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Invasive angiography has been widely accepted as the gold standard to diagnose cardiovascular pathologies. Despite its superior
resolution of demonstrating atherosclerotic plaque in terms of degree of lumen stenosis, the morphological assessment for the
plaque is insufficient for the analysis of plaque components, and therefore, unable to predict the risk status or vulnerability of
atherosclerotic plaque.There is an increased body of evidence to show that the vasa vasorumplay an important role in the initiation,
progression, and complications of atherosclerotic plaque leading to major adverse cardiac events. This paper provides an overview
of the evidence-based reviews of various imagingmodalities with regard to their potential value for comprehensive characterization
of the composition, burden, and neovascularization of atherosclerotic plaque.

1. Introduction

The development of atherosclerosis is associated with struc-
tural and functional changes in the vascular wall [1]. Adventi-
tial vasa vasorum are functional endarteries that are normally
present on the adventitial side of the arteries [2, 3]. The
main functions of the vasa vasorum are to deliver nutrients
to the vessel wall and to remove waste products or noxious
substances [4].The density of this vascular network increases
comparably with the natural growth of the vessel wall and is
closely associated with the progression of vessel wall disease,
particularly those diseases involving inflammation, including
atherosclerosis and diabetes [5].

Adventitial vasa vasorum has been shown to participate
in the process of atherogenesis and atherosclerotic plaque
progression [6–8]. Extensive research has been conducted
on experimental animals and human autopsy data in the
past 20 years to support the hypothesis that vasa vasorum-
derived plaque neovascularization is intimately associated
with atherosclerotic plaque progression and destabilization.

Vasa vasorum can be visualized directly or indirectly by
several imaging modalities in experimental models and clin-
ical settings, including microcomputed tomography (CT),

contrast-enhanced ultrasound (CEUS), intravascular ultra-
sound (IVUS), optical coherence tomography (OCT), and
contrast-enhanced magnetic resonance imaging (CE-MRI).
These imaging techniques provide a unique opportunity
to demonstrate the normal anatomy of vasa vasorum and
monitor progressive pathophysiological developments asso-
ciated with atherosclerosis due to vasa vasorum injury.
This review paper focuses on different imaging modalities
for identification and visualization of vasa vasorum and
neovascularization, as well as characterization of plaque
components.

2. Imaging Modalities in the Visualization of
Vasa Vasorum and Atherosclerotic Plaques

2.1. Micro-CT. Micro-CT is an ex vivo imaging modality
capable of achieving a spatial resolution on the order of
20𝜇m3, which enables acquisition of high spatial resolution
images of vasa vasorum in human and animal models [9, 10].
A micro-CT scanner generates 3D images consisting of
up to a billion cubic voxels, with each 5–25𝜇m on a side
having isotropic spatial resolution. Its main components
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include a spectroscopic X-ray source that produces selectable
primary emission peaks at ∼9, 18, or 25 keV and a fluorescing
thin crystal plate that is imaged with a lens onto a 2.5 × 2.5-
cm, 1024 × 1024-pixel charge-coupled device (CCD) detector
array [11]. The specimen is positioned close to the crystal and
is rotated around 360∘ between each X-ray exposure and its
CCD recording, with tomographic reconstruction algorithms
applied to these recorded images, which are used to generate
3D images of the specimen. In order to differentiate grayscale
values in the media and adventitia area in arteries, the voxel
sizes should be smaller than 200 𝜇m3 to allow quantitative
analysis of vasa vasorum in the coronary wall [12]. The
latest multislice CT scanners provide voxel sizes greater than
350 𝜇m3 [13], which make it difficult to visualize the vasa
vasorum.

