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Pancreatic β-cells, residents of the islets of Langerhans, are the unique insulin-producers in
the body. Their physiology is a topic of intensive studies aiming to understand the biology
of insulin production and its role in diabetes pathology. However, investigations about these
cells’ subset of secreted proteins, the secretome, are surprisingly scarce and a list describ-
ing islet/β-cell secretome upon glucose-stimulation is not yet available. In silico predictions
of secretomes are an interesting approach that can be employed to forecast proteins likely
to be secreted. In this context, using the rationale behind classical secretion of proteins
through the secretory pathway, a Python tool capable of predicting classically secreted pro-
teins was developed. This tool was applied to different available proteomic data (human and
rodent islets, isolated β-cells, β-cell secretory granules, and β-cells supernatant), filtering
them in order to selectively list only classically secreted proteins. The method presented
here can retrieve, organize, search and filter proteomic lists using UniProtKB as a central
database. It provides analysis by overlaying different sets of information, filtering out po-
tential contaminants and clustering the identified proteins into functional groups. A range of
70–92% of the original proteomes analyzed was reduced generating predicted secretomes.
Islet and β-cell signal peptide-containing proteins, and endoplasmic reticulum-resident pro-
teins were identified and quantified. From the predicted secretomes, exemplary conserva-
tional patterns were inferred, as well as the signaling pathways enriched within them. Such
a technique proves to be an effective approach to reduce the horizon of plausible targets
for drug development or biomarkers identification.

Introduction
The term secretome was first defined as the whole subset of factors secreted by a cell [1] and later revised
to ‘all proteins secreted by the cell into the extracellular space’ [2]. These factors can regulate a multitude of
physiological processes and dictate the composition of the extracellular environment. Secretome analysis
in health and disease can, therefore, bring insights about the pathophysiology of these conditions, opening
new perspectives for the discovery of biomarkers and therapies [3].

Classically, proteins are secreted through the secretory pathway [4]. mRNAs are processed by ribosomes
in the cytoplasm and the proteins containing a signal peptide (SP) – motif often composed by one posi-
tively charged amino acid followed by 6–12 hydrophobic amino acids [5] – are cotranslationally translo-
cated to the endoplasmic reticulum (ER) [6]. Once there, proteins are folded by chaperones and foldases to
gain proper 3D conformation [7]. The ER has its own subset of native proteins, the so-called ER-resident
proteins [8]. Their continuous localization to the ER lumen is secured by an ER-retrieval signal located in
the C-terminal part of the protein [8]. This signal is commonly a tetrapeptide – K (lysine/lys) D (aspartic
acid/asp) E (glutamic acid/glu) L (leucine/leu) – or related sequences [8,9] and enables proteins to bind
to KDEL-receptors at the early Golgi, thus preventing proteins from being secreted from cells [10].
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Figure 1. The applied method workflow

The script processes phases II and IV automatically. Phase I is done manually by the user, organizing the input file according to what

is required: accession numbers, protein and gene names. Phase II (retrieval) is automatic, and the data is retrieved from UniProtKB.

Phase III relies on the PROMALS3D server, in which the input data need to be manually organized and submitted. Phase IV is

based on the PROMALS3D alignment results, where the ER-retrieval signal consensus is searched through all proteins in the list

automatically. Examples of possible output data shown.

The non-ER-resident proteins are forwarded to the Golgi complex where different post-translational modifications
occur [11]. Typically, proteins that are ready to be secreted are sorted into vesicles that: (1) can undergo secretion
(exocytosis) [12]; (2) can wait for signals to undergo exocytosis [13]; or (3) can be translocated to the lysosomes for
degradation [14,15].

Proteins can be secreted via conventional and unconventional secretory pathways [16,17]. The conventional se-
cretory pathway is responsible for transport and secretion of proteins containing SP, while the mechanisms behind
unconventional secretion remain elusive [18–20]. Around 39% (7649) of all human protein-coding genes (19,613) are
predicted to display either SP and/or transmembrane regions [21]. The number of potentially secreted proteins (with
SP and no transmembrane regions) were described to be 2623, which accounts for approximately 13% of all proteins
[21,22]. Unconventionally secreted proteins often lack SP, are not localized to the secretory pathway organelles, and
their secretion continues even in the presence of brefeldin A (an inhibitor of ER-Golgi transport) [23,24], imposing
another layer of complexity in the secretomes’ characterization.

Several approaches to define a secretome of a given cell type were employed in the past, but the introduction of
proteomics greatly facilitated the overall methodology [20,25,26]. Initially, investigated with the use of 2D gel elec-
trophoresis, radiolabeling, and enzyme activity [27,28], the secretomes were described with only a few components.
Currently, at the advent of better techniques in bioinformatics and mass spectrometry (MS), the identification of
hundreds to thousands of proteins is becoming routine and such approaches were successfully implemented in the
description of secretomes [29–31]. However, a simple and user-friendly tool that systematically integrates experimen-
tal high-throughput proteomic datasets using proteomic data from any kind of cell type is still missing.

