10% of the samples. A total of
298,644 k-mers were retained after filtering. Secondly, we obtain
normalized counts for each k-mer corresponding to each sample.

To fit the ensemble classifier, we utilize the same settings
discussed in sections 2.7 and 3.1. Using the normalized k-
mer frequencies as feature vectors, we train the classifiers with
class weights and without class weights. First, we describe the
results for the analysis of the primary data. Table 4 shows the
average performance measures for each candidate classifier and
the ensemble classifier. For both the weighted and unweighted
analysis, the RF and the XGB classifiers give the best classification
performance among the candidate classifiers. From Table 4, we
observe that the ensemble classifier trained with the k-mer
frequency vectors gives a comparative performance as to when

trained with taxonomic profiles. In contrast, there is greater
diversity among the classifiers that make up the ensemble for
predicting the abundance data, whereas the XGB and the RF (in
particular) dominate the ensemble for the k-mer counts data.
Also, we observe that the utilization of feature reduction terms
(PLS and PCA) when training the classifiers based on the k-mer
frequency counts does not yield better classification results.

For predicting the samples in the mystery set, we restrict
the analysis to samples whose source origins were present in
the primary data. Overall, the classification accuracy for the
mystery set using this approach was much worse than the
accuracy for the primary dataset and the taxonomy-dependent
approach. For the k-mer approach, the ensemble classifier that
comprises unweighted classifiers reached a classification accuracy
of 35%, while the ensemble classifier based on weighted classifiers
attains 33% accuracy. Some potential reasons could explain the
discrepancy in the classification performance for samples in the
primary set and the samples. First, with the diversity of samples
in the mystery set (121 samples from 10 different cities), one
would expect the total number of unique k-mers obtained from
the mystery set to be greater than the total number of k-mers
obtained from any of the 23 cities in the primary set. However,
from Supplementary Table 3, we observe the total number of
unique k-mers from the mystery set was lesser than the amount
returned from 15 cities. Secondly, the discrepancy may be due
to the batch effects for the primary and mystery data, and there
may have been a difference in the sequencing procedures utilized
for each batch. If there was a difference in the techniques used
to generate the raw WGS data, the taxonomy-free approach
appears not to be agnostic to the different techniques. Note,
we implemented a uniform bioinformatics pipeline for the
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TABLE 4 | The mean performance measures for a set of candidate classifiers and the ensemble classifier based on the analysis of k-mer frequencies.

Standard Weighted

Classifier Accuracy G-Mean Kappa MAUC Count Accuracy G-Mean Kappa MAUC Count

Ensemble 0.87 0.86 0.86 0.93 – 0.87 0.86 0.86 0.93 –

MLP 0.30 0.00 0.26 0.72 0 0.28 0.00 0.25 0.71 0

PCA+RF 0.09 0.00 0.03 0.67 0 0.12 0.00 0.07 0.67 0

PLS+AdaBoost 0.34 0.00 0.30 0.70 0 0.35 0.00 0.31 0.70 0

PLS+RF 0.38 0.00 0.35 0.71 0 0.40 0.00 0.37 0.70 0

PLS+RPART 0.31 0.07 0.27 0.71 0 0.26 0.05 0.23 0.71 0

PLS+XGB 0.37 0.00 0.33 0.70 0 0.39 0.00 0.35 0.70 0

RF 0.87 0.86 0.86 0.93 358 0.87 0.86 0.86 0.93 440

XGB 0.86 0.84 0.85 0.92 142 0.86 0.84 0.85 0.92 60

Two different scenarios are considered—the standard classifiers and classifiers trained with class weights.

pre-processing of the raw WGS data. Lastly, when training the
classifier with k-mer frequency vectors, it is difficult to know if
the classification is driven by noise or pure biological relevance.
For instance, we observed little or no changes in the classification
performance when we discard k-mers that were not present in
more than 1 to 30% of the total number of samples in the primary
data. Besides, when feature reduction is implemented using t-
SNE, PLS, or PCA, we observed the classifiers give poor results.
In contrast, when we train the classifiers with an abundance
matrix, classification is driven by taxonomy profiles that have
biological meaningfulness.