Kwon et al. in their early study showed the 3D anatomy of
vasa vasorum in both normal and balloon-injured coronary
arteries [14]. In their study, the first-order vasa vasorum
arising from the lumen of the coronary artery which ran
longitudinally along the media-adventitial layer and the
smaller second-order vasa vasorum arising from branches
of first-order vasa vasorum were clearly demonstrated in
normal pig arteries. Their results showed that the mean
diameter of normal first-order vasa vasorum was 160.92 ±
5.10 𝜇m and of second-order vasa vasorum, 67.99 ± 2.72 𝜇m
(𝑃 < 0.0001), while in the injured coronary arteries, the
mean diameter of first- and second-order vasa vasorum was
141.11 ± 5.87 𝜇m and 101.59 ± 1.49 𝜇m, respectively, with
significant differences between normal and injured arteries
(𝑃 < 0.05). In addition, marked adventitial neovasculariza-
tion was observed in the injured porcine coronary arteries
when compared to the normal coronary arteries in terms of
vessel wall area (4.85 ± 0.35mm2 versus 11.24 ± 0.32mm2,
𝑃 = 0.0001, resp.) and density of vasa vasorum (3.16 ±
0.17 permm2 versus 1.90 ± 0.06 permm2, 𝑃 = 0.0001).
Later reports using micro-CT further confirmed the clinical
value of this high-resolutionnoninvasive imagingmodality in
terms of quantitative assessment of vasa vasorumdistribution
in the coronary arteries and its role in the development of
atherosclerosis [15–21].

There is a growing body of evidence showing that
vasa vasorum neovascularization plays an important role in
the progression and complications of atherosclerosis. In an
experimental hypercholesterolemia study, Herrmann et al.
used 3D micro-CT to demonstrate an increase in coronary
vasa vasorum density within the first 4 weeks prior to the
development of endothelial dysfunction, therefore, suggest-
ing a role for vasa vasorum neovascularization in the initia-
tion of atherosclerosis [15]. The density of vasa vasorum was
significantly increased in animals on a hypercholesterolemic
diet for 2 and 4 weeks (4.88 ± 2.45 permm2) and 6 and 12
weeks (4.50 ± 1.37 permm2) when compared to the control
group (2.97±1.37 permm2).This is confirmed by experimen-
tal studies using antiangiogenic drug to inhibit inflammatory
effects, consequently inhibiting vasa vasorum neovascular-
ization [16–19]. Gössl et al. used micro-CT to compare and
analyse vasa vasorum density in normal and high-cholesterol
diet animals [17]. They reported that vasa vasorum density

and intima-media thickness were significantly increased in
the hypercholesterolemic animals when compared to the nor-
mal group (6.4±0.7mm2 versus 2.7±0.3mm2, 0.62±0.09mm
versus 0.28±0.02mm, corresponding to vasa vasorumdensity
and intima-media thickness, resp., 𝑃 < 0.05). Furthermore,
prevention of vasa vasorum neovascularization and signif-
icant reduction of vascular endothelial growth factor were
achieved through administration of anti-angiogenic drug,
which led to a significant reduction of vascular area fraction,
intima-media thickness, and endothelial exchange surface
within the coronary artery wall [4, 17–19]. These observa-
tions contribute to the inhibition of neointima proliferation,
which in turn inhibits the development of early atherosclero-
sis [20–22].

In addition to visualization of normal anatomy of vasa
vasorum distribution and pathological change along the
artery wall, micro-CT is also able to detect segmental vasa
vasorum neovascularization in the coronary artery. Based on
20 coronary segments from 15 autopsy patients, Gössl and
colleagues in their study found that vasa vasorum density
was higher in artery segments with nonstenotic plaques and
with noncalcified stenotic plaques than that in the normal
segments (3.36 ± 0.45mm2, 3.73 ± 1.03mm2 versus 1.16 ±
0.21mm2, 𝑃 < 0.01), while in the presence of signifi-
cant calcification, vasa vasorum spatial density decreased
significantly to the levels similar to those observed from
normal coronary segments (0.95 ± 0.21mm2) (Figure 1) [23].
Coronary calcification is regarded as a reliable indicator of
atherosclerosis and its extent is related to the plaque burden,
but not to the degree of obstruction [24, 25]. However, the
mechanism of the calcification process, whether it is part
of the inflammatory damage or part of the repair process,
remains to be understood [26].

In summary,micro-CThas demonstrated superior spatial
resolutionwhich allows for quantitative imaging of the spatial
and temporal distribution of vasa vasorum in the aorta and
coronary artery [15, 17, 23, 27]. Vasa vasorum parameters
including vasa vasorum count, vasa vasorum spatial density,
vasa vasorum vascular area fraction, and vasa vasorum
endothelial surface fraction can be reliably evaluated with
use of micro-CT [18, 26, 27]. The increase in arterial wall
opacity due to increased vascularity of the vasa vasorum can
also be detected on micro-CT images, and this serves as an
index of the angiogenesis that takes places in early plaque
development [28]. These research findings corroborate the
clinical value of micro-CT imaging in the investigation of
atherosclerosis due to vasa vasorum injury and its role in the
initiation and progression of atherosclerotic plaques.