In the present study, a computational tool for the prediction of classically secreted proteins that only requires a list of
identified proteins was developed (Figure 1). An open source Python tool that rationally integrates public databases,
facilitates the analysis of protein lists, and that can be modified according to the cell type of interest, has been designed.
Our method makes possible to retrieve, organize, search and filter data regarding the full amino acid sequence, protein
subcellular location, presence of SP, and presence of a consensus of ER-retrieval signal (Figure 1). The approach was
utilized in the analysis of available datasets from human pancreatic islets (HPI) [32], mouse pancreatic islets (MPI)
[33], isolated β-cells [32], rat insulin secretory granules (ISG) [34], β-cells supernatant (SUP) [35] as well as our
own supernatant of β-cell model cells, the insulinoma INS-1E, upon high glucose stimulation (SUP2) (Table 1). The
tool predicted the classically secreted proteins by enabling clustering of proteins containing SP (+SP) and ER-resident
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Table 1 Subset of all publications that fulfill the following criteria: publication within the last 10 years; list of proteins
identified available as an excel file. Publications chosen to validate our Python tool are highlighted in light yellow. N/A:
non-applicable, i.e. cells were not submitted to any special experimental conditions

Study / Author,
year Species Condition Technique

# Identified
Proteins Ref.

Whole-cell Glucose-stimulated
islet proteome /
Waanders et al.
(2009)

Mice (islets) High glucose LC-MS/MS
(LTQ-Orbitrap)

6902 [39]

Glucose-stimulated
mice β-cell proteome /
Martens et al. (2010)

INS-1E High glucose Alternate scanning
LC-MS

300 [33]

The Human Diabetes
Proteome Project /
Topf et al. (2013)

Human (islets) N/A Gas-Phase
Fractionation MS

5317 [32]

The Human Diabetes
Proteome Project /
Topf et al. (2013)

INS-1E N/A LC-MS/MS 2625 [32]

β-Cell secretory
granule

Insulin granule /
Brunner et al. (2007)

INS-1E N/A Granule purification,
LC-MS/MS

130 [40]

Insulin granule /
Schvartz et al. (2012)

INS-1E N/A SILAC, 3-step gradient
purification, MS/MS

140 [34]

Insulin granule / Li et
al. (2018)

INS-1 N/A OptiPrep,
(LC)–MS/MS,
correlation profiling

81 [41]

β-Cell supernatant β-Cell secretome /
Tattikota et al. (2013)

MIN6 cells supernatant High Glucose Concentration
(3MWKO), EASY-nLC
MS/MS

1629 [42]

β-Cell secretome /
Pepaj et al. (2016)

INS-1E cells
supernatant

Vitamin D exposure SILAC, LC-MS/MS 821 [35]

proteins, which were later used to filter out a range of 70–90.5% of the original data analyzed. From this predicted
subsets, conservational functional patterns were inferred, as well as the signaling pathway enriched in them.

Research design and methods
Chemicals and materials
All reagents were purchased from Sigma, Søborg, Denmark. Additionally, trypsin from porcine pancreas (Promega,
Madison, Wisconsin, U.S.A.); 1,4-dithiothreitol (DTT), iodoacetamide (IAM), urea 98%, Tris base ≥99.9%, tri-
fluoroacetic acid (TFA), acetonitrile grade liquid chromatography-mass spectrometry (LC-MS) Chromasolv, and
water-grade LC-MS Chromasolv (Thermo Fischer Scientific, Hvidovre, Denmark) were used. Vivacon 500 Ultra
centrifugal filters with a 2-kDa molecular weight cut-off (2 MWCO) were purchased from Sartorius Stedim Lab
Ltd. (Stonehouse, Gloucestershire, U.K.).

Cell culture
The rat insulinoma INS-1E cell line was grown in RPMI-1640 GlutaMAX medium (11 mM glucose) supplemented
with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 100 μg/ml streptomycin, 10 mM HEPES, 1 mM sodium
pyruvate and 50 μmol/l β-mercaptoethanol.

The cells were grown in 6-well plates until 85–90% confluence. Each well received fresh medium 12 h prior to
the experiment. Due to reduced efficiency of MS analysis in the presence of FBS, each well was washed 3× with
RPMI-1640 glucose and FBS free, supplemented with 100 U/ml penicillin, 100 μg/ml streptomycin, 10 mM HEPES,
1 mM sodium pyruvate and 50 μmol/l β-mercaptoethanol. After washing, cells were incubated with RPMI-1640
FBS-free 20 mM glucose (2 ml) for 4 h prior to the collection of the supernatants. Cell numbers used in experiments:
3 × 106 INS-1E cells (or the equivalent of 85–90% confluence of a 6-well plate).

