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Objective: We used the amplitude of low-frequency fluctuation (ALFF) method to

investigate spontaneous brain activity in patients with optic neuritis (ON) in specific

frequency bands.

Data andMethods: A sample of 21 patients with ON (13 female and eight male) and 21

healthy controls (HCs) underwent functional magnetic resonance imaging (fMRI) scans

in the resting state. We analyzed the ALFF values at different frequencies (slow-4 band:

0.027–0.073Hz; slow-5 band: 0.01–0.027Hz) in ON patients and HCs.

Results: In the slow-4 frequency range, compared with HCs, ON patients had

apparently lower ALFF in the insula and the whack precuneus. In the slow-5 frequency

range, ON patients showed significantly increased ALFF in the left parietal inferior and

the left postcentral.

Conclusion: Our results suggest that ON may be involved in abnormal brain function

and can provide a basis for clinical research.

Keywords: amplitude of low-frequency fluctuation, optic neuritis, resting state, functional magnetic resonance

imaging, slow 5 and slow 4 frequencies

INTRODUCTION

Optic neuritis (ON) refers to all inflammatory lesions of the optic nerve, usually manifesting as
acute or subacute vision loss with or without orbital pain, eye rotation pain, visual field defects
or other clinical symptoms, and is the most common neurological disease leading to visual loss in
young andmiddle-aged adults (1). The causes of optic neuritis are thought to include demyelinating
diseases of the central nervous system, infectious diseases and immune diseases. A survey found
that ON was the second most damaging disease among patients under 50 years of age after
glaucomatous optic neuropathy (2). Worldwide, the annual incidence of unilateral optic neuritis
is (0.94–2.18)/100,000, of which the annual incidence in the United Kingdom is 1/100,000 and that
in Japan is 1.6/100,000 (3, 4). ON occurs predominantly in people aged 20–50, with an average age
of onset of 36 years, and more than 70% of patients are female (5). Evidence suggests that there are
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racial and population differences in ON, which is more common
among young, middle-aged, white females (6). Studies have
shown that 80% of patients may have severe vision loss, and more
than 60% of patients have monocular or binocular vision loss
within 7.7 days after the first episode (7). The high incidence,
young age of onset, high risk of blindness, and poor visual
prognosis of ON have brought great physical and psychological
burdens to patients and families, seriously affecting patients’
quality of life. Its early diagnosis and treatment has become the
focus of current research and the development of neuroimaging
has provided a new method for the diagnosis of ON.

Magnetic resonance imaging (MRI) techniques have evolved
rapidly to provide a non-invasive neuroimaging method that
can assess functional and structural changes in the brain (8).
Previous studies have demonstrated that synchronous brain
activity is closely related to visual experience (9, 10). Resting state
functional MRI (rsfMRI) was first proposed by Biswal (11) to
assess consistent patterns of spontaneous fluctuation of blood
oxygen level dependent (BOLD) signals during rest. These signals
can be used to measure interhemispheric coordination (12).

The amplitude of low-frequency fluctuation is a widely
used re-fMRI study method, which reflects the blood oxygen
level-dependent (BOLD) signal of spontaneous neural activity
in the low-frequency band (0.01–0.08Hz) and can detect the
intrinsic local activity of the brain. In recent years, domestic
and international researchers have started to use sub-band
ALFF analysis to study the correlation between neural activity
and cognitive function in different neurological diseases by
subdividing the frequency range of spontaneous brain activity,
including slow-6 (0–0.01Hz), slow-5 (0.01–0.027Hz), slow-4
(0.027–0.073Hz), slow-3 (0.073–0.198Hz), slow-6 (0–0.01Hz),
and slow-2 (0.198–0.250Hz). Among them, slow-2, 3 and 6
frequencies correspond to high frequency physiological noise
interference, white matter signal and low frequency drift
signal, respectively. And the study of slow-4 and slow-5
specific frequency bands can study the spatial distribution
characteristics of brain regions with abnormal spontaneous
functional activity in the brain in more depth, which in
turn reduces the interference of noise in other frequency
bands and increases the sensitivity of detecting abnormal
activity in brain regions. RsfMRI and both functional and
anatomic imaging have been applied to various ocular diseases
(13–19).