2.2. Contrast-Enhanced Ultrasound. Recently, ultrasound
contrast agents have been developed and used to visualize
the carotid artery vasa vasorum and neovascularization
of atherosclerotic plaques. Contrast-enhanced ultrasound
(CEUS) is a promising noninvasivemodality for visualization
of plaque neovascularization [29]. Microbubble ultrasound
contrast agents are confirmed to be clinically useful in
enhancing ultrasound images and improving the diagnos-
tic accuracy [30]. The real-time CEUS imaging enables
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Figure 1: Volume-rendered micro-CT imaging of a coronary plaque and vasa vasorum. Volume-rendered 3D micro-CT image of a right
coronary artery showing the main coronary lumen in red; noncalcified and calcified plaque areas are indicated by the arrows (noncalcified
plaque is transparent). Vasa vasorum (VV) are shown in light blue (VV externa) or red (VV interna, directly originating from the main
lumen). Reprint with permission from [23].

a dynamic evaluation ofmicrovascular assessment of the spa-
tial and temporal heterogeneity of adventitial and intraplaque
vasa vasorum [29–32].The usefulness and reliability of CEUS
have been validated by previous studies in animals and
humans that showed the degree of plaque neovascularization
which is correlated closely with density of neovessels [33–35].

Schinkel et al. demonstrated the feasibility of imaging
vasa vasorum using CEUS in their animal experiments.
CEUS is able to detect and monitor the progression of
intima-media thickness and the density of the vasa vasorum
network in the follow-up of swine models of atherosclerosis
(0.22±0.05mmversus 0.45±0.06mmat baseline, 𝑃 < 0.001)
(Figure 2) [36]. Clinical reports on patient data further
corroborated the feasibility of usingCEUS in the visualization
of adventitial neovascularization. Giannoni et al. in their
pilot study showed that CEUS has potential value in imaging
plaque neovascularization (73 plaque specimens) between
symptomatic and asymptomatic patients. In patients with
acute symptomatic disease, CEUS detected a specific pattern
of diffuse contrast enhancement at the base of the carotid
plaques, close to the adventitial layer of the artery wall. This
corresponded to a high density of small diameter microves-
sels, indicating the presence of plaque angiogenesis, despite
inclusion of only 9 symptomatic patients in their group [37].
Their findings are further validated by Xiong et al.’s study
(133 plaques) which involved comparing 35 symptomatic
patients with 69 asymptomatic patients using CEUS [38].
A higher prevalence of carotid plaque enhancement was
observed in symptomatic patients than in the asymptomatic
group, showing good correlation between the degree of
contrast enhancement and patient symptoms. Their results
showed that enhanced intensity in the plaque (13.9± 6.4 dB)
and the ratio of enhanced intensity in the plaque to that in
the lumen of the carotid artery (0.54 ± 0.23) in symptomatic
patients were significantly higher than those in asymptomatic
patients (8.8± 5.2 dB and 0.33 ± 0.19, 𝑃 < 0.001).
These findings confirm that CEUS may be used for plaque

risk stratification and for the assessment of progression of
atherosclerosis [38–40].

Traditional CEUS has limited value in quantitative assess-
ment of progression or regression of vasa vasorum due to
the effect of microbubble concentration in the blood pool,
which is variable over time and between subjects. Lee et al. in
their recent study used maximum intensity projection (MIP)
processing of CEUS images to enhance diagnostic sensitivity
for detection of microvessels in vitro animal studies [41].
Their MIP technique allows for detection of microvascular
linear intensity by tracking the entire course of microbubble
transit through a microvessel, with a 3-fold increase in
femoral artery vasa vasorum microvascular density after
blood injection compared to the saline-exposed group (201±
11 vessels versus 76 ± 10 vessels per section, 𝑃 < 0.05).
Therefore, CEUS with MIP represents an advantage over
conventionalmethods by providing higher average intensities
with data less affected by microbubble concentration. The
presence ofmicrovessel in the femoral artery adventitia could
be detected at 2 weeks using CEUS, indicating the improved
accuracy of CEUS withMIP processing for evaluation of vasa
vasorum functional density.

