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Abstract: Background and Objectives: Rheumatoid arthritis (RA) is a chronic autoimmune
disease characterised by joint inflammation and pain. Metabolomics approaches, which are
high-throughput profiling of small molecule metabolites in plasma or serum in RA patients,
have so far provided biomarker discovery in the literature for clinical subgroups, risk fac-
tors, and predictors of treatment response using classical statistical approaches or machine
learning models. Despite these recent developments, an explainable artificial intelligence
(XAI)-based methodology has not been used to identify RA metabolomic biomarkers and
distinguish patients with RA. This study constructed a XAI-based EBM model using global
plasma metabolomics profiling to identify metabolites predictive of RA patients and to
develop a classification model that can distinguish RA patients from healthy controls.
Materials and Methods: Global plasma metabolomics data were analysed from RA patients
(49 samples) and healthy individuals (10 samples). SMOTE technique was used for class
imbalance in data preprocessing. EBM, LightGBM, and AdaBoost algorithms were applied
to generate a discriminatory model between RA and controls. Comprehensive performance
metrics were calculated, and the interpretability of the optimal model was assessed us-
ing global and local feature descriptions. Results: A total of 59 samples were analysed,
49 from RA patients, and 10 from healthy subjects. The EBM generated better results than
LightGBM and AdaBoost by attaining an AUC of 0.901 (95% CI: 0.847–0.955) with 87.8%
sensitivity which helps prevent false negative early RA diagnosis. The primary biomarkers
EBM-based XAI identified were N-acetyleucine, pyruvic acid, and glycerol-3-phosphate.
EBM global explanation analysis indicated that elevated pyruvic acid levels were signif-
icantly correlated with RA, whereas N-acetyleucine exhibited a nonlinear relationship,
implying possible protective effects at specific concentrations. Conclusions: This study
underscores the promise of XAI and evidence-based medicine methodology in developing
biomarkers for RA through metabolomics. The discovered metabolites offer significant
insights into RA pathophysiology and may function as diagnostic biomarkers or thera-
peutic targets. Incorporating EBM methodologies integrated with XAI improves model
transparency and increases the therapeutic applicability of predictive models for RA diag-
nosis/management. Furthermore, the transparent structure of the EBM model empowers
clinicians to understand and verify the reasoning behind each prediction, thereby fostering
trust in AI-assisted decision-making and facilitating the integration of metabolomic insights
into routine clinical practice.
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1. Introduction
Rheumatoid arthritis (RA) serves as a chronic autoimmune condition that produces

persistent joint inflammation, which advances toward destructive joint damage, serious
physical disability, and diminished life quality. RA affects 0.3% to 1% of the worldwide
population and shows higher prevalence in women at 2–3 times compared to men across
the global population [1,2]. The disease incidence rates grow significantly between ages
40 and 70. The global disease prevalence is most prominent among developed regions
of North America and Northern Europe yet developing countries together with Asia
experience increasing disease rates. Several pathophysiological determinants have been
documented to explain the factors between genetic predisposition and environmental
exposure to smoking and air pollution and life choices that lead to obesity and diet as
contributors to RA development and disease progression. These increasing epidemiological
burdens underline a greater need for innovative approaches to diagnosis and therapy to
mitigate its global impact [3,4].

In such a complex and heterogeneous disease, RA represents one of the biggest chal-
lenges for early diagnosis, disease monitoring, and personalised treatment strategy; thus,
it requires the identification of reliable biomarkers to guide clinical decisions. Clinical
management of RA is further complicated due to its multifactorial nature involving genetic,
environmental, and immunological factors. Recent metabolomics and artificial intelligence
(AI) developments have emerged as transformative tools for understanding RA pathophys-
iology. Metabolomics allows for the detailed analysis of small molecules, giving insight
into the metabolic pathways disturbed by disease activity. AI, more so explainable AI (XAI)
methods, enhance the identification, analysis, and validation of biomarkers by integrating
complex datasets and uncovering patterns that traditional biostatistics might miss. To-
gether, these technologies can unravel metabolic changes and allow the construction of
robust predictive tools that will provide a new avenue toward improved management of
disease conditions and personalised therapies [5,6].

The advancement of metabolomics offers a complete investigation into small molecules
in biological materials, providing information about metabolic pathway disturbances due
to diseases. The strategy provides a method to find biomarkers that specifically identify
diseases, including difficult cases like RA, despite diagnosis challenges. High-resolution
techniques, like capillary electrophoresis coupled with quadrupole time-of-flight mass
spectrometry, have been playing a pivotal role in untargeted metabolomics due to their
precision, sensitivity, and possibility of detecting a wide range of metabolites in complex
biological matrices. In light of this and by capitalising on the power of the advances
mentioned above, the present study reanalysed publicly available RA patient metabolomics
data, with a significant emphasis on identifying strong biomarkers that could clearly
distinguish RA patients from healthy controls to enhance comprehension of the metabolic
dysregulation inherently characteristic of RA [7,8].

Most biomarker discoveries in RA are grounded in an integrated approach involving
biostatistics with advanced machine-learning models. Recent studies have emphasised
integrating multi-omics data into machine learning for improved RA biomarker prediction
accuracy. Recent approaches, such as XAI, in particular, include LIME, and more recent
ones, like SHAP, are important for enhancing the interpretability of predictive models.
These tools will help fulfil the urgent demand for transparent AI in healthcare so that model
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predictions can be comprehensible and trusted by clinicians [9–11]. The current study
presents the results of a comprehensive workflow, to the best of our knowledge in the litera-
ture, that includes final metabolomics data preprocessing with univariate and multivariate
approaches and model development based on machine learning concepts, and interpretable
metabolomics biomarker discovery in RA with XAI-based EBM approach, to provide clini-
cally relevant insights into RA pathogenesis and narrow the gap between computational
analysis and practical clinical use. Post-hoc explanation tools like SHAP and LIME have
brought progress to biomarker discovery [12,13], but they need to operate based on ap-
proximations of complex models which leads to possible inaccuracies between explanation
results and actual model operations. EBM provides interpretability through a glass-box
model structure, which builds interpretability directly into its operational architecture.
The built-in transparency prevents approximation errors so model decision logic remains
accurate when showing metabolite contributions including complex effects and mutual
relationships between variables. EBM’s additive structure directly reveals the threshold
concentrations of pyruvic acid that connect to RA risk levels whereas SHAP/LIME presents
explanations through additive feature importance scoring. The EBM system achieves the
best possible predictive AUC score of 0.901 through its combination of advanced predictive
modelling and biologically significant findings thus creating a new paradigm for finding
RA biomarkers, which address physician requirements for both accuracy and explanation.