The present study aims to determine whether spontaneous
brain activity is related to the clinical characteristics of patients
with ON. To detect the spontaneous brain activity of ON
patients and healthy controls (HCs), we used the amplitude
of low-frequency fluctuation (ALFF) technique to measure
activity in different low frequency bands (slow 4 band: 0.027–
0.073Hz and slow 5 band: 0.01–0.027Hz) and compared these
between groups.

MATERIALS AND METHODS

Participants
This study included 21 ON patients (13 females and
eight males) admitted to the Ophthalmology Department

of the First Affiliated Hospital of Nanchang University
(Nanchang, China). The selection criteria for all ON
patients were: (1) the presence of eye pain related to acute
vision loss; (2) nerve fiber damage and abnormal vision
(Figure 1); (3) pupil block or abnormal visual evoked
potential; (4) no other apparent cause of acute vision loss;
(5) no medication taken before the examination; (6) no
drug, alcohol, or tobacco addictions; and (7) no history of
organ transplantation.

In addition, 21 age-matched HCs (13 females and eight males)
were recruited. The inclusion criteria for HCs were as follows:
(1) no abnormalities in brain parenchyma; (2) unilateral bare eye
vision≥1.0 (3) normal nervous system.

All participants are able to go through an MRI
scan. We used logMAR (Logarithm of Mininal Angle
Resolution) method to obtain the best-corrected visual
acuity (BCVA) of both groups and mean hospital anxiety
and depression scale (HADS) to get the association with
ALFF values.

The study was approved by the ethics committee of
the First Affiliated Hospital of Nanchang University,
and all methods were applied in accordance with the
Helsinki Declaration. The study design description was
provided to the participants before they signed informed
consent forms.

MRI Parameters
All subjects underwent MRI scans in a 3-Tesla scanner (Trio,
Siemens, Munich, Germany). They are constrained to the
inspection area of the instrument and their heads are secured
to prevent movement during the scanning process. During
examination, the subjects remained awake, closed their eyes,
and relaxed while avoiding focused thought. All scans were
conducted by the same imaging physician, who observed the
subjects until the process was completed successfully. Routine
brain localization and T1 and T2 sequences were performed
first. The specific parameters were: repeat time (TR) = 1,900ms;
echo time (TE) = 2.26ms, thickness =1.0mm, gap = 0.5mm,
acquisition matrix = 256 × 256, field of view (FOV) = 250mm
× 250mm, and reversal angle = 90◦. No substantial brain
lesions were identified in the scanning process. RsfMRI data
were acquired using a gradient-recalled echo sequence. The
specific parameters were: TR = 2,000ms, TE = 30ms, thickness
= 4.0mm, gap = 1.2mm, acquisition matrix = 64 × 64, flip
angle = 90◦, FOV = 220mm × 220mm. Data were collected
continuously at 240 time points, and the scanning range included
the whole brain.

MRI Data Processing
Data were obtained from functional images using the MRIcro
software package (www.MRIcro.com) after prefiltering. SPM8
(http://www.fil.ion.ucl.ac.uk/spm) and DPARSFA (http://
rfmri.org/ DPARSF) software were used to preliminarily
analyze data before conversion to the NIFTI format. During
magnetization equilibration the first 10 time points were
discarded. Subjects were excluded if they had 1.5 angular
motion or more than 1.5mm maximum shift in the x,
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FIGURE 1 | Example of optic neuritis observed using a FC and FFA. FC, fundus camera; FFA, fluorescence fundus angiography.

TABLE 1 | Clinical characteristics of patients between ON and HC groups.

Characteristics ON HCs t-value p-values

Male/female 813 813 NA NA

Age (years) 44.83 ± 10.71 45.83 ± 11.38 −0.222 0.821

Weight (kg) 57.08 ± 7.30 58.85 ± 5.85 −0.463 0.652

Height (cm) 160.81 ± 9.31 161.38 ± 6.28 −0.485 0.634

BMI (kg/m2 ) 21.13 ± 1.62 21.17 ± 1.27 −0.056 0.963

Duration of ON (days) 4.67 ± 3.26 NA NA NA

Duration from onset of ON

to rs-fMRI scan (days)

5.42 ± 2.94 NA NA NA

Best-corrected VA, right 0.25 ± 0.32* 1.30 ± 0.31 −8.138 <0.001

Best-corrected VA, left 0.85 ± 0.52* 1.28 ± 0.32 −2.481 <0.001

Independent t-tests comparing the two groups (*P < 0.05) represented statistically significant differences). ON, optic neuritis; HCs, healthy controls; NA, not applicable; BMI, body

mass index; rs-fMRI, resting-state functional magnetic resonance; VA, visual acuity.