In summary, CEUS represents a new opportunity for
noninvasive in vivo imaging of atherosclerotic plaques,
and its clinical value has been confirmed in both animal
experiments and human studies to be a feasible imaging
method for visualization of adventitial vasa vasorum neo-
vascularization. As shown in the above-mentioned studies,
there is a positive correlation between vasa vasorum density
and atherosclerosis and plaque progression. Furthermore,
CEUS demonstrates that vasa vasorum was inhibited due
to use of antiatherosclerotic drugs, with the development of
atherosclerosis being delayed [42]. However, differentiation
of stable from unstable plaques by CEUS could be difficult
as shown in a recent study by Vavuranakis et al. [43]. CEUS
showed the increase in brightness in carotid plaques which
correlated with plaque neovessels for stable plaques, but this
was not observed in unstable plaques, althoughmore contrast
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Figure 2: Vasa vasorum blood volume on contrast-enhanced ultrasound imaging. Examples of maximum intensity projection images 2 s
after the destructive pulse sequence are shown for femoral arteries 2 weeks after injection of either saline (a) or whole blood (b), illustrating a
greater vasa vasorum (VV) density (arrows) in the latter. (c) Example of pixel intensity threshold analysis for the blood-injected vessel whereby
pixels within the region of interest that enhance beyond threshold intensity are displayed in red-orange color scale and those that do not are
displayed in blue. (d) Mean (± standard error of the mean) area of enhancement on pixel intensity threshold analysis, an index of functional
VV blood density. Data for contralateral noninjected control vessels were similar between treatment cohorts and are grouped. ∗𝑃 < 0.05
versus control contralateral artery; †𝑃 < 0.05 versus both contralateral and saline-injected arteries (corrected for multiple comparisons).
Reprint with permission from [41].

enhancement would be expected to be present in unstable
plaque reflecting a more pronounced vascularization. There-
fore, further studies are needed to verify the presence of vasa
vasorum in atherosclerotic plaques, particularly focusing on
the unstable or vulnerable plaques.

2.3. Intravascular Ultrasound. Intravascular ultrasound
(IVUS) provides high-resolution tomographic images of
the lumen and it is a widely used method for assessing
atherosclerotic coronary lesions, guiding stent deployments
[44, 45]. IVUS can be used to acquire precise and
reproducible measurements of atherosclerotic plaques
in vivo and serially assess the effects of pharmacological
treatment on plaque over time in human and animal studies
[46]. IVUS imaging systems which are developed to examine
flow within the lumen of large arteries are not able to detect
vasa vasorum [47]. Using contrast agents has been reported
to induce IVUS echogenicity enhancement in the adventitia
of coronary arteries, consistent with the detection of vasa
vasorum [48]. Studies on animal experiments and human

subjects demonstrated the potential of evaluating vasa
vasorum in atherosclerotic plaques using IVUS.

Goertz et al. demonstrated the feasibility of using
contrast-enhanced IVUS for visualization of vasa vasorum
in phantom and vivo experiments [49, 50]. They used the
harmonic contrast imaging method to detect microvascular
flow so as to assess the small adventitial vessels consistent
with the detection of vasa vasorum. Moritz et al. in a
porcine model showed that IVUS allowed for assessment
of the density of vasa vasorum [51]. Quantification of the
total vasa vasorum flow was performed in their study by
summing the blood flow within the vasa vasorum using
IVUS, and this was comparable to the quantification of
the 3D distribution of vasa vasorum assessed by micro-CT.
Their results demonstrated a high and significant correlation
between IVUS and micro-CT in vivo in the visualization
of vasa vasorum, which is an indicator of atherosclerotic
changes.

Clinical studies on patients further confirmed these
experimental results. O’Malley et al. used microbubble
contrast-enhanced IVUS in 7 patients with coronary artery
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disease to image and analyse the density and perfusion of vasa
vasorum in atherosclerotic plaques [52]. Their results, for the
first time, represented the in vivo imaging of vasa vasorum
by IVUS. Vavuranakis et al. in their clinical study consisting
of 16 patients with acute coronary syndrome validated the
feasibility of detecting microbubbles in the coronary lumen
using contrast-enhanced IVUS (Figure 3) [53]. The authors
reported that contrast-enhanced IVUS enabled quantitative
analysis of the echogenicity of the intima-media, adventitia
and combined intima-media and adventitia with signifi-
cant enhancement observed following injection of contrast
medium (intima-media: from 6.0 ± 2.5 to 7.9 ± 3.3mm,
𝑃 = 0.006 and adventitia: from 7.1 ± 2.2 to 7.6 ± 2.5mm,
𝑃 = 0.035). These changes are consistent with vasa vasorum
microvessels, which are characteristic features of vulnerable
plaques.