Sample preparation and protein digestion
After the incubation, conditioned media from INS-1E cells were collected and centrifuged (2000 g, 10 min) to remove
cell debris. Samples were concentrated using Vivacon 500 2 MWCO filter units (Sartorius, Goettingen, Germany)
followed by an adapted protocol from Wisniewski et al. [36]. Proteins in the filter were reduced in a denaturing buffer
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(8 M urea, 0.1 M Tris-HCl pH 8.5, 500 mM DTT) for 30 min at room temperature (RT) and followed by alkylation of
free sulfhydryl groups with 500 mM IAM at RT for 30 min in the dark. Reduced and alkylated samples were incubated
overnight with trypsin from porcine pancreas. Next day, samples were centrifuged and the flow through, where the
peptides were contained, collected.

StageTips preparation
For micro-purification of peptides prior to MS, an adaptation of Rappsilber et al. [37] was used. The StageTips were
prepared placing two Empore filter disks (3M) at the very end of a D200 200 μl tip using a sampling tool syringe.
Each sample had the pH adjusted to approximately 2 with 10% TFA. After filter activation, the samples were loaded
and centrifuged (1200 g, 3 min). The StageTips were washed with 0.1% TFA and peptides were finally eluted with
60% acetonitrile, 0.1% TFA. Acetonitrile was evaporated at RT prior to MS analysis.

Mass spectrometry
Samples were analyzed on a Bruker Impact II ESI-QTOF (Bruker Daltonics, Bremen, Germany) mass spectrometer
with an on-line Dionex Ultimate 3000 chromatography system (Thermo Fisher Scientific, Waltham, Massachusetts,
U.S.A.) equipped with a Bruker Nanoelute column (15 cm, 75 μm ID). Peptides were eluted using a solvent gradient
over 65 min, using acetonitrile with 0.1% formic acid at a flow rate of 300 nl min−1. The MS scan range was 150–2200
m/z with a cycle time of 3 min using a MS sampling rate of 2 Hz followed by intensity-based data-dependent MS/MS
(4–16 Hz).

Data analysis
Database searches were performed with MaxQuant v 1.6.1.0 [38] using the following parameters: enzyme: trypsin,
with three missed cleavages; fixed modification: carbamidomethyl (cysteine); variable modification: oxidation (me-
thionine); 1% peptide-level false discovery rate; mass tolerance: 0.07 and 0.005 Daltons (first and main searches,
respectively); MS/MS mass tolerance: 40 part per million (ppm) (first and main searches). Data analysis was per-
formed using the same software (MaxQuant v 1.6.1.0) [38] with semi-specific tryptic constraints and a 1% peptide
level false discovery rate. Proteins identified by at least one unique peptide were considered only if their presence was
consistent in two out of the three samples submitted for analysis. Further, the list was additionally filtered to exclude
potential contaminants.

Proteomic datasets analyzed
An overview of the publications relevant to our analysis is presented in Table 1. The publications from which the lists
of proteins were acquired: (1) HPI [32], (2) MPI [39], (3) INS-1E cells (isolated β-cells) [32], (4) ISG from INS-1E
cells [34], and (5) INS-1E cell supernatant (β-cells SUP) [35], were extracted and then analyzed by our tool and are
highlighted in Table 1. All lists are public and available. Additional lists were found but not analyzed [33,40–42]. The
sample processing and proteomic approaches vary between datasets and their descriptions can be found in respective
publications. Our own list of proteins from the supernatant of INS-1E cells after 20 mM glucose stimulation, 4 h
(β-cell supernatant – SUP2) presents 978 proteins, and it was additionally used as a proteomic dataset in the present
study.

Components of the analysis method
The method is divided into four phases (Figure 1).

Phase I: the assembly of the data (manual)
Outputs from proteomic studies are typically presented as excel files containing a list of the identified proteins. From
the lists available in the chosen publications, the identified protein names and their respective gene names and acces-
sion numbers – unique stable identifiers assigned to each protein by the UniProt Knowledge (UniProtKB, v. 2019 03
updated in April 2019) database [43] – were extracted and copied to a new excel file. All subsets were submitted to the
same handling for file organization. Consequently, a readable file for our tool is an excel file containing: (1) accession
numbers, (2) protein names and (3) gene names.