The prediction and diagnosis of RA can be improved through machine learning algo-
rithms among random forest and support vector machines with metabolomic data. The
models use metabolomic profile patterns for high-powered biomarker identification pur-
poses. A random forest algorithm enabled the development of a biomarker panel, which
would accurately forecast RA through a synergy of machine learning with metabolomics in
biomarker identification [14,15]. The predictive capabilities of boosting algorithms unite
with interpretation methods in explainable boosting machines (EBM) to provide solutions
beneficial for metabolomics biomarker research. The analysis through EBMs lets scientists
identify how individual metabolite operations participate with each other when performing
disease prediction, thus leading to more dependable diagnostic solutions. Additionally,
the systematic implementation of evidence-based methods in RA metabolomics remains
insufficient because researchers have not utilised them both for finding diagnostic biomark-
ers and analysing metabolite concentration thresholds. Such a research deficiency exists
because EBMs could bridge the gap between clinical and computational aspects of RA
management when they connect metabolomics patterns to actionable clinical decisions.

The current work further complements the growing literature on biomarkers in RA
by integrating metabolomics with XAI in developing clinically applicable diagnostic tools.
Based on the current state of the art of metabolomics and advanced AI methodologies,
including frameworks of XAI, this research study presents a solid foundation for identifying
and validating high-potential biomarkers for diagnosis and prognosis. Moreover, the
integration of AI and metabolomics enhances not only the precision of RA diagnostics
but also personalised treatment approaches. By underlining the transformative role of
interdisciplinary approaches in RA research, this study points to new frontiers in managing
autoimmune diseases that could have implications for other complex chronic conditions.
In addition, the current paper undertakes these goals while creating an approach for
combining XAI with rheumatology research as a method to discover biomarkers from
complex autoimmune diseases through metabolomics-driven approaches.
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2. Materials and Methods
2.1. Study Design, Dataset, and Sample Size

The current study used an existing experimental metabolomics dataset of RA patients
and healthy controls. The participant recruitment process followed the strict requirements
of the American College of Rheumatology (ACR). The current study gathered diagnostic
blood samples from 50 patients diagnosed with RA by ensuring a standardised approach
throughout the study group. This study eliminated one patient from analysis because renal
haemodialysis influenced experimental outcomes while maintaining 49 patients diagnosed
with RA for analysis. A blood test was performed on 10 healthy volunteers as controls
because they matched RA patients for age and sex. The researchers performed this matching
process to improve data validity by decreasing confounding variables. Inclusion criteria for
RA patients were based on ACR classification criteria, including joint involvement, serologic
markers, acute phase reactants, and symptom duration. Eligible participants were 18 years
of age or older and were able to provide plasma samples. Exclusion criteria included
other chronic diseases, renal failure requiring dialysis, active infections, and use of biologic
therapy. Standardised blood sampling methods ensured all sample integrity throughout
the study. The researchers immediately stored collected samples at 4 ◦C before processing
them for metabolite degradation prevention for one hour. Ethylenediaminetetraacetic
acid (EDTA) was used as an anticoagulant to separate plasma from whole blood because
EDTA effectively keeps plasma metabolite conditions constant. The current study divided
the plasma into smaller portions and kept them at −80 ◦C for biochemical composition
maintenance before analysis. The analytical platform comprised of a combination between
capillary electrophoresis-quadrupole time-of-flight mass spectrometry (CE-Q-TOFMS) for
plasma metabolomic profiling.

CE-Q-TOFMS identifies polar metabolites essential for RA metabolic disruption as-
sessment through precise metabolite analysis and quantification. The research delivered
detailed qualitative and quantitative insights about RA-associated metabolomic changes
using CE-Q-TOFMS technology [16]. The MetSizeR [17] program utilises probabilistic
principal components analysis (PPCA) to calculate the necessary sample size through its
power analysis method. The required participant sample size was determined through
analysis at 0.05 false discovery rate (FDR) to be 18 participants distributed equally between
both groups. Although MetSizeR estimated a minimum sample size of 18 participants
(9 per group) at a 0.05 FDR threshold, we included 49 RA patients and 10 healthy con-
trols to improve statistical power, capture greater biological variability, and enhance the
generalisability of machine learning-based biomarker findings. Advantageous analyses
were implemented using methods from three research fields that combined biostatistical
approaches with advanced metabolomics procedures and XAI frameworks. Metabolite con-
centration data underwent multiple analysis methods, allowing an extensive assessment of
metabolic shifts between groups. The integrated method sought to reveal important biolog-
ical patterns while making difficult data assessments easier while searching for relevant
clinical biomarkers.

2.2. Data Preprocessing

Class imbalance handling with SMOTE: To address class imbalance (49 RA cases
vs. 10 controls), we applied the synthetic minority over-sampling technique (SMOTE) to
the training set after splitting the dataset into training and test sets (4:1 ratio). SMOTE
was implemented using the imbalanced-learn Python library (v0.10.1) with the following
parameters [18]:

Sampling strategy: Set to balance classes at a 1:1 ratio (target ratio = auto).
k-neighbours: 5 nearest neighbours for synthetic sample generation.
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Missing Value Imputation: Missing metabolite values were imputed using Multiple
Imputation by Chained Equations (MICE) as the base estimator [19]. The process included:

Number of imputations: 10 iterations to capture variability.
Max iterations per imputation: 50 cycles, with early stopping if convergence criteria

(tolerance = 0.01) were met.
Aggregation: Imputed values were averaged across iterations.
LightGBM hyperparameters for MICE included: n_estimators = 100, learning_rate = 0.1,

max_depth = 3, and random_state = 42.

2.3. Biostatistical Data Analysis

The Kolmogorov-Smirnov test determined whether RA patients and control subjects
would follow normal distribution patterns in their metabolite levels. We analysed demo-
graphic and clinical quantitative variables using the Student’s t-testing method, whereas
qualitative variables were analysed using Fisher’s exact test. The analysis used standard
deviation and mean for demographics, while frequencies served for qualitative variables.
The Mann–Whitney U test was applied to analyse differences between groups because
the metabolite levels did not show normal distribution. When significant differences were
found, Cohen’s d effect size calculation was performed. The interpretation of effect size
used Cohen’s d, where the small effect ranged from 0.20 to 0.50, and medium effect ranged
from 0.50 to 0.80, and the large effect exceeded 0.80. Statistics showed significance at
p < 0.05 as the cutoff for statistical significance. The research team applied the American
Psychological Association (APA) 7.0 style to present all reported statistical differences. The
mathematical calculations ran through IBM SPSS Statistics for Windows version 28.0, which
operates from New York, NY, USA.

2.4. Machine Learning Algorithms and Performance Evaluation

In the study, classification models were created using AdaBoost, LightGBM, and
EBM algorithms to distinguish RA and controls. AdaBoost was created by Freund and
Schapire [20] to combine several algorithms into a strong, single model. This method
combines the output classes from several models using a training dataset to build various
models. Renowned as an ensemble learning method, AdaBoost combines separate models
and dynamically reweighs to improve classification accuracy. The approach averages
negative and positive samples for every feature to establish the weak classifier decision
thresholds. AdaBoost then chooses the least error-prone weak classifiers for additional
improvement and turns them into stronger classifiers, excluding the weak classifier at-
tributes not included in the strong classifier. AdaBoost also creates a set of hypotheses,
concentrating later hypotheses on cases that are ever more challenging to classify. The
weighted majority vote of the classes projected by all hypotheses guides the ultimate choice.
AdaBoost is a useful tool for raising the accuracy of classification techniques since it uses a
methodical approach [21–24].