FIGURE 2 | Frequency-associated ALFF analyses between the ON and HC groups. (A) Main effects of group, (B) main effects of frequency band, and (C) their

interactions, with Gaussian random field theory correction, voxel-level P < 0.01 and cluster-level P < 0.05. Compared with HC, red represents the brain areas with

increased AlFF, and blue represents the brain areas with decreased AlFF in patients with ON. ALFF, amplitude of low-frequency fluctuation; ON, optic neuritis; L, left;

HC, healthy control; R, right.
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TABLE 2 | Frequency-associated ALFF differences, with Gaussian random field theory correction, voxel-level P < 0.01 and cluster-level P < 0.05.

Brain area BA Peak (MNI) Peak voxels T-value

X Y Z

Main effects of group

Left cingulum ant 24 −6 10 20 89 13.11

Right cingulum ant 24 0 −12 30 83 23.11

Right cerebellum / 18 −87 −45 800 13.67

Right temporal inf 20 45 −30 −21 117 10.02

Left temporal inf 21 −57 −12 −30 331 18.68

Left parietal inf 40 −54 −36 42 82 18.31

Main effects of frequency band

Right rectus 11 9 27 −18 930 −1.88

Right occipital sup 19 24 −84 39 106 −6.2

Left caudate 24 −21 −36 12 3,044 10.4

Left temporal pole sup 38 −3 12 −24 145 7.08

ALFF, amplitude of low-frequency fluctuation; BA, Brodmann area; MNI, Montreal neurological institute.

FIGURE 3 | Difference in the ALFF values in the brain between the ON and HC groups across slow-4 (A) and slow-5 (B) frequencies, with Gaussian random field

theory correction, voxel-level P < 0.01 and cluster-level P < 0.05. Compared with HC, red represents the brain areas with increased AlFF, and blue represents the

brain areas with decreased AlFF in patients with ON. ALFF, amplitude of low-frequency fluctuation; ON, optic neuritis; L, left; HC, healthy control; R, right.

y, or z direction during the fMRI examination. After the
head motion correction, the fMRI images were spatially
normalized to the Montreal Neurological Institute space
criteria using the standard echo-planar imaging template

and resampling the images at a resolution of 3mm ×

3mm × 3mm. On the basis of the above, the signals
of slow-4 and slow-5 were extracted separately using

band-pass filtering oscilloscope, and the ALFF values
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TABLE 3 | In the slow-4 band (0.027–0.073Hz), ALFF differences between the PHN and HC groups with Gaussian random field theory correction, voxel-level P < 0.01

and cluster-level P < 0.05.

Brain area BA Peak (MNI) Peak voxels T-value

X Y Z

ON<HCs

Left insula 13 −39 −12 12 173 23.01

Left precuneus 31 −3 −54 33 111 12.67

ALFF, amplitude of low-frequency fluctuation; ON, optic neuritis; HCs, healthy controls; BA, Brodmann area; MNI, Montreal neurological institute.

TABLE 4 | In the slow-5 band (0.001–0.027Hz), ALFF differences between the PHN and HC groups with Gaussian random field theory correction, voxel-level P < 0.01

and cluster-level P < 0.05.

Brain area BA Peak (MNI) Peak voxels T-value

X Y Z

ON>HCs

Left parietal inf 40 −30 −48 54 109 18.68

Left postcentral 6 −33 −21 45 417 18.31

ALFF, amplitude of low-frequency fluctuation; ON, optic neuritis; HCs, healthy controls; BA, Brodmann area; MNI, Montreal neurological institute.

FIGURE 4 | The mean ALFF values of altered brain regions between the ON and HCs. ALFF, amplitude of low-frequency fluctuation; ON, optic neuritis; HCs, healthy

controls.

were calculated and analyzed by REST software (http://
sourceforge.net/projects/testing-fmri).

Statistical Analysis
Student’s t-test was used to compare ALFF data between
groups (20). A two-way analysis of variance and post-
hoc tests were used to compare interaction s between
groups and frequency bands. Based on Gaussian random
field theory [z > 2.3, crowd >40 voxels, P < 0.01,

false detection rate (FDR) corrected], we regulate
the voxel offset (P < 0.05) as the statistical premise
for comparisons.