Phase II: retrieving the subcellular location, full amino acid sequence and SP (automatic)
After assembly of the input file during phase I, the data from UniProtKB regarding each protein’s subcellular location,
as well as their full amino acid sequence and the presence of SP are retrieved. All proteomic datasets were submitted
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at least three times to check for potential inconsistencies in the data retrieval. Obsolete and deleted entries that were
identified after UniProt retrieval were excluded from the respective datasets. The output file after retrieval is an excel
file containing the features retrieved in separated columns. Within an excel file, the auto filter feature was employed. It
facilitates the selection of +SP proteins or the ones containing an ER-retrieval consensus. The auto filter also facilitates
the screening of subcellular locations (once selected only “secreted”, the excel will show only proteins annotated to be
secreted according to UniProtKB). Details about the script can be found in the documentation (Supplementary File
S1).

Phase III: ER-retrieval signal consensus (manual/automatic)
Once the subcellular locations are displayed in the excel file, it is possible to filter the proteins that were experimentally
proven to localize to the ER by again employing the excel auto filter. This filtering was made using the HPI list, the
largest subset of proteins we had access to, and where we could find the largest number of ER-resident proteins. The
list submitted to PROMALS3D is available in the Supplementary File S2. With this subset of human islet ER-proteins
and their full amino acid sequence, a server for amino acid sequence alignment was used. PROMALS3D (PROfile
Multiple Alignment with predicted Local Structures and 3D constraints) is a tool for multiple sequence and structure
alignment [44]. The server receives input sequences in a FASTA format and it is able to return a consensus (the most
common tetrapeptide variation within human islet ER-resident proteins, Supplementary File S3).

Phase IV: ER-consensus finder (automatic)
The final step of the script executes the search of the consensus in the four last amino acids from the full amino acid
sequence of each protein in the original list. All lists were submitted at least three times to perform this search. All
proteins in all lists have their amino acid sequences described and appropriately recovered in phase II. If the consensus
is found in the C-terminus, it will return the information in a new column in the outcome file.

The objective function of our approach can be summarized as:

Classically secreted proteins = (x2 – x3)

The objective function was implemented in our script as:

# Second, Grab the raw protein sequence
sequence = soup.select(‘sequence[length]’)[0].get text().replace(‘ \ n’, ”)
excel new[’full sequence’][i] = sequence
# If the protein has a signal peptide, parse the information
features = soup.select(‘feature[type = “signal peptide”]’)
if len(features) > 0:

# Grab start and end position of the signal peptide
feature = features[0]
start = feature.select(‘begin’)[0].get(‘position’) # Get start position
end = feature.select(‘end’)[0].get(‘position’) # Get end position
excel new[‘signal sequence’][i] = start+” ”+end
# Last, look for the KDEL in the final 4 amino acids
searcher = re.compile(‘[ARNDCQEGHILKMFPSTWYVBZ]{2}EL’)
# Select last four characters of the full sequence
final aa = sequence[-4:]
# Check if there is a match with the regular expression
matched = searcher.match(final aa)
if matched:

excel new[‘kdel found’][i] = matched.group(0)

Results
The semi-automated method that integrates relevant functionalities for the prediction of classically secreted proteins
(classical secretome) was constructed. The different components of the workflow were linked using a Python script.
All datasets, including our own, were submitted for analysis by our tool, and the results are described and discussed
below.
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Table 2 The summary of performed analysis. SP: signal peptide; XXEL: KDEL signal consensus. +SP - XXEL: predicted
secretome (classical secretome)

Study / Author, year Proteins analyzed Signal Peptide SP
ER-resident proteins
+SP +XXEL

Predicted secretome
+SP -XXEL

Human islet (HIP) The Human Diabetes
Proteome Project / Topf et
al. (2013)

5317 725 (13.6%) 53 (1%) 672 (12.6%)

Mice islet (MIP) Glucose-stimulated islet
proteome / Waanders et al.
(2009)

6745 708 (10.5%) 59 (0.9%) 649 (9.6%)

INS-1E Rat β-cell (β cell) The Human Diabetes
Proteome Project / Topf et
al. (2013)

2523 254 (10%) 17 (0.67%) 237 (9.4%)

INS-1E ISG (ISG) Insulin granule / Schvartz
et al. (2012)

140 43 (30.7%) 1 (0.7%) 42 (30%)

INS-1E supernatant (SUP) β-cell secretome / Pepaj et
al. (2016)

823 104 (12.6%) 13 (1.6%) 91 (11%)

INS-1E supernatant
(SUP2)

β-cell secretome / our
subset

978 92 (9.4%) 13 (1.3%) 79 (8%)

Data selection and organization of the readable file
A literature review was conducted in order to identify data sets of the pancreatic β-cell secretome upon high glucose
stimulation, presented as a straightforward list that could be used as a reference. To the best of our knowledge, this list
is not available. Therefore, a new analysis was carried out. As a source of datasets and a proof of principle, nine specific
publications containing proteomic data from HPI, MPI, β-cells, ISG, and SUP were selected (Table 1). By applying
the criteria: (1) publication date (data reported in the last 10 years) and (2) the full list of identified proteins available
as supplementary material in the original publication (excel file), five out of the nine publications were selected for
further analysis (Table 1 – highlighted publications). The resulting list from our own analysis of the INS-1E cells upon
20 mM glucose stimulation (SUP2) was also submitted.