Particularly among decision tree methods, LightGBM—created by Microsoft in
2016—stands out in machine learning. Its rapid model training speed is particularly
noteworthy, mostly because of its creative leaf-wise data training growth approach. Unlike
previous gradient boosting systems, this method departs from the conventional depth-wise
or level-wise techniques. LightGBM effectively lowers data volume by adopting the Gra-
dient one-way sampling method, concentrating on pertinent dataset parts instead of the
whole data pool. LightGBM has several benefits above other boosting techniques. These
comprise fast processing, handling of vast data volumes, low RAM use, and improved
forecast accuracy. It is also a flexible and economical choice since it enables GPU and
parallel learning. LightGBM, an open-source system, expands on the successful gradient-
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boosting decision tree technology, highlighting Microsoft’s commitment to enhancing
machine learning technologies [25–28].

EBM is a glass box model: a tree-based cyclic gradient-boosting generalised additive
model (GAM) with automatic interaction detection. It excels in intelligibility and explain-
ability and shows accuracy on par with cutting-edge machine-learning techniques, such
as random forest and boosted trees. GAMs interpret the outcome as the sum of arbitrary
functions for each characteristic, improving interpretability, unlike conventional models
using simple weighted sums. With their small scale and fast forecasting powers, EBMs
stand out because they can recognise and use special trait combinations—interactions.
A group learning approach turns weak learners into strong ones, maximising performance.
Leaf node count in EBM can be changed to suit additional performance optimisation. With
a feature-wise boosting technique, the EBM boosting algorithm is painstakingly designed to
concentrate on every feature independently during training cycles. This approach enables
low learning rates, so the sequence of feature consideration is meaningless for the final
model. Feature collinearity poses a major obstacle in model training since it could compro-
mise interpretability and performance. EBM solves this using many rounds in the training
phase, allowing exact identification of every feature’s contribution to the predicted output.
EBM may also automatically identify and include pairwise interaction terms, improving
predictive accuracy while preserving explainability. This function differs from conventional
models that can depend on manual interaction term formulation, therefore complicating
the model and hiding interpretability. By defining each feature’s unique influence on
predictions, EBM’s additive character helps to explain it even more than more complicated,
black-box models, which have sometimes opaque character. All things considered, EBM
not only preserves the advantages of conventional GAMs but also advances them with
increased accuracy, resilience, and in some situations, better explainability [29–33].

In the validation procedure of machine learning models, the data were initially divided
into training and test sets at a ratio of 4:1, and in addition to the prediction results for
the test set, 95% bootstrapped confidence intervals with 1000 repetitions were reported.
Accuracy, F1-score, sensitivity, specificity, positive predictive value, negative predictive
value, area under the curve (AUC), and the Brier score were calculated to evaluate the
performance of the models in distinguishing RA and healthy controls. While accuracy
indicates the overall correct classification rate of the model, F1-score was used as a criterion
that balances sensitivity and specificity. The model’s correct identification of positive
examples becomes measurable through sensitivity, whereas specificity measures its ability
to spot negative examples correctly. The positive predictive value describes how often
positive predictions prove accurate, whereas the negative predictive value shows the
percentage of correct negative outcomes. The evaluation process of model discrimination
power relied on calculating AUC, and the Brier score assessed the precise nature of the
predictions and the model quality to determine calibration. An assessment involving Brier
scores determined the well-calibrated model through the identification of the model with
the lowest score [34–36].

2.5. Global and Local Explanations with Explainable Boosting Machine

Machine learning models require explainability features to enable the understandabil-
ity of their decision processes, specifically when discovering metabolomic biomarkers. The
transparency in these systems helps researchers analyse the vital metabolomic elements that
affect model prediction and provides crucial knowledge about the algorithmic processes
used during real-time applications. EBM implements a generalised additive model through
tree-based architecture to provide feature ranking and visualise interacting variables. The
interpretability system offers two levels of analysis to display model-wide behavioural un-
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derstanding together with per-instance-specific explanations, which overcome the typical
accuracy level versus explainability trade-off. EBM demonstrates an important capability
to produce complete explanations by utilising only training data information. A completely
transparent method helps people see and quantify how features affect predictions of RA
assessment. Irrespective of traditional importance rankings, the application allows users
to view the precise effects of features across different value ranges. The learning process
of the algorithm becomes detectable by inspecting the pattern of feature coverage, which
shows how it enhances its grasp of the relationship between features. The ability to see
through the model confirms its decision making while assisting in biological discoveries
linked to disease root causes [37–39].

3. Results
The study analysed metabolomic data from 59 participants (49 RA patients and

10 controls). The mean age of the participants in the study was 63 ± 14 years in the
control group and 60 ± 13 years in the RA group, and the difference between the groups
was not statistically significant (p = 0.540). Regarding gender distribution, there were
10 females in the control group and 43 females and 6 males in the RA group. There was no
statistically significant difference between the groups regarding gender (p = 0.577). The
mean DAS28-ESR score showing disease activity in RA patients was 3.71 ± 1.23, and the
score varied between a minimum of 1.12 and a maximum of 7.62. Regarding treatment,
39 of the RA patients used methotrexate (MTX), and 22 of them used glucocorticoids (GC).
Table 1 shows the changes in metabolite levels in the RA and control groups.

Table 1. Univariate statistical analysis results.

Metabolite Name
Control RA p-Value ESMedian (Min–Max) Median (Min–Max)

1-Methyladenosine 0.01 (0.007–0.013) 0.009 (0.006–0.019) 0.269
1-Methylnicotinamide 0.018 (0.008–0.036) 0.016 (0.009–0.068) 0.099

2-Amino-2-(hydroxymethyl)-1,3-
propanediol 0.181 (0.063–1.071) 0.088 (0.054–1.168) <0.001 0.54

2-Aminoadipic acid 0.021 (0.014–0.03) 0.023 (0.014–0.049) 0.092
2-Aminobutyric acid 0.369 (0.221–0.473) 0.355 (0.207–0.699) 0.823

2-Hydroxybutyric acid;
2-Hydroxyisobutyric acid 0.228 (0.117–0.287) 0.246 (0.129–0.522) 0.032 0.60

2-Hydroxypentanoic acid 0.097 (0.059–0.165) 0.091 (0.055–0.344) 0.400
2-Oxoglutaric acid 0.086 (0.067–0.108) 0.087 (0.057–0.123) 0.491

2-Oxoisovaleric acid; 4-Oxovaleric acid 0.092 (0.073–0.122) 0.098 (0.06–0.15) 0.010 0.43
3-(2-Hydroxyphenyl)propionic acid;