We attempted yet another taxonomy-free approach called
Simka (Benoit et al., 2016) to predict the source origins of
the mystery samples. Simka computes the ecological distance
between the samples based on their k-mer counts. It considers
.fastq files as the input and processes the data in two major steps.
The first step computes an n × p k-mer count matrix, where
n is the number of samples and p is the number of distinct k-
mers among all the samples. Based on the k-mer count matrix
in the first step, it computes a n × n distance matrix. Table 1
of Benoit et al. (2016) describes the different ecological distance
measures computed by Simka. We performed a naive distance-
basedmethod to predict the source cities for themystery samples.
Using the distance matrix obtained from Simka we computed
the average distance of each mystery sample from the samples
belonging to each of the 23 cities. For mystery sample Sj, we

obtained average distance d̄j,1, · · · , d̄j,23, where d̄j,1 corresponds
to the mean distance of mystery sample Sj from all samples in city
1 (e.g., ARN). The city label that corresponds to the minimum
distance from mystery sample Sj is regarded as the predicted
city label for that mystery sample. We utilized several different
distance measures to implement the described method. The
accuracy for the 18 distance measures that we used, varied from
0 to 28.57%. We observed that the qualitative distance measures
i.e., based on presence-absence data had slightly higher accuracy
than quantitative distance measures, i.e., based on abundance
data. The 28.57% prediction accuracy for mystery samples was
obtained by using qualitative Kulczynski distance measure. The
average distance in the above method was computed using leave-
one-out cross-validation to mitigate overfitting.

4. DISCUSSION

In this study, we have presented several analytical approaches
for the classification of abundance profiles from metagenomic
samples to known source origins. We assessed the impact of
dimension reduction, procedures for handling class imbalance,
and using an ensemble classifier in downstream analysis. First,
we observed that dimension reduction does not improve the
classification performance of the models. There is only little
variation in the prediction results obtained from the classification
models trained with metagenomics data with a complete feature
space and the data with reduced feature space. For large-scale
studies with very high-dimensional data (that is, situations where
the number of taxa obtained after taxonomic profiling is large),
the analyst may prefer to adopt the analysis based on data

with reduced feature space since such case will have a lesser
computational burden.

To address the problem of class imbalance, we trained
the classifiers with class weights, and we also adopted
an oversampling technique. We observed that there was
no substantial improvement in the overall classification
performance when these methods were employed. In a
microbiota study, Knights et al. (2011) utilized an oversampling
approach to increase the number of samples in their case. They
also reported a marginal difference in prediction performance
when this approach is applied. In contrast, Harris et al. (2019)
reported a considerable amount of increase in classification
accuracy after an optimal oversampling technique was utilized
for classifying metagenomics data to source cities. Oversampling
and class weighting techniques are designed to improve the
predictions made in rare classes. From our analyses, we observed
that class weighting produced substantial improvement for the
prediction of the minority class while oversampling did not have

a major impact. In the future, we expect to investigate the impact
of these methods in the analysis of microbiome data. Moreover,
training classifiers with class weights are more computationally
efficient than incorporating an oversampling procedure.

The ordination plots in Figure 1 depict that there is no
clear separation between the microbiome sample from different
cities. Thus, a major challenge in metagenomic geolocation
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data analysis is to identify a robust classification algorithm
that can classify samples to their source cities with good
prediction performance. To achieve this goal, we employed an
ensemble classifier that comprised a set of several candidate
classification algorithms for better prediction of the source
origin of metagenomic samples. From the analyses presented
in this study and other analyses presented in past CAMDA
metagenomics forensics challenges, we observe that stand-alone
classifiers are prone to give varying classification performance
when different data structures are considered. The structure of
the training data used to fit the classification models is likely
to depend on the bioinformatics procedures employed for
pre-processing of the raw sequence reads and the taxonomic
profiling technique used for obtaining the abundance table. For
this reason, it becomes unreliable to restrict the classification
of abundance profiles of samples to source origins, to a
single classifier.