Filtering by the presence of SP – potential structure for secreted proteins
Among the 5317 proteins identified in the HPI proteome [32], 13.6% of proteins display SP (+SP) and therefore
potentially belong to the classical secretory pathway. Relatively proportional rates were found in MPI (10.5%) and
β-cells (10%). The ISG, as a structure that undergoes exocytosis, was expected to contain only proteins that went
through the secretory pathway, i.e. +SP. Indeed, it was the dataset containing the highest percentage of +SP proteins
(30.7%). Filtering the list from the β-cell SUP as well as SUP2, both presumed to be highly enriched in secreted
proteins, the percentage of +SP proteins were only 13 and 9.4% respectively. Detailed descriptions are presented in
Table 2.

ER-consensus sequence – identification of a functional tetrapeptide for
pancreatic islets
A continuous retrograde transport of ER-resident proteins from the cis-Golgi is necessary to retrieve the resident
soluble proteins to the ER lumen [8,10]. The selection of these proteins is dependent on a tetrapeptide present in the
C-terminus, classically referred to as KDEL motif in animal cells and HDEL in Saccharomyces cerevisiae [8,9]. How-
ever, multiple functional variants of this motif have been reported, with the main restriction that the last two amino
acids are glu-leu (EL) [45]. The process of identifying the human islets ER-resident proteins was already described in
the methods session (phase III/Supplementary Files S2 and S3) and indeed the most common motif identified was
EL at the last two C-terminal amino acid positions. In agreement with previous publications, high variability at two
preceding positions was identified with amino acids H, S, R, P, E, F, G and D substituting K at first position of KDEL
motif and T, N, E, V, G, A, I and R substituting D at the second position. Considering that protein list submitted for
this analysis was biased to the experimental approaches that led in the first place to their identification as ER luminal
residents, and to maintain the possibility that other ER-localized proteins with different KDEL-like motifs are not
filtered out during unbiased proteome–secretome analyses, we decided to use only EL sequence for further filtering.
However, as KDEL motif interaction with KDEL receptors is impacted by four C-terminal amino acids and keeping
with the traditional annotation, we have further referred to the motif as XXEL, where X represents any of the 20
possible amino acids found in living organisms.
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Our analysis showed that 1% of the HPI (53 proteins), 0.9% of the MPI (59 proteins) and 0.67% of β-cells (17
proteins) proteomes contain the motif XXEL (+XXEL). The ISG displayed only 1 protein with the XXEL motif, the
endoplasmic reticulum chaperone BiP while the supernatants (SUP and SUP2) presented the largest amounts (pro-
portionally): 1.6 and 1.3% (13 proteins both).

The predicted subset of classically secreted proteins: classic secretomes
The final goal of our approach was to predict, in silico, the classically secreted proteins. Although being aware that
the secretome contains ‘all factors secreted by a cell to the extracellular space’ [1,2], we will here name the subset of
classically secreted proteins as the ‘classical secretome’. All phases of the program converged to identify proteins that
are concomitantly +SP and -XXEL, thus generating a list that fulfills the known structural requirements necessary
for secretion through the classical secretory pathway. The auto filter feature from excel was also used within the
‘subcellular location’ column (phase II, previously described). The auto filter provides another layer of refinement,
allowing the search for specific groups of locations. Additionally, we filtered the ISG and supernatants (SUP, SUP2)
data to obtain a ‘cleaner’ list, excluding intracellular contaminants or proteins outside of the +SP -XXEL criteria.

Following this reasoning, the tool reduced the proteomes to the in silico predicted secretome – classical secretome
(Table 2/Supplementary File S4). HPI, MPI, β-cells, ISG, SUP and SUP2 were reduced, respectively, by 87.4, 90.4,
90.5, 70, 88.8 and 92% of their full identified proteome. In other words, 12.6 (HPI), 9.6 (MPI) and 9.5% (β-cell) of
proteins met the criteria to be included in the final list of respective, classical secretomes. Surprisingly, only 30% of
the proteins identified in the ISG were +SP -XXEL proteins. Regarding the analyzed supernatants only 11% (SUP)
and 8% (SUP2) fulfilled our criteria of a classical secretome (Supplemenatry File S5).