3-Phenyllactic acid; Tropic
acid;3-Ethoxybenzoic acid;

3-(4-Hydroxyphenyl)propionic acid

0.031 (0.024–0.062) 0.03 (0.016–0.087) 0.211

3-Hydroxybutyric acid 0.244 (0.1–0.422) 0.157 (0.072–1.025) 0.006 0.01
3-Indoxylsulfuric acid 0.073 (0.032–0.183) 0.085 (0.017–0.659) 0.873

3-Methylhistidine 0.132 (0.081–0.375) 0.207 (0.062–0.81) 0.001 0.66
3-Phenylpropionic acid 0.032 (0.028–0.046) 0.03 (0.023–0.085) 0.175

4-Methyl-2-oxopentanoic acid;
3-Methyl-2-oxovaleric acid 0.552 (0.409–0.81) 0.537 (0.283–0.952) 0.851

5-Oxoproline 0.174 (0.132–0.218) 0.16 (0.108–0.22) 0.016 0.51
ADMA 0.023 (0.02–0.029) 0.027 (0.016–0.038) 0.002 0.57

ADP;dGDP 0.017 (0.009–0.054) 0.012 (0.003–0.08) 0.154
Ala 5.065 (2.838–7.465) 5.521 (3.686–11.994) 0.035 0.35

Allantoin 0.113 (0.088–0.138) 0.113 (0.064–0.158) 0.334
Arg 2.676 (1.857–3.427) 2.556 (1.191–4.405) 0.318
Asn 0.699 (0.61–0.975) 0.726 (0.481–1.234) 0.449
Asp 0.064 (0.045–0.083) 0.064 (0.04–0.356) 0.672

Azelaic acid 0.024 (0.02–0.035) 0.026 (0.01–0.058) 0.004 0.57
Benzoic acid 0.034 (0.027–0.047) 0.037 (0.024–0.077) 0.170

beta-Ala 0.044 (0.027–0.067) 0.046 (0.026–0.175) 0.218
Betaine 1.775 (1.066–2.106) 1.603 (0.922–2.975) 0.453
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Table 1. Cont.

Metabolite Name
Control RA p-Value ESMedian (Min–Max) Median (Min–Max)

Carnitine 2.812 (2.112–3.388) 2.531 (1.701–3.355) 0.008 0.61
Cholic acid 0.024 (0.009–0.183) 0.029 (0.006–0.183) 0.272

Choline 1.023 (0.715–1.317) 0.87 (0.535–2.133) 0.007 0.30
Citric acid 1.692 (1.37–2.293) 1.6 (1.018–2.827) 0.520
Citrulline 0.823 (0.626–1.246) 0.676 (0.196–1.826) 0.002 0.46
Creatine 1.647 (0.811–2.923) 1.389 (0.267–5.287) 0.021 0.35

Creatinine 1.623 (1.339–1.833) 1.52 (1.021–5.961) 0.171
Cys 0.098 (0.065–0.123) 0.104 (0.051–0.173) 0.110

Cysteine-glutathione disulphide 0.032 (0.016–0.042) 0.023 (0.01–0.048) <0.001 0.84
Cysteine-glutathione disulphide-Divalent 0.052 (0.03–0.085) 0.036 (0.014–0.065) <0.001 1.44

Cystine 1.128 (0.987–1.503) 1.25 (0.756–1.754) 0.068
Decanoic acid 0.056 (0.035–0.125) 0.055 (0.022–0.175) 0.652

Dihydroorotic acid 0.131 (0.085–0.145) 0.13 (0.085–0.165) 0.430
gamma-Aminobutyric acid 0.051 (0.02–0.107) 0.045 (0.012–0.237) 0.332

gamma-Butyrobetaine 0.126 (0.084–0.199) 0.092 (0.055–0.183) <0.001 1.07
Gln 11.709 (9.18–15.218) 11.016 (7.37–14.963) 0.013 0.52

Glu;threo-beta-methylaspartic acid 0.518 (0.376–0.857) 0.773 (0.222–2.049) <0.001 0.72
Gluconic acid 0.047 (0.041–0.059) 0.054 (0.032–0.263) 0.001 0.41

Glucose 6-phosphate; Fructose
6-phosphate; Glucose 1-phosphate 0.052 (0.027–0.091) 0.036 (0.012–0.113) <0.001 0.71

Glucuronic acid; Galacturonic acid 0.032 (0.018–0.033) 0.032 (0.013–0.133) 0.035 0.54
Gly 2.866 (1.632–5.633) 2.054 (1.211–3.48) <0.001 1.27

Glyceric acid 0.064 (0.043–0.082) 0.078 (0.04–0.133) <0.001 0.99
Glycerol-3-phosphate 0.011 (0.008–0.019) 0.018 (0.006–0.039) <0.001 1.14

Glycocholic acid 0.021 (0.006–0.115) 0.016 (0.005–0.115) 0.085
Glycolic acid 0.066 (0.04–0.076) 0.062 (0.039–0.113) 0.386

Glyoxylic acid 0.02 (0.014–0.026) 0.02 (0.013–0.032) 0.259
Guanidinosuccinic acid 0.015 (0.009–0.023) 0.014 (0.008–0.089) 0.994

Guanidoacetic acid 0.064 (0.037–0.097) 0.047 (0.03–0.11) <0.001 0.76
Hippuric acid 0.035 (0.014–0.132) 0.029 (0.008–0.162) 0.045 0.18

His 2.006 (1.81–2.576) 1.854 (1.172–2.888) 0.001 0.65
Homoarginine or

N6.N6.N6-Trimethyllysine 0.05 (0.031–0.068) 0.062 (0.032–0.097) 0.005 0.50

Homovanillic acid 0.014 (0.011–0.024) 0.017 (0.012–0.036) <0.001 0.54
Hydroxyproline 0.174 (0.082–0.352) 0.186 (0.116–0.889) 0.404
Hypoxanthine 0.061 (0.016–0.111) 0.049 (0.022–0.166) 0.004 0.26

Ile 2.74 (1.796–4.963) 2.731 (1.732–6.114) 0.392
Indole-3-acetic acid 0.048 (0.033–0.073) 0.046 (0.029–0.145) 0.728

Isethionic acid 0.02 (0.012–0.038) 0.019 (0.011–0.084) 0.185
Isocitric acid 0.082 (0.057–0.109) 0.091 (0.055–0.189) 0.007 0.49
Kynurenine 0.051 (0.038–0.06) 0.047 (0.027–0.145) 0.388
Lactic acid 5.526 (3.405–8.157) 6.551 (3.506–14.422) 0.004 0.54
Lauric acid 0.139 (0.064–0.203) 0.089 (0.045–0.46) 0.028 0.03

Leu 5.258 (3.7–8.267) 5.091 (2.734–9.618) 0.548
Lys 3.802 (2.864–6.097) 4.281 (2.786–8.892) 0.169