Brain-Behavior Correlation Analysis
Pearson correlation analysis was used to look for associations
between ALFF and clinical level using a threshold of P < 0.05
for statistical significance.
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FIGURE 5 | Correlations between the mean ALFF values and the clinical behaviors. (A) The HADS scores showed a negative correlation with the ALFF value of the

slow-4 band in the left precuneus (r = −0.974, P < 0.001), and (B) the HADS scores showed a negative correlation with the ALFF value of the slow-4 band in the left

parietal inf (r = −0.762, P < 0.001). ALFF, amplitude of low-frequency fluctuation; HADS, hospital anxiety and depression scale.

TABLE 5 | Amplitude of low-frequency fluctuation method applied in

ophthalmological diseases.

Reference Disease

Huang et al. (13) Primary angle-closure glaucoma

Tan et al. (14) Congenital comitant strabismus

Li et al. (15) Monocular blindness

Pan et al. (18) Acute eye pain

Shi et al. (16) Corneal ulcer

Kang et al. (17) Retinal detachment

Wu et al. (19) Retinal vein occlusion

FIGURE 6 | Correlations between mean ALFF values and behavioral

performance. Compared with the HCs, the ALFF value of the left precuneus

was decreased in ON. And the patients with ON exhibited with more

depression and anxiety. ALFF, amplitude of low-frequency fluctuation; HCs,

healthy controls; ON, optic neuritis.

RESULTS

Clinical Characteristics of the Sample
No significant differences were found in age (P = 0.821), weight
(P = 0.652), height (P = 0.634), or BMI (P = 0.963) between the
two groups. Significant differences in best-corrected VA-right (P
< 0.001) and best-corrected VA-left (P < 0.001) between the ON
and HC groups. Details are shown in Table 1.

Changes in ALFF in Different Frequency
Bands
As shown in Figure 2A and Table 2, he two-way repeated-
measures ANOVA was applied to explore main effects between
groups. There were apparently increased ALFF (ON > HCs)
in the right cerebellum, the right temporal inferior (temporal
inf), the left temporal inf, and the left parietal inferior (parietal
inf) and remarkably decreased ALFF (ON < HCs) in the left
cingulum anterior (cingulum ant) and the right cingulum ant in
brain regions with a main effect of group.

In several brain regions (Figure 2B; Table 2), the ALFF
differed significantly between frequency bands, including
increased ALFF of the right rectus gyri (slow-5 > slow-4), right
supraoccipital segment (right supraoccipital) and decreased
ALFF (Figure 2B; Table 2). Slow-5 < slow-4 in left caudate
and left temporal pole sup. No obvious interaction was found
between groups and frequency bands (Figure 2C).

No bidirectional changes were detected by post hoc t-tests in
ALFF across slow-4 and slow-5 frequencies. Significantly lower
ALFF values were found in the left insula and the left precuneus
in the slow-4 band, but significantly higher ALFF values in the left
parietal inf and the left postcentral in the slow-5 band (Figure 3;
Tables 3, 4). Themean ALFF values between the ON patients and
HCs are represented in Figure 4.

Correlation Analysis
In the patients with ON, the mean HADS scores negatively
correlated with the ALFF values of the slow-4 band in the left
precuneus (r = −0.974, P < 0.001), and in the left parietal inf (r
=−0.762, P < 0.001) (Figure 5).
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TABLE 6 | Brain regions alteration and its potential impact.

Brain

regions

Experimental

result

Brain function Anticipated results

Insula ON<HCs Involved in consciousness, bodily

impulses, and controlling and

suppressing natural impulses

Abnormal activation of areas in

the insula, diseases such as

Alzheimer’s disease and epilepsy

Precuneus ON<HCs Part of the default model network Depression and anxiety

Parietal inf ON>HCs Part of the default model network,

correlated with visual word

recognition

Depression and anxiety, reflect

compensation of the visual

function

Postcentral ON>HCs Associated with information

processing of tactile stimuli

Compensate the impairment of

the sensorimotor dysfunction

ON, optic neuritis; HCs, healthy controls.

DISCUSSION

ALFF is a common clinical method reflecting the relationship
between various clinical diseases and corresponding brain
regions, as shown by many previous studies (Table 5).

Main Effect of the Groups
ALFF values were significantly higher in ON patients thanHCs in
the right cerebellum, the right temporal inf, the left temporal inf,
and the left parietal inf, and lower than HCs in the left cingulum
ant and the right cingulum ant.