Comparative analysis – conservation among the predicted secretomes
Although conservational studies among secretomes are not uncommon investigations [46,47], the analysis of how
conserved the secretomes of human and rodent islets/β-cells are is still a loose end. Our data showed that HPI and
MPI predicted secretomes are 49.4% similar. Using the β-cell predicted secretome as a reference, 119 proteins (out of
237) are enclosed within the HPI classical secretome, indicating that β-cells and HPI share 50.2% similarity in their
secretomes. β-Cells and MPI classical secretomes share 52.3% identity. About 78% proteins reported in ISG where
found in β-cell predicted secretome as well (32 out of 41). Finally, comparing the ISG to filtered SUP, we observed
73% similarity. Interestingly, the comparison of predicted secretomes of HPI and MPI to β-cell yielded 81 common
proteins. However, when we compared limited with β-cells, predicted secretomes of SUP and ISG or SUP and SUP2,
we identified only 25 and 21 common proteins. Overlapping patterns are presented in Figure 2.

Pathways that are enriched in the human islet predicted secretome:
analysis of in silico obtained data set
To evaluate the biological relevance of in silico prediction of secretome(s), we have analyzed the biggest protein sub-
set (in silico HPI secretome) for the pathway over-representation. We used Reactome, an open-source, curated and
peer-reviewed pathway database [48] for analysis. Based on identification of 498 out of the 672 proteins submitted,
Reactome generated a list of the 25 pathways found in the human islet predicted secretome sorted by p-value (Sup-
plementary File S6). The list of enriched pathways clustered in three groups: (1) cell adhesion/extracellular matrix
(ECM) interactions, (2) immune system and coagulation, and (3) cell proliferation (Table 3).

Discussion
We showed here the utility of a new method to analyze proteomic data. It is a straightforward approach that can be
used prior to the laboratory validation process, helping to support research questions (Figure 1). In order to accom-
plish its functions of filtering for classically secreted proteins, we have selected UniProtKB and PROMALDS3 as the
reliable database and server, as well as Python as the programming language. All components necessary for our ap-
proach to function properly are free and publicly available at https://github.com/tatiorli/ParseSignalPeptides. The
documentation can be found in the Supplementary File S1.

UniProtKB provides a comprehensive and freely accessible resource of protein information [49]. Manually an-
notated and reviewed records extracted from literature and curator-evaluated computational analysis [43,49]. From
UniProtKB, we retrieved data regarding subcellular location, full amino acid sequence and the presence of SP of each
protein present in the input list. The subcellular location was used to increase the analysis power of our tool although
this feature has to be applied cautiously as some proteins’ annotations are (1) derived experimentally while other are
not thus introducing a strong bias, and (2) some proteins are shown to localize to two or more cellular compartments.
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Figure 2. Venn diagrams showing overlaps between different subsets of classically secreted proteins (secretomes)

(A) β-Cell secretome and mice pancreatic islets (MPI) are approximately 50% similar to human pancreatic islets (HPI). (B) The

filtered β-cell insulin granule (ISG) and the β-cell supernatant (SUP) share around 80% identity with the β-cell secretome. (C)

β-Cell secretome (SUP2) shares 50% similarity with the β-cell supernatant (SUP). Both supernatants (SUP and SUP2) share 80.2

and 65.8%, respectively.

The proteins’ full amino acid sequences, on the other hand, subsequently used for the XXEL detection were available
for all tested proteins. The SP presence is dictated by UniProt if the cleavage site has been determined by direct protein
sequencing or if it was predicted by at least two different predictive tools (Phobius, Predotar, SignalP, and TargetP).
The credibility and wide usage of the database provides a strong argument to employ it as a central database for our
method.

The ER-retention signal is crucial for the recovery of ER-resident proteins [10]. Classically, the process is mediated
by receptors that recognize the KDEL motif, returning a protein that has escaped to the ER lumen. Three different
receptor homologs were described in humans, forming the KDEL receptor family [50] and they exhibit varying affini-
ties for KDEL motif variants [45]. So far, 59 KDEL variants have been identified experimentally [45]. We rationalized
that other functional KDEL variants may exists and thus decided on an unbiased approach to identify them. We have
aligned the amino acid sequences of experimentally proven ER-resident proteins (HPI data set) and identified only
the last two C-terminal amino acids: EL as the consensus sequence. The first two amino acids within KDEL motif,
varied among proteins (Supplementary Files S2 and S3) and in agreement with previous publications [45]. To avoid
bias, where only experimentally proven ER-resident proteins are used for KDEL variant identification, we decided
to use for protein filtering the most common identified EL consensus (for consistency referred to as XXEL) and not
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Table 3 Clusters with the enriched pathways identified in the predicted human islets secretome according to Reactome
database