Malic acid 0.063 (0.034–0.096) 0.059 (0.034–0.13) 0.491
Met 0.36 (0.288–0.413) 0.318 (0.18–0.798) 0.016 0.04

Methionine sulfoxide 0.078 (0.047–0.119) 0.088 (0.043–0.141) 0.152
Mucic acid; Glucaric acid 0.029 (0.017–0.047) 0.034 (0.013–0.057) 0.214

N.N-Dimethylglycine 0.082 (0.059–0.138) 0.108 (0.055–0.229) <0.001 0.60
N5-Ethylglutamine 0.063 (0.044–0.124) 0.068 (0.04–0.919) 0.408

N6.N6.N6-Trimethyllysine 0.047 (0.033–0.068) 0.047 (0.033–0.083) 0.388
N-Acetyl-beta-alanine;
N-Acetyl-beta-alanine 0.017 (0.011–0.028) 0.02 (0.01–0.034) 0.021 0.27

N-Acetyleucine 0.105 (0.098–0.163) 0.03 (0.008–0.265) <0.001 0.67
N-Acetylneuraminic acid 0.084 (0.068–0.128) 0.08 (0.047–0.14) 0.400

O-Acetylcarnitine 1.069 (0.58–1.344) 0.824 (0.412–1.684) <0.001 0.42
Octanoic acid 0.069 (0.051–0.143) 0.065 (0.039–0.155) 0.398

Ornithine 1.299 (0.758–1.901) 1.194 (0.647–2.414) 0.392
Pelargonic acid 0.07 (0.061–0.094) 0.08 (0.054–0.138) 0.007 0.66

Phe 2.22 (1.992–2.857) 2.876 (1.511–9.056) <0.001 0.72
Pipecolic acid 0.047 (0.033–0.549) 0.059 (0.03–0.511) 0.131

Pro 3.809 (1.937–8.386) 4.831 (2.252–9.739) 0.007 0.37
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Table 1. Cont.

Metabolite Name
Control RA p-Value ESMedian (Min–Max) Median (Min–Max)

Pyruvic acid 0.124 (0.085–0.273) 0.228 (0.078–0.418) <0.001 1.58
Quinic acid 0.038 (0.024–0.074) 0.036 (0.014–0.15) 0.101 0.39
Sarcosine 0.06 (0.046–0.119) 0.061 (0.03–0.186) 0.834

SDMA 0.022 (0.018–0.028) 0.024 (0.016–0.084) 0.037 0.38
Ser 1.836 (1.45–2.595) 1.524 (0.781–3.111) <0.001 0.72

S-Sulfocysteine 0.007 (0.006–0.011) 0.008 (0.005–0.014) 0.153
Succinic acid; Methylmalonic acid 0.057 (0.035–0.074) 0.049 (0.027–0.073) <0.001 0.63

Taurine 0.459 (0.342–2.117) 0.441 (0.265–3.031) 0.408
Thr 2.163 (1.828–3.16) 2.19 (1.45–3.282) 0.652

Threonic acid 0.214 (0.086–0.26) 0.23 (0.077–0.455) <0.001 0.78
Trimethylamine N-oxide 0.033 (0.015–0.393) 0.053 (0.019–1.444) 0.091

Trp 1.541 (1.236–1.879) 1.636 (0.921–2.904) 0.138
Tyr 1.711 (1.363–1.989) 1.977 (0.917–3.397) 0.001 0.65

Urea 32.355 (21.09–47.464) 35.811 (21.836–70.115) 0.006 0.40
Uric acid 1.911 (1.381–2.553) 2.005 (1.237–3.465) 0.408
Uridine 0.102 (0.086–0.168) 0.096 (0.074–0.212) 0.285

Val 6.531 (5.305–11.255) 7.277 (4.631–12.402) 0.146

Bold values indicate top ten metabolites in SHAP analysis.

The dataset controls indicated that no issues could impact the data preprocessing and
modelling phases. Initially, the data was divided into training and test sets in a 4:1 ratio,
with all preprocessing operations conducted independently for each set. Missing values in
the dataset were imputed using the LightGBM-supported MICE approach. The SMOTE
technique was utilised to equilibrate the distribution of positive and negative classes, hence
mitigating biased outcomes in machine learning prediction models. Subsequent analyses
were conducted on the balanced dataset. Following the data pretreatment phase, the
modelling phase commenced. The EBM model was trained without interaction terms,
in addition LightGBM and AdaBoost models were trained for comparative performance
analysis. The test classification performance measurements of the respective models are
presented in Table 2 with 95% confidence. Table 2 reveals that all three models had an
impressive sensitivity score in predicting RA. Heightened sensitivity results in a reduc-
tion in false negatives (FN). In comparative biological research, false positive and false
negative errors frequently occur. Consequently, it is crucial to ascertain the chance that
a genuine effect is considerable. A reduced FN value signifies a favourable outcome for
RA samples. This outcome is critically important as the main objective of this study is to
reduce missing rheumatoid arthritis cases (false negatives). In the comparison of model
performances, the EBM model demonstrated superior robustness relative to the LightGBM
and AdaBoost models. The EBM model attained a commendable discrimination outcome
with an AUC value of 0.901. The study produced the Brier score, alongside detailed per-
formance measures, to assess the calibration of the prediction models. A lower Brier score
indicates superior model calibration, and upon analysis, the EBM model attained the lowest
Brier value.

The EBM algorithm is a generalised additive model derived from a tree-based model.
Features can be prioritised and visualised to demonstrate their influence on individual
predictions from both global and local perspectives based on their contributions. The
comprehensive annotation of EBM facilitates the visualisation of each metabolite’s influ-
ence on the anticipated results of RA. Figure 1 presents a comprehensive summary of
global annotations, highlighting the significance of all components. The feature importance
scores shown in Figure 1 were calculated as the weighted average absolute values of the
shape functions learned by the EBM model, reflecting each metabolite’s contribution to
overall prediction performance. The weighted average absolute scores of metabolites im-
portance for the EBM model are presented in the global annotation graph. The EBM model,
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without interaction terms, identified the most important principal biomarker candidates:
“N-Acetyleucine”, “Pyruvic acid”, and “Glycerol-3-phosphate” (Figure 1).

Table 2. Evaluation of model results with comprehensive performance metrics for rheumatoid
arthritis prediction.

Model Metric Value BCI * (95%)

EBM

Accuracy 0.847 (0.776–0.918)
F1-score 0.851 (0.781–0.922)

Sensitivity 0.878 (0.752–0.954)
Specificity 0.816 (0.68–0.912)

Positive predictive value 0.827 (0.697–0.918)
Negative predictive value 0.87 (0.737–0.951)

AUC 0.901 (0.847–0.955)
Brier score 0.129 (0.109–0.153)

LightGBM

Accuracy 0.806 (0.728–0.884)
F1-score 0.812 (0.735–0.889)

Sensitivity 0.837 (0.703–0.927)
Specificity 0.776 (0.634–0.882)

Positive predictive value 0.788 (0.653–0.889)
Negative predictive value 0.826 (0.686–0.922)

AUC 0.866 (0.806–0.926)
Brier score 0.146 (0.133–0.185)

AdaBoost

Accuracy 0.776 (0.693–0.858)
F1-score 0.784 (0.703–0.866)

Sensitivity 0.816 (0.68–0.912)
Specificity 0.735 (0.589–0.851)

Positive predictive value 0.755 (0.617–0.862)
Negative predictive value 0.8 (0.654–0.904)

AUC 0.838 (0.775–0.902)
Brier score 0.187 (0.172–0.208)

*: Bootstrapped confidence interval with 1000 repetitions.