In summary, IVUS is a promising technique for detect-
ing the increased volume of blood flow in the vasa vaso-
rum, which forms a basis for analysing atherosclerotic
plaques. Although IVUS provides important information
about changes in the material content in the arterial wall, it
has limited value in quantifying the density of vasa vasorum
in the arterial wall. Combined CEUS and IVUSmay enhance
the diagnostic value of IVUS by providing an opportunity
to obtain more direct information in the vascular biology, as
shown in a recent study [42].

2.4. Optical Coherence Tomography. Optical coherence
tomography (OCT) is a recently developed intravascular
imaging modality using near-infrared light to generate
cross-sectional intravascular images [54–57]. The imaging
principle of OCT is that the electric field amplitude of light
reflected from the sample at a certain depth is measured
using the principle of low coherence interferometry, with a
short coherence length of the source of radiation [58, 59].
The intensity of the interferometric signal is converted to a
color-scale or gray-scale to produce cross-sectional images
of tissue sample. There are two types of OCT systems that
are available to provide intravascular images: first generation
OCT systems, known as Time Domain (TD) OCT [58, 59],
and second generation systems, known as Fourier Domain
(FD) [60, 61]. TD-OCT uses a broadband light source
in the range between 1280 and 1350 nm band to perform
multiple scanning of reference delay distance and directly
measure the electric field amplitude. By contrast, FD-OCT
uses a monochromatic laser with wavelength changing over
time, while the reference delay distance remains constant,
and the electric field amplitude is computed through
Fourier transformation and is detected at all depth points
simultaneously.

The greatest advantage of OCT is its high resolution (10–
20𝜇m), which is 10 times higher than that of IVUS and is
comparable to that of micro-CT. OCT can differentiate three
layers of the artery wall by showing the adventitia as signal
rich layer surrounding the signal poor layer of the media
and signal rich layer of the intima closest to the lumen [62,
63]. OCT also allows tissue characterization by identifying
three types of plaques, such as fibrous, fibrocalcific, and lipid;

therefore, OCT is regarded as a suitable imagingmodality for
quantifying the thickness of thin cap fibroatheroma and esti-
mating macrophage distribution (vulnerable plaques) [64–
66]. OCT has the ability to characterize these microscopic
features of vulnerable plaques which makes it a unique
imaging modality.

Following the successful first application of OCT in
10 patients for assessment of plaque vulnerability [67], a
number of clinical studies have been performed to evaluate
the association between vasa vasorum and atherosclerotic
plaques, in particular, the vulnerable plaques using OCT
technique. Yabushita et al. in their vitro study examined
357 diseased atherosclerotic arterial segments with results
compared to histologic examination [68]. OCT was found
to have sensitivity and specificity of 71% to 79% and 97%
to 98% for fibrous plaques, 95% to 96% and 97% for
fibrocalcific plaques, and 90% to 94.5% and 90% to 92% for
lipid-rich plaques, respectively. Kitabata et al. showed that
microchannels were detected in 38% of culprit plaques using
OCT, with a significant difference observed in the frequency
of thin cap fibroatheroma between patients with and without
microchannels (54% versus 21%, 𝑃 = 0.012) (Figure 4) [69].
In addition, the thickness of the fibrous cap was significantly
thinner in the patients with microchannels (60𝜇m versus
100 𝜇m, 𝑃 = 0.001). Other studies further confirmed the
potential value of OCT in evaluating vulnerable plaques in
patients with coronary artery disease based on short-to long-
term follow-up.