Also, for any classification problem, it is natural for the
analyst to consider a variety of classifiers. This usually depends
on the objective of the scientific study under investigation.
In practice, after carrying out standard pre-processing, the
analyst initiates the classification analysis by evaluating the
performance of simple models in classifying the abundance
data to known class labels before experimenting with other
advanced models. Based on user-specific performance metrics,
the ensemble classifier offers the analyst the opportunity to
evaluate the performance of different candidate classifiers on
the chosen dataset in one shot. The ensemble classifier adapts
to various bioinformatics procedures performed during pre-
processing and taxonomic profiling of raw metagenomics data
and will outperform or will adequately compete with any stand-
alone classifier in its ensemble.

Moreover, before fitting the ensemble classifier, the analyst
does not know the candidate classifier that will give the
best classification performance. Also, it has been shown that
the ensemble classifier performs better than direct techniques
such as the greedy algorithm (Datta et al., 2010). For the
greedy algorithm, the best performing candidate classifier
is determined by using a combination of k-fold cross-
validation and a weighted rank aggregation procedure. In
this case, each candidate classifier in a user-defined set of
classification algorithms is used to predict the hold-out set,
and the performance measures utilized for evaluating the
model are averaged across the k folds. Then, based on the
resulting performance measures, a weighted rank aggregation
procedure is used to rank the candidate classifiers, and
the classifier with the top-most rank is chosen as the best
performing classifier.

Furthermore, the ensemble classifier itself is an adaptive
classification algorithm that excels in its flexibility in harnessing
the strengths of the individual classifiers to yield better
classification performance. However, we emphasize that an
ensemble classifier will also depend on the set of candidate
classifiers in its ensemble. To improve the performance of pre-
selected candidate classifiers, the analyst may choose to tune
hyperparameters of such classifiers since the default parameter

settings in most software may not be ideal for the problem
under consideration. In addition to adapting to the nature
of the training data, techniques for handling class imbalance
and dimension reduction can easily be incorporated into the
construction of the ensemble classifier.

The apparent drawback of the ensemble classifier is
the computational time required to train this classifier.
The computing time is influenced by three main factors
considered in the construction of the ensemble classifier -
the number of candidate classifiers, the number of bootstrap
samples for which each candidate classifier is trained, and the
performance measures which are used in the weighted rank
aggregation step of the construction procedure. Furthermore,
the complexity of the candidate classifiers will also impact
the computing times. For instance, more compute time
will be required to train the MLP classifier than it will
take to train the RPart classifier. If the analyst using the
ensemble classifier chooses to tune the hyperparameters of
the candidate classifiers, this will add some complexity to
the process.

Nonetheless, the compute time can be reduced substantially
by running the procedures described in section 2.6 in parallel
on a computing cluster. For instance, consider the scenario
where we utilized nine candidate classifiers (namely the candidate
classifiers presented in Table 2), three performance measures
for performing rank aggregation (namely Cohen’s Kappa
coefficient, G-mean, and MAUC), and 50 bootstrap samples.
The construction of the ensemble classifier on a computing grid
with an allocation of 10 CPU cores and a 120 GB memory limit
takes an average of 9.47 h (wall-clock time). The supercomputer
that we utilized for this operation has a total storage size of 2
petabytes, and 30,000 cores in Intel E5-2698v3 processors with
4 GB of RAM per core.

The classification methods described in this paper can
help identify several microbial species linked to specific
geographic locations. For instance, several species from genus
Bradyrhizobium and Pseudomonas are amongst the top taxa
responsible for differentiating between the city locations. This
type of classification analysis can be a useful tool in identifying
species that vary across different types of environments, climatic
conditions, and surface types. The information from such
analysis can be further synthesized in the fields such as forensics
and disease epidemiology for identifying harmful pathogens.

While the identification of organisms is instrumental in
metagenomics forensics, a good portion of sequenced reads
remains unclassified when standard reference databases for
taxonomic profiling. Sequenced reads which remain unclassified
are likely to represent novel taxa, and ignoring such genetic
data when constructing a fingerprint may impose substantial
limitations. In this study, we utilized a k-mer approach for the
direct modeling of DNA fragments obtained frommetagenomics
samples. For samples in the primary data set, classification results
based on data generated from the k-mer approach were as good
as the results from the analysis of taxonomic abundance data.
However, the k-mer approach performs poorly in identifying the
source origins of samples in the mystery set.
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