This EBM local explanation plot explains why the model assigned an individual to
the RA class. The EBM algorithm allows to give detailed contributions of metabolites for a
single prediction. As an example, Figure 2A,B show the results of a typical individual RA
prediction. Based on the predicted results, the EBM model classified the patient in Figure 2A
as RA with 100% probability and the patient in Figure 2B with 99.9% probability. The model
classified the observation in Figure 2A as having RA with 100% probability, with some
metabolites strongly supporting this classification for the current patient, while others have
the opposite effect. Positive contributing variables are metabolites that support the model’s
RA diagnosis and may be associated with the disease. Pyruvic acid and S-sulfocysteine,
pelargonic acid and pyruvic acid, N-acetyleucine, phenylalanine (Phe), cysteine-glutathione
disulphide—divalent, glucuronic acid, glu, threo-beta-methylaspartic acid, histidine (His),
serine, pyruvic acid, gluconic acid, isocitric acid, and creatine are the compounds that
contribute the most to the RA diagnosis according to the model prediction results for the
relevant patient. Pyruvic acid, in particular, is associated with energy metabolism and may
be linked to oxidative stress, while amino acids such as Phe and His may play a role in
inflammatory processes. The patient’s citrulline value, which contributed negatively, had
an opposite effect on the model’s RA prediction. EBM-based interpretability is crucial for
RA identifying. It has superior predictive accuracy in attributing interpretability to output
results (Figure 2).
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EBM is highly comprehensible due to the quantification of the contribution of each
feature to the ultimate prediction of an individual. Each shape function is a complex
nonlinear function that is obtained through gradient boosting and bagging. The order
of the features is irrelevant when the boosting procedure is limited to training circularly
on one feature at a time with a very low learning rate. In order to mitigate the impact
of collinearity, the model iterates through the features in order to determine the optimal
feature shape function for each. It demonstrates the extent to which each feature contributes
to the model’s prediction. Ultimately, the final prediction for each individual is determined
by adding up all of the feature shape functions for the specified features. Figure 3 displays
the contribution values of the two most significant biomarker candidate metabolites to
the prediction results in accordance with the global EBM. The top line diagram displays
the metabolites’ contribution for each subfigure, with the predicted accuracy as indicated
by the grey band. The data density of the metabolite in question is represented by the
bar graph below. The trend of the line graphs of individual metabolites can be analysed
to determine the impact of each factor on RA. The following discussion pertains to two
designated metabolites that have a greater influence on the anticipated outcomes of RA.

Figure 3 presents partial dependency plots for two key metabolites derived from
the CPA model: N-acetyleucine (Panel A) and pyruvic acid (Panel B). These plots show
how changes in metabolite levels affect the model’s predicted RA probability. In Panel
A, N-acetyleucine shows a nonlinear relationship with the model score. At levels below
approximately 0.1, the model score remains high, indicating an increased predicted risk
for RA. However, when N-acetyleucine levels exceed 0.1, the model score drops sharply,
indicating a decrease in the predicted RA probability. This trend suggests that lower N-
acetyleucine levels may be associated with the presence of disease, whereas higher levels
may play a protective role, implying a threshold-dependent effect. In Panel B, pyruvic
acid shows the opposite pattern. At concentrations below 0.2, the model score remains
low, indicating a lower RA risk. However, when pyruvic acid levels exceed 0.2, the model
score increases rapidly, indicating a higher probability of RA. This model supports the
hypothesis that high pyruvic acid levels are positively associated with RA, and therefore,
pyruvic acid may serve as a candidate biomarker for disease detection. These findings
highlight the capacity of EBM to reveal nonlinear and interpretable relationships between
metabolite levels and disease risk, reinforcing the clinical relevance of threshold effects
in metabolomic profiles. As a result, levels of pyruvic acid in RA patients may reflect
enhanced glycolysis and oxidative stress associated with chronic inflammation, while
abnormal N-acetyleucine patterns may indicate dysregulated amino acid metabolism with
potential immunomodulatory effects, suggesting their relevance as functional biomarkers
(Figure 3).
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Figure 2. Explainable boosting machine local interpretation. (A) Local explanation for a correctly
predicted sample. Orange bars indicate metabolites positively contributing to the prediction, while
blue bars (e.g., Pyruvic acid & Succinic acid) show negative contributions. Key contributors include
Citrulline and His. (B) Local explanation for another correctly predicted sample. Similar to (A),
orange bars denote positive contributions (e.g., gamma-Butyrobetaine, Phe), and blue bars (e.g.,
Dihydroorotic acid) reflect negative influences. Notable differences in metabolite rankings high-
light variability in feature importance across samples. Color key: Orange = Positive contribution;
Blue = Negative contribution.
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Figure 3. Contribution of N-acetyleucine and pyruvic acid metabolites to the distinction of rheuma-
toid arthritis. In the upper part of the graph, the scores of the model corresponding to different values
of the metabolite are given, and in the lower part, the data density is given. Red dashed vertical lines
mark key thresholds (≈0.1 and ≈0.2, respectively) where the model’s score shifts notably, provid-
ing enhanced interpretability regarding how these metabolites influence the predicted probability
of disease.
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4. Discussion
The present research examined RA participant metabolomics levels alongside healthy

subjects while constructing explainable machine learning methods to determine predictive
biomarkers. Uniformed data integration with XAI techniques demonstrated how metabolic
problems linked to RA became visible while establishing these methods for clinical di-
agnostic testing. The research examined 49 RA patients and 10 healthy subjects using
samples which demonstrated no differences in participant age or sex characteristics for the
prevention of demographic confounding errors. The disease activity score 28 (DAS28-ESR)
assessed a moderate 3.71 ± 1.23 mean score on patients with rheumatoid arthritis, thus
validating the need for therapeutic intervention. The study shows that observed metabolic
changes in RA patients occurred despite their regular treatment with methotrexate (79.6%)
and glucocorticoids (44.9%), which supports standard RA treatment protocols [40]. The uni-
variate analysis detected 25 metabolites which presented significant statistical differences
(p < 0.05) in patients with rheumatoid arthritis. The substantially elevated levels of both lac-
tic acid (p = 0.004) combined with pyruvic acid (p < 0.001) demonstrate how cells undertake
anaerobic metabolism as a characteristic feature of inflammatory processes. The inflam-
matory process associated with endothelium dysfunction likely controls phenylalanine
elevation (p < 0.001) while decreasing citrulline levels (p = 0.002). RA synovium may expe-
rience exacerbated oxidative stress because of decreased carnitine (p = 0.008) along with
choline (p = 0.007). The disease course of RA progresses as immune and vascular systems
begin to affect each other. The impaired condition leads to fat acid molecule accumulation
that increases tissue damage and inflammatory activity. Studies produce contradictory
outcomes on metabolic reprogramming since the method establishes anti-inflammatory
settings to show that metabolism influences immune responses through complicated path-
ways [41]. The significant reduction in cysteine-glutathione disulfide (p < 0.001) and its
divalent form (p < 0.001) points to glutathione depletion, a critical antioxidant defence
mechanism. A study supports previous findings about redox imbalance in rheumatoid
arthritis pathogenesis. The levels of 3-methylhistidine increase in RA patients (p = 0.001),
which might indicate the development of cachexia from RA [42].