CLUSTERS PATHWAYS

CELL ADHESION / ECM INTERACTIONS Laminin interactions

Integrin cell surface interactions

Extracellular matrix (ECM) proteoglycans

Non-integrin membrane–ECM interactions

Assembly of collagen fibrils and other multimeric structures

Degradation of the ECM

ECM organization

Collagen formation

Collagen degradation

MET activates PTK2 signaling

Collagen biosynthesis and modifying enzymes

Elastic fibre formation

MET promotes cell motility

IMMUNE SYSTEM / COAGULATION Neutrophil degranulation

Platelet degranulation

Response to elevated platelet cytosolic Ca2+

Formation of Fibrin Clot (Clotting cascade)

Platelet activation, signaling and aggregation

Innate immune system

CELL PROLIFERATION Regulation of insulin-like growth factor (IGF) transport and uptake by insulin-growth
factor binding proteins (IGFBPs)

Syndecan interactions

OTHER Post-translational protein phosphorilation

Retinoid metabolism and transport

Metabolism of fat-soluble vitamins

Glycosphingolipid metabolism

a limited number of KDEL variants found via alignment in the tested data set (Supplementary File S3). Clearly, the
future experimental verification of each possible variant functionality is necessary. This approach limits false negative
selection (non-classical KDEL sequence) but maintains a 14.4% level of false positive choices. It is important to point
out that the current assignment of proteins to other than ER cell compartments (false positive group) may change as
new experimental data is provided, lowering the rate of false positive identifications.

Further validation of our approach derives from the decrease in the numbers of XXEL proteins proportionally to
the total number of identified proteins through the models. While the HPI and MPI contained 53 and 59 +XXEL
proteins respectively, the β-cell presented 17 and the ISG only 1 (Table 2). The only +XXEL protein found within the
ISG is the endoplasmic reticulum chaperone BiP, the ER chaperone already described in the context of the extracellular
compartment [51,52]. Regarding theβ-cell supernatants (SUP and SUP2), both showed 13 +XXEL proteins (Table 2),
indicating probable contamination with cellular matter and/or secretion of ER proteins by the insulinoma cell model,
INS-1E. According to the Human Protein Atlas, around 2% of all human proteins have been experimentally shown
to localize to the ER [53]. Another report states that 202 ER-proteins are found in the pancreas ER (corresponding to
around 1% of all human proteins) [54]. Our results showed proportional trends (approximately 1%) suggesting a high
level of consistency between our screening and other published approaches (Table 2). If only the cellular localization
filter is used to search for ER proteins, many more than the ones in the list of +XXEL proteins will be found. The
probable reason lies in the fact that 50% of all ER proteins are shown to co-localize to other compartments such as
cytosol and nucleus [53].

It is reported that 39% of the human protein-coding genes are predicted to have a SP [21]. Considering that the
HPI proteome is one-third of the human proteome [32] and that we showed it contains 13.6% +SP islet proteins, the
results are coherent. MPI and β-cells exhibit similar proportions (+−10%). The ISG and supernatants (SUP, SUP2)
were expected to present higher percentages since they are predicted to contain only ready-to-be secreted or already
secreted proteins. Surprisingly only ISG showed substantial increase (up to 30%) while SUP and SUP2 contained only
12.6% and 9.2% of +SP proteins (Table 2). This can be explained by (1) the presence of intracellular contaminants as
a result of sample processing, (2) a large number of unconventionally secreted proteins (that do not fulfill our criteria
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of +SP), (3) a reflection of new biological processes by which β-cells can secrete proteins e.g. formation of exosomes
[55] or (4) a characteristic of insulinoma INS-1E cell line. It is important to mention that the presence of SP is not
a guarantee of secretion, as +SP proteins can eventually be retained in the lumen of the ER, lysosomes, any other
organelle along the secretory pathway or in the membranes (e.g. membrane bound receptors).

Our ultimate goal was the creation of a list of the islet and β-cell classically secreted proteins that we achieved by
reducing the human andβ-cell proteomes to +SP -XXEL proteins (Supplementary File S4). With no major differences
in the proportions, HPI and MPI, as well as β-cells contain 12.6, 9.6 and 9.4% of proteins within their respective
proteomes that represent what we call the classical secretome (Table 2). This secretome includes many proteins that
fit our criteria (+SP -XXEL) but that are not elsewhere annotated as secreted. It includes membrane proteins and
proteins from organelles in the secretory pathway (i.e. lysosomes). To further narrow down the secretome list multiple
approaches can be suggested, e.g. (1) usage of the cellular localization filter, (2) immunostaining of individual proteins
or (3) exogenous expression of the tagged protein of interest.