Uemura et al. used OCT to analyse 53 patients with coro-
nary artery disease consisting of 69 nonsignificant coronary
stenosis plaques (NSCPs) in terms of plaque characteristics
and plaque progression at a mean follow-up of 7 months
[70]. Their results showed a significantly higher incidence
of intimal laceration (61.5% versus 8.9%), microchannels
(76.9% versus 14.3%), lipid pools (100% versus 60.7%), thin
cap fibroatheroma (76.9% versus 14.3%), macrophage image
(61.6% versus 14.3%), and intraluminal thrombus (30.8% ver-
sus 1.8%) in NSCPs with progression than those with NSCPs
without progression (𝑃 < 0.05 for all of these comparisons).
Barlis et al. showed that OCT could be safely used in vivo
to show the culprit coronary lesions and detect morphologic
features associated with plaque vulnerability [71]. During
24 months of follow-up of 23 patients prior to coronary
angioplasty,OCTdetected 7 thin cap fibroatheroma lesions in
6 patients with a mean cap thickness of 0.19±0.05mm.Their
results together with others indicated that OCT is a valuable
technique for assessing culprit atherosclerotic lesions in vivo
with favourable results achieved [72, 73].

One important aspect about vasa vasorum is that they
are dynamic, and the blood flow in these structures can be
detected byOCT technique. Cheng and colleagues developed
an intensity kurtosis OCT technique to visualize vasa vaso-
rum of carotid artery in vivo [74]. The filling of blood into
the vasa vasorum and dynamic motions of the arterial wall
were clearly demonstrated using their OCT technique. Their
method may provide useful information for evaluating the
health status of the artery through imaging of vasa vasorum
and associated abnormal changes such as proliferation, thus,
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Figure 3: Depiction of qualitative representation of enhancement. Unprocessed images are displayed (a) before, (b) during, and (c) after
injection ofmicrobubbles. Corresponding processed images are displayed in (d)–(f). Enhancement is graded fromminimal (blue) tomaximal
(red). Values are a percentage of the maximum grey level intensity difference (255). Arrows indicate points of intense, stable enhancement at
the media-adventitia border. Diffuse points of enhancement are present nearby. Reprint with permission from [53].

improving treatment of atherosclerosis in coronary and
carotid arteries, although further research is required to
verify their early results.

In summary, OCT is an exciting light-based imaging
modality with excellent spatial resolution and a strong con-
trast between the lumen and artery wall structure [75, 76].
OCT has been validated in both in vitro and in vivo studies
to characterize plaque components and identify microvessels
and vulnerable plaques which are seen with thin fibrous cap
and increased neovascularization of atherosclerosis [70–73,
77–79]. OCT suffers from some limitations. It is not widely

available in many catheterization centres. Another main
limitation of OCT is the limited depth penetration through
tissues, which is less than 2mm. This will significantly affect
the role of OCT to assess plaque burden [56]. Quantitative
analysis of subtle morphological parameters such as fibrous
cap thickness or compositional parameters could be chal-
lenging and may need trained reader interpretation [80].
Furthermore, OCT has been reported to have a moderate
diagnostic value in identifying hemodynamically signifi-
cant coronary stenosis when compared with fractional flow
reserve and IVUS [81]. Recently, international guidelines
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Figure 4: Representative OCT images of coronary plaque with microchannels. (a), (b) Two consecutive cross-sectional OCT images.
Eccentric lipid-rich plaque (L) was imaged. Two microchannels (arrow) were located in thickened intima at shoulder region of plaque. (c)
Proximal site adjacent to plaque imaged in Figures (a) and (b). Two microchannels (arrow) were located in thickened intima at 7-o’clock
position. Intracoronary thrombus (arrowhead) was also visualized. (d)Minimum lumen area site. Lipid-rich plaque was visualized. (e) Lipid-
rich plaque covered by thin fibrous cap (50 𝜇m) imaged and found to be thin cap fibroatheroma. Reprint with permission from [69].

have been developed by the International Working Group
for IntravascularOCT Standardization andValidation (IWG-
IVOCT) [82]. The document is recommended for being
broadly used as a standard reference regarding the current
state of the IVOCT imaging modality in clinical practice.

2.5. Contrast-Enhanced MRI. MRI is currently recognized
as one of the most valuable imaging modalities for the
quantification of vascular plaque burden and assessment of
atherosclerotic plaque composition [83–85]. It is well under-
stood that neovascularization of the vessel wall plays a key
role in atherosclerotic plaque development and progression;
thus, increased neovascularization is often associated with
markers of plaque vulnerability such as intraplaque hemor-
rhage and thin cap fibroatheroma [86, 87]. Neovessels arising
from the vasa vasorum provide nutrients to thickening walls
and serve as an entry site for inflammatory cells into the
plaque [88, 89]. Thus, the extent of vasa vasorum may
be associated with atherosclerotic plaque size, vascularity,
composition, and inflammation [90].