The EBM generated better results than LightGBM and AdaBoost by attaining an AUC
of 0.901 (95% CI: 0.847–0.955) with 87.8% sensitivity which helps prevent false negative
early RA diagnosis. A high sensitivity factor minimises incorrect diagnoses and remains
essential since improper treatment delays result in permanent joint damage. The EBM
has better calibration capabilities than alternative models because it presents the lowest
Brier score of 0.129 which supports its reliability for clinical risk stratification [43]. EBMs
delivered superior model performance compared to LightGBM and AdaBoost although
both algorithms showed respectable outcomes because their lower sensitivity and ele-
vated Brier scores indicated a relationship between prediction power and interpretability
standards. The elevated sensitivity level of 0.878 makes the EBM model optimally suited
for clinical usage where false negative errors produce serious implications. The model
prevents incorrect negative diagnoses to reduce the number of patients who have undiag-
nosed rheumatoid arthritis since the disease progresses steadily after diagnosis. Symptoms
make EBMs desirable when identifying biomarkers because this model enables detailed
observations of both global and local feature contributions. The global interpretation graph
showed N-acetyleucine together with pyruvic acid and glycerol-3-phosphate as the cardinal
metabolites, which significantly predicted the development of RA. Medical practitioners
need transparency to understand prediction rationale because this knowledge enables them
to incorporate predictions into their professional practice [44]. The local interpretation plots
delivered complete information about which individual metabolites functioned during RA
classification. This research evaluated RA risk and pyruvic acid relation by confirming that
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lower concentrations generated safety yet elevated concentrations drastically increased RA
diagnosis probability. Physical insights from these observations provide essential knowl-
edge for the development of precise disease detection methods and specific therapy plans.
Studies have verified that amino acids serve as important elements for RA risk assessment
because they play a role in inflammatory pathways [45].

The global feature importance analysis of the EBM model revealed N-acetyleucine,
pyruvic acid, and glycerol-3-phosphate as key contributors to the prediction of RA. In the
partial dependence plots shown in Figure 3, both N-acetyleucine and pyruvic acid exhib-
ited non-linear threshold-based effects, reflecting biologically plausible patterns relevant
to RA pathophysiology. Specifically, pyruvic acid displayed a clear threshold effect: the
EBM model’s score remained low at concentrations below approximately 0.2, suggesting
low RA risk. However, once levels exceeded this threshold, the model score sharply in-
creased, indicating a higher probability of RA diagnosis. This is consistent with previous
studies reporting that pyruvate accumulation contributes to mitochondrial dysfunction
in RA fibroblasts, suggesting that elevated pyruvic acid levels may serve as a metabolic
indicator of inflammatory stress and energy imbalance. In contrast, N-acetyleucine ex-
hibited a distinct non-linear pattern. At lower concentrations (below ~0.1), the model
score remained high, indicating increased RA risk. Beyond this point, the model score
declined, suggesting a protective effect at higher levels. This inverse threshold behaviour
implies that N-acetyleucine may exert immunomodulatory or anti-inflammatory effects
once a critical plasma level is surpassed. Contrary to prior interpretations suggesting a
U-shaped relationship, the updated findings indicate that RA risk decreases continuously
after crossing the 0.1 threshold, with no secondary increase in model score at high concen-
trations. This pattern supports the idea that N-acetyleucine may be a context-dependent
metabolite, where its biological function transitions from potentially deleterious to pro-
tective depending on concentration. Glycerol-3-phosphate from glycolysis served as a
risk factor in developing RA because it positively affected RA development [46,47]. The
biological importance of metabolites detected through the EBM model establishes their
clinical significance. N-acetyleucine exhibited a threshold-dependent relationship with RA
risk, where concentrations below approximately 0.1 were associated with increased risk,
while higher concentrations demonstrated a protective effect, indicating a transition from
risk-enhancing to risk-reducing behaviour. Research investigations on RA pathogenesis
pathways should receive guidance from this discovery [48]. The link between pyruvic acid
and energy metabolism and oxidative stress makes it suitable for use as a biomarker in RA
disease progression assessment. Higher levels of pyruvic acid support its readiness as a
diagnostic indicator by potentially indicating inflammatory conditions through increased
glycolytic activities. The research analysis revealed citrulline functions as a compound that
produces adverse effects toward RA diagnosis. The research data supports existing findings
which demonstrate lowered citrulline levels occur in people with RA because their arginine
metabolic processes function poorly. Such elaborate connections between biomarkers help
demonstrate EBM model potential for discovering new diagnostic elements that improve
rheumatoid arthritis understanding [49]. The local interpretability feature of the model
generated individual-specific metabolic factors, including phenylalanine and histidine
for custom dietary, as well as therapeutic intervention planning. The redox imbalance of
particular patient groups can potentially be reduced through both interventions targeting
amino acid transporters along with glutathione precursor supplementation. The negative
predictive power of citrulline in the model supports its function as a nitric oxide synthesis
agent which suggests endothelial repair occurs in specific RA patient subgroups [50].

N-acetyleucine demonstrated a threshold-dependent inverse association with RA risk.
At concentrations below ~0.1, the model’s output remained elevated, indicating increased
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RA likelihood. However, after surpassing this threshold, the EBM score sharply declined,
suggesting a protective effect at higher levels. Contrary to previous assumptions of a U-
shaped relationship, our findings indicate a single inflection point beyond which increased
concentrations are associated with reduced disease risk. This may reflect the metabolite’s
role in immune regulation or anti-inflammatory activity, and it supports the need to revisit
previous interpretations. Clinically, N-acetyleucine levels may inform early diagnosis
and personalised treatment strategies, particularly as part of pre-treatment evaluations or
metabolic monitoring protocols.