The cerebellum is responsible for balance, cognitive tasks
and motor control. We have shown using fMRI that the
cerebellum is involved in cognition and memory (21). Previous
studies have linked cerebellar dysfunction to schizophrenia (22),
bipolar disorder (23), and depression (24) and demonstrated
higher cerebellar activation in patients with primary progressive
multiple sclerosis (MS) than in healthy controls (25–27).
Similarly, we found that the ALFF value of the right cerebellum
is higher in ON patients than in controls, which may reflect
functional compensation for neural damage. In the resting state,
the default model network (DMN) is continuously activated in
the brain and is associated with many conscious activities (28–
32). In about 20% of MS patients, ON is the most important
clinical feature (33). Previous research has shown (34) that DMN
connectivity of the anterior cingulate cortex of MS is weaker
than in controls and that the converse is true in the posterior
cingulate cortex, with relatively strong connectivity in MS. In
line with these findings, the present study found decreased
ALFF in patients with ON in the bilateral cingulum ant and
left precuneus, and increased ALFF in the bilateral temporal inf
and left parietal inf. ALFF may play vital roles in understanding
functional reorganization in ON patients. Therefore, changes in
the ALFF values of the bilateral cingulate gyrus and the left
anterior gyrus may be explained by the DMN damage caused by
ON, and the abnormalities of the bilateral temporal lobe and left
parietal lobe inf may be related to the stability of the network.

Main Effect of Frequency Band
Higher ALFF was found at slow-5 than at slow-4 frequency range
in the right rectus, and right occipital sup and the converse, with

lower ALFF at slow-5 than at slow-4, in the left caudate and left
temporal pole sup. Various neurophysiological mechanisms give
rise to a range of oscillatory bands with a correspondingly wide
range of physiological functions (35). Consistent with previous
studies, we found abnormal amplitudes in the frontal, occipital
and parietal cortex in ON (35), with the slow 4 range dominating
the ventral prefrontal cortex (36).

Frequency-Dependent Alterations in ALFF
in On Patients
We found bidirectional changes of ALFF both in the ON and
HC groups across slow-4 and slow-5 frequency bands, providing
new insight into frequency-dependent alterations of ON patients.
Excessively secondary to ALFF decreased in insula and the punch
precuneus gyrus in the slow-4 band, but ALFF values were
seriously upper in the awaken parietal inf and the talk area over
postcentral gyrus in the slow-5 band.

The insula is located in the depths of the lateral sulcus, (37)
is anatomically related to the frontal, parietal, and temporal
lobes (38) and plays vital roles in consciousness, bodily impulses,
and in controlling and suppressing natural impulses (39, 40).
Insular dysfunction has also been linked to diseases including
Alzheimer’s disease (41) and epilepsy (42). Previous studies have
demonstrated abnormal activation of the insula in ON patients
(43, 44). Based on these findings, we infer that ON may be
involved in insula dysfunction.

Brain regions are associated with the DMN (45). It is
increasingly evident that DMN vulnerability plays an important
part in depression and anxiety (46). The present study found
lower ALFF in the left precuneus in patients with ON which
indicates that ON might lead to DMN damage (Figure 6).

The subparietal lobule participates in visual recognition (47).
It is also related to diseases such as schizophrenia (48) and
Alzheimer’s disease (49). In our study, abnormality of left parietal
atrial fibrillation in patients with ON may reflect compensation
for abnormal visual function.

Located in the primary somatosensory cortex, the
postcentral gyrus is associated with information processing
triggered by tactile stimulation (50). The primary
somatosensory cortex is involved in the perception of
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pain (51). Previous research has demonstrated reduced
white matter in the postcentral gyrus in patients with
neuromyelitis optical (52). In addition, the sensorimotor
system of patients with optic neuromyelitis is impaired
(53). In the present study, we demonstrated increased
ALFF values in the left postcentral gyrus in patients with
ON, which may reflect compensation for sensorimotor
dysfunction (Table 6).

LIMITATIONS

Our research has limitations. First, the sample size is relatively
small. In addition, the correlation between clinical characteristics
of ON and ALFF values require further investigation. Thus, we
are looking forward to designing more experiments to further
elucidate the underlying molecular mechanisms.

CONCLUSIONS

In summary, our study reveals abnormal spontaneous activities
in regional brain areas in ON, and may provide insight into the
underlying pathogenetic mechanism.
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