Several different MRI techniques have been developed to
assess plaque neovascularization in recent years, and dynamic
contrast-enhanced MRI (DCE-MRI) represents a promising
technique as it allows for the assessment of neovascular
architecture and functional characteristics such as fractional
plasma volume and permeability [92, 93]. DCE-MRI also
offers high spatial resolution that enables localization of the
adventitial boundary, which is the source of the vasa vasorum
[94, 95].

Cornily et al. in their animal experiments on abdominal
aorta acquired from 10 rabbits (7 atherosclerotic and 3
control rabbits) showed a significant enhancement in the
atherosclerotic group following injection of MRI contrast
agent [90]. A strong correlation was found between plaque
enhancement and plaque neovessel density using contrast-
enhanced MRI. Kerwin et al. used DCE-MRI to perform
quantitative analysis of the adventitia in patients with carotid
artery disease [95]. In 25 patients with carotid endarterec-
tomy specimens, DCE-MRI showed a significant correlation
between adventitial transfer constant with the amount of
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Figure 5: Vasa vasorum images in a 63-year-old man with hypertension. Adventitial transfer constant was 0.129min−1 before therapy and
0.099min−1 after 1-year treatment. There was subtle gradation of color in adventitial zone (arrows). Reprint with permission from [91].

neovasculature and macrophage (𝑃 < 0.05). The average
transfer constant was significantly higher in patients with
severe carotid stenosis than that in patients with moderate
disease (0.155 ± 0.045min−1 versus 0.122 ± 0.029min−1, 𝑃 <
0.01). The transfer of the contrast agent to the adventitia
depends on the vasa vasorum; therefore, adventitial transfer
constant is regarded as an indicator to reflect the extent of
the vasa vasorum [91, 95]. This is further validated by a
recent study by Dong et al. who studied 28 patients using
DCE-MRI at both baseline and 1-year follow-up [91]. After 12
months of lipid therapy, a significant reduction was observed
in mean adventitial transfer constant when compared to the
baseline (0.067min−1 ± 0.028 versus 0.085min−1 ± 0.037,
𝑃 = 0.02) (Figure 5). The adventitial transfer constant was
reduced due to the reduction of volume, permeability, or
both in neovessels arising from the adventitia.These findings
suggest that DCE-MRI could be used as an effective method
for the assessment of therapeutic effects on carotid artery
atherosclerosis.

In summary, studies have confirmed that contrast-
enhanced MRI, in particular, DCE-MRI, provides unique
advantages to visualize components of atherosclerotic
plaques and identify vulnerable plaques in vivo imaging
[96–101]. There is a good correlation between atherosclerotic
plaque enhancement on MRI imaging and neovessel density
of the plaques and signs of inflammation in the plaques in
patients with acute coronary syndrome [102–104]. Thus,
contrast-enhanced MRI is considered to be a reliable non-
invasive tool to detect and characterize features of vulnerable
plaques in vivo.

3. Summary and Conclusion

Rapid technological advances in imaging modalities have
augmented the ability of these imaging techniques to detect
and characterize cardiovascular disease, offering informa-
tion beyond the traditional assessment of lumen changes.
Micro-CT demonstrates excellent anatomical details of vasa

vasorum due to its superior resolution; however, it is only
limited to animal or human cadaver experiments because of
its limited field of view which is an inherent disadvantage of
the micro-CT scanner. IVUS and OCT are an intravascular
imaging modality with unique characteristics of providing
superior information on the vascular lumen, plaque compo-
nents, and vasa vasorum. In particular, OCT has superior
resolution which enables it to provide detailed structural
information such as different types of plaques. However,
both imaging techniques are invasive and are restricted to
limited clinical centres. Furthermore, methodology of image
acquisition and interpretation needs to be standardized.

CEUS andDCE-MRI both provide important insight into
plaque components and microvascular features which are
associated with plaque vulnerability; thus, these two non-
invasive imaging modalities serve as an effective means for
assessing risk status of atherosclerotic plaques and monitor-
ing therapeutic outcomes of atherosclerotic vascular disease.
Large prospective clinical trials are needed to demonstrate
how these modalities improve patient care by modifying
patient management and outcome.
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