A series of reviews and reports analyze how translatable are the discoveries and therapeutic perspectives made
in rodent models to humans in the field of diabetes [56]. These discussions are especially important in order to
choose between models that can best serve for the purposes of clarifying the specific mechanisms behind diabetes
development and progression. The considerations at the protein expression level utilize the comparisons at the whole
cell proteome or transcriptome level [57]. We decided to analyze how similar the subsets of in silico predicted classical
secretomes of HPI and β-cells are (Figure 2). After filtering made by our tool, the lists of predicted classically secreted
HPI and MPI proteins were overlaid. The overlap we obtained came as a surprise: 50.2% (Figure 2). The variance
may represent species differences and/or reflect technical hindrances e.g. protein annotation and naming differences
between animal species, databases redundancies, obsolete and deleted accession numbers, mass spectrometry related
issues (machine and software used to analyze input samples) and finally, sample preparation and experimental design.

Much higher evidence of overlap was seen when 78% of the +SP -XXEL ISG proteins matched with the in silico
β-cell secretome, as well as the 73% matching with the +SP -XXEL SUP (Figure 2). Moreover, the predicted β-cell
secretome and the +SP -XXEL from SUP share 80% identity. Interestingly, our β-cell secretome (SUP2) is only 65.8%
similar to the SUP secretome (Figure 2). This difference possibly arises from the different research designs and sample
processing, where SUP is a supernatant from β-cells exposed to vitamin D [35], our (SUP2) comes from β-cells after
high glucose exposure (20 mM), underscoring biases related to experimental design.

Another analysis was carried out in order to support the reliability of the filtering made by our tool. Using Re-
actome database, the biological processes enriched in the HPI classical secretome were investigated. The 25 most
relevant pathways were identified (Supplementary File S6), and we clustered them in three groups (Table 3). The first,
ECM interactions and cell adhesion group, indicate an active islet participation in creation and modeling of extracel-
lular microenvironment where different cell types need to coexist. This subject has gained a special attention in the
islet transplantation field, where ECM molecules have been explored in their clinical potential to contribute to the
islet’s engraftment success [58]. The second group is related to the immune system and consists of proteins related to
neutrophil and platelet activation and degranulation, activation of other innate immune system components, and gly-
cosphingolipid metabolism. These factors are tightly involved in the regulation of the inflammation levels that have
been associated with the development of diabetes and islet homeostasis [59,60]. Finally, the third group was mainly
represented by the insulin growth factors (IGFs) signaling and metabolism of fat-soluble vitamins. Given that the
IGFs were shown to be involved in β-cell survival and insulin secretion, their presence in the extracellular space is of
no surprise [61,62]. On the other hand, it is interesting to highlight that pathways involved in the fat-soluble vitamins
(vitamins A, D, E, and K) metabolism are enriched in the HPI secretome. Recently, a report showed that a lack of
vitamin A can lead to β-cell dysfunction and insulin production in mice [63], while vitamin D has been investigated
for its potential properties to protect and repair damaged β-cells [64]. Although 782 pathways were identified by at
least one of the secreted proteins on our list, no pathways regarding well known intracellular processes (DNA repli-
cation, chromatin organization) were significantly enriched, demonstrating that our analytical approach provides a
good level of clearance of intracellular contaminants.

The pancreatic islets constitute 1–2% of the total cell mass of an adult pancreas [65]. The coding genes and proteins
expressed in the pancreas are described and characterized in various publications [66]. However, to the best of our
knowledge, a reference list from a free-labeled MS approach analyzing the subset of proteins secreted by the islets or
β-cells is not yet available. Secretome proteins have a major role in central physiological processes and are considered
as a rich resource for the identification of biomarkers and drug targets. Quantitative proteomics of secreted proteins
is possible by MS and has been used before [67–69], but has proven difficult and highly biased due to methodological
limitations. These limitations have been partially addressed with the development of techniques such as the SPECS
(the secretome protein enrichment with click sugars) that allow proteome-wide identification of secreted proteins
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at high-depth [70]. Further improvements can be achieved with a sophisticated in silico approach designated to
integrate specific protein datasets already available, as presented here.

The current version of out tool does not integrate any database capable to distinguish with certainty proteins that
are unconventionally secreted, which will be in an important update in the future. However, these groups of proteins
could be inferred to a certain degree by first positively filtering for annotated secreted proteins and then subtracting
the proteins with +SP – XXEL. Our in silico secretome prediction script can be adjusted to the investigation of any
kind of proteomic data from any tissue or cell type.

Conclusion
In the present study, we demonstrated how different functionalities of diverse computational tools can be used to-
gether to extract useful information in order to predict secreted proteins from proteomic data. All the programs used
are open source tools freely available. Our approach reduced whole cell proteomes (HPI, MPI, and β cell) and filtered
data from ISG and supernatants from potential contaminants and non-secreted proteins, predicting their respective
classical secretomes.

As the analytical performance of proteomic platforms will continuously improve, resulting in better experimental
description of secretomes, their output will identify new physiological processes and contribute to the identification
of new therapeutic targets.
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