Pyruvic acid showed a non-linear but strongly positive effect in the EBM model. The
model score remained low at concentrations below 0.2, while a sharp increase occurred
above this threshold, pointing to an elevated RA risk. This result is consistent with studies
linking pyruvate accumulation to mitochondrial dysfunction and altered glycolysis in
RA fibroblasts, emphasising its potential as a diagnostic and prognostic biomarker [51].
Since both metabolites can be measured through non-invasive biological samples (e.g.,
plasma or serum), their use is advantageous for clinical laboratory integration. Moreover,
threshold-based effects of these metabolites emphasise the need for concentration-aware
therapeutic strategies. The ability to uncover such relationships using transparent models
like EBM highlights their potential for clinical decision support systems, enabling clinicians
to understand and trust model outputs. Our study affirms and extends findings from
previous metabolic research into RA. While prior hypotheses suggested a U-shaped effect
of N-acetyleucine [51], our results instead reveal a threshold-dependent monotonic decrease
in risk, reinforcing the concept of hormetic or biphasic behaviour, where dose determines
biological response. This pattern mirrors mechanisms observed in immunopharmacology
and metabolism, where low concentrations activate, but high concentrations suppress, or
vice versa [51].

Additional EBM-derived features, such as phenylalanine, histidine, and citrulline, also
demonstrated predictive relevance and may support precision interventions. For example,
N-acetylcysteine supplementation may restore redox balance and glutathione homeostasis
in RA patients, mitigating oxidative damage associated with disease progression. Likewise,
L-citrulline may act as a vascular repair agent in RA subgroups, given its role in nitric oxide
synthesis, as suggested by preclinical studies [52,53].

EBM represents a glass-box structure because its architecture enables built-in model
interpretability thus differentiating it from post-hoc explanation tools, such as SHAP and
LIME. By removing misalignment between model output reactions and interpretation EBM
delivers trustworthy feature influence analysis (e.g., metabolite effects) that matches with
the decision reasoning process. EBM demonstrates an explicit additive structure that shows
how pyruvic acid creates a non-linear link to RA risk, which matches its biological role
in glycolysis and oxidative stress even though SHAP/LIME might explain these effects
through additive approximations. EBM detects non-linear metabolite effects, including
threshold-based behaviours such as that observed for N-acetyleucine, without any need to
define them manually in the model, while simultaneously detecting pairwise interactions
between features autonomously. SHAP and LIME implement an assumption of additive
feature contributions involving metabolic pathways but this approach might simplify their
analysis of such complex biological systems. The Brier score results demonstrate that EBM
offers superior accuracy for risk assessment compared to LightGBM and AdaBoost where
its calibration achieved 0.129 compared to their, respectively, higher scores of 0.146 and
0.187. SHAP/LIME provides explainability for models with high accuracy, but do not
function as standalone solutions for enhanced performance. Our approach resolves this
clinical requirement through predictive excellence (AUC = 0.901) in combination with
actionable diagnosis information (such as metabolite thresholds) to meet both high perfor-
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mance needs and interpretation requirements. Our research showed that N-acetyleucine
levels below approximately 0.1 were associated with an increased RA risk, whereas higher
concentrations beyond this threshold exhibited a protective effect, which supports the
metabolite’s known role in immunological regulation. This important detail would remain
unidentifiable through most other XAI methodologies [37,54]. Beyond RA, osteoarthritis
(OA)—another major arthritic condition—similarly imposes significant socioeconomic
burdens due to its rising prevalence and limited disease-modifying therapies. Current
OA interventions focus on symptom management (e.g., analgesics, physical therapy), yet
emerging evidence highlights central pain sensitization as a shared therapeutic target
across inflammatory and degenerative joint diseases [55]. The gut microbiota functions
as an important modulator of musculoskeletal health because bioactive small molecules
mediate the systemic effects on immune, metabolic, and endocrine pathways. Microbiota
composition together with musculoskeletal outcomes may be influenced by genetic compo-
nents combined with dietary elements and lifestyle variables including physical activity
thus requiring individualised strategies in RA treatment. Competitive athletes show that
exercise improves their prognosis but their research does not translate to non-competitors
since they possess distinct microbiota profiles and metabolic needs. Multidimensional
analysis of microbiome and metabolic markers such as N-acetyleucine and pyruvic acid has
the potential to reveal new pathways between gut signals and rheumatoid arthritis develop-
ment despite being in line with present-day demands for distributed omics methodologies
in diagnostic medicine [56].

The study has some limitations. The cross-sectional approach may prevent researchers
from drawing conclusions about possible cause-and-effect relationships between the ob-
served metabolic effects. While the 10 participants in the control group may have reduced
the generalisability of the study, the statistical analysis with 1000 replicates increased the
accuracy of the parameter ranges. External validation using larger cohorts is needed to
validate the findings and the predictive model derived from SMOTE addressing class
imbalance issues. Although explanatory models such as EBM are more resistant to overfit-
ting than black-box algorithms, the small sample size combined with high-dimensional
metabolomics data still poses a risk of model overfitting. Furthermore, the lack of an
independent external validation dataset limits the ability to assess the generalisability
of the model to larger clinical populations. Future studies with larger and more diverse
cohorts are needed to validate these findings. The lack of available data on serological
markers, including anti-CCP, prevents immediate comparison with current diagnostic crite-
ria [57]. The assessment of metabolite measurements before and after treatment through
longitudinal research would establish their behaviour during disease progression and
treatment reaction. It is necessary to conduct mechanistic laboratory tests that demonstrate
the functional cellular effects of immune cell activation resulting from prioritised metabo-
lites including N-acetyleucine. Combining multiple types of omics data like proteomics
along with transcriptomics and clinical variables will improve both predictive power and
biological explanation of the system. Assessment of pre- and post-treatment metabolite
measurements through long-term studies will determine their behaviour during disease
progression and treatment response. It is necessary to conduct mechanistic laboratory tests
that demonstrate the functional cellular effects of immune cell activation resulting from
priority metabolites, including N-acetyleucine. Combining multiple types of omics data,
such as proteomics, with transcriptomics and clinical variables will improve both predictive
power and biological explanation of the system.



Medicina 2025, 61, 833 17 of 20

5. Conclusions
The XAI-based EBM model developed in this study provides a reliable and inter-

pretable structure that can be integrated into clinical decision support systems for RA
diagnosis. The high sensitivity level of the model provides a significant advantage in
clinical decision processes in terms of minimising the false negative classification of RA
cases in the early period. This is of critical importance in terms of preventing late initiation
of treatment due to misdiagnosis and preventing joint damage from progressing. When
considering real-world applications, the model’s ability to provide both global and local
explanations facilitates physicians’ decision making at both the population and individ-
ual patient level; and provides supportive information in many areas such as treatment
planning, metabolic pathway targeting, and patient education. In particular, the fact
that biomarkers such as pyruvic acid and N-acetyleucine are associated with RA-related
metabolic disorders enables these molecules to be evaluated as diagnostic and potential
therapeutic targets. This is an important result in terms of integration into personalised
medicine approaches. The EBM framework combines reliable prediction capabilities with
explainability functions to connect artificial intelligence technology to clinical care, thus
laying the foundation for precision rheumatological treatment methods.
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