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Accurate clustering of IoT devices is a promising challenge. We have observed that a few studies have 
been performed to address this challenge. However, they are expensive or do not shape accurate 
clustering. To fill this gap, in this study, we first solve a geometric version of a big challenge in pure 
mathematics: the NP-hard “Almost 2 − SAT ” problem. Then, we solve it in a polynomial time. To 
clarify the concept, we present it as the “Two Disjoint Convex Hulls” challenge. We solve this challenge 
using two algorithms: the first is “Naive” and the second is faster than the “Naive” one can solve 
it in polynomial order, O(n2). In addition to providing a mathematical proof of our solution, we 
demonstrate its superior performance within an IoT industrial ecosystem.
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Simple and low-cost sensors with limited processing power have gained significant popularity, especially in 
industrial and commercial systems, notably in Internet of Things (IoT) and Industrial IoT applications. These 
sensors are often used for detecting specific conditions and environmental monitoring, such as patient health 
monitoring1–3, early fire detection4, agriculture5,6 or UAV recognition7. One of the main advantages of these 
sensors is their low price and scalability, allowing for widespread deployment to create a network of precise data 
collection points8,9.

Sensors (e.g., DHT11 and MQ-2) are well-suited for simple and low-cost applications in IoT systems, 
providing reliable environmental data for temperature, humidity, and gas detection. These sensors are extensively 
used in healthcare monitoring, industrial applications, and fire detection systems. For example, heart rate and 
blood oxygen sensors (e.g., MAX30100) are used in healthcare systems for real-time patient monitoring. The 
system employs ESP8266 microcontrollers and Arduino boards to connect the sensors to networks for data 
transmission and processing10. These components are ideal for large-scale IoT projects, offering scalability 
to manage numerous sensors while maintaining low power consumption and efficient data communication. 
Block diagrams and flowcharts are included to illustrate the sensor-to-gateway communication flow and data 
aggregation, ensuring a clear understanding of the system’s architecture and its ability to scale effectively across 
various applications11–13.

Low-cost sensors and wireless networks play a critical role in healthcare systems, particularly for real-time 
localization and tracking of patients and medical equipment14. These technologies offer significant advantages 
in large hospitals and clinics, where efficient resource management and patient monitoring are crucial15. By 
deploying sensors or wireless tags, healthcare providers can track patients’ movements within the facility, 
ensuring timely interventions when needed. For instance, patients with Alzheimer’s conditions can be monitored 
and localized. Additionally, these systems are used for tracking essential equipment such as hospital beds, oxygen 
tanks, and wheelchairs. By leveraging low-cost sensors, healthcare facilities can improve efficiency, particularly 
in managing the movement of patients and medical assets in real-time.

Through observation, we have found that constructing corners of the shapes forging to reconstruction 
of binary images with disjoint components is an important problem16,17. This challenge can address many 
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challenges in different fields such as accurate clustering of IoT devices in Industrial IoT (IIoT) ecology, digital/
graphical games and so on. For all these applications, if we check them carefully, we would find that the main 
issue stems from the fact of detecting the minimum number of noises which could be removed and caused 
construction of some separate components.

To achieve our goal, as Fig. 1 illustrates, we consider an Industrial IoT environment where IIoT devices have 
spread in a field that tracks a UAV. In our scenario, IIoT devices are represented by + and - symbols, indicating 
the longitude and latitude of the moving autonomous vehicle (AV), respectively. In our scenario, two Convex 
Hulls have been created due to the existence of two kinds of IIoT devices. These convex hulls overlap, which 
also has a negative effect on the clustering issue of IIoT devices. They, generally, are without much complexity 
in a way that different sensing aspects can be applied in these systems to various targets such as temperature, 
light, sound, etc. The devices which generate information as little as one bit at each time result in providing 
inexpensive communication.

The goal is to minimize the number of IIoT devices required to achieve disjoint Convex Hulls, enabling 
accurate clustering.

In our scenario, each IIoT device detects and transfers one bit of information to the base station. These kinds 
of problems can be formulated as follows18. Having a set of m binary devices S = {S1, S2, ..., Sm} with the 
consideration of a single sample s ∈ {−1, +1}m of data, produced at time t. The following lemma illustrates an 
approximation for the location of the tracked UAV which is outside the convex hulls of both plus devices and 
minus devices.

Lemma 1 Let s ∈ {−1, +1}m be a sample of the device values and X(t) be the location of the target UAV at 
the time t. Let A = {Si|si = +1}, B = {Sj |sj = −1}, and CH(A) and CH(B) their convex hulls. Then 
CH(A) ∩ CH(B) = ∅. Furthermore, X(t) ̸∈ CH(A) ∪ CH(B)18.

This application enables the definition of new geometric problems, the logical versions of which are NP − hard. 
The “Almost 2SAT” problem, which serves as the foundational problem in this paper, is NP-hard. However, we 
do not attempt to solve this problem in its general form. The main contribution of this paper is the definition and 
solution of its geometric variant. In this work, we prove that when the problem is constrained to geometric data, 
it no longer remains computationally intractable, and we are able to solve it by a polynomial-time algorithm. 
Furthermore, we present two algorithms and discuss their details.

Section “Two disjoint convex hulls” includes some subsections which represents results19 about these logical 
problems. In the next subsection, a new problem related to the convex hull is introduced, which is applicable to 
shape modeling and the IIoT environment, which we will solve it in polynomial time. As a result, a naive O(n3) 
algorithm is also presented, and in the next part, to address this issue, we propose a novel solution which is 
O(n2). Finally, Section “Conclusion and future work” concludes this study and suggests several open problems.

Two disjoint convex hulls
As it is mentioned before, this problem is similar to a version of 2 − SAT  problem, which would be discussed 
in the following.

Variable deletion almost 2 − SAT
There are some basic hard problems in computational complexity, which are NP − hard. Although 2 − SAT  
problem belongs to class P, some versions of that like “Max 2 − SAT ”, “Almost 2 − SAT ” and “Variable 
Deletion Almost 2 − SAT ” are all NP − hard. The last problem is known in theoretical computer science 
under the terms Almost2 − SAT , All − but − k 2 − SAT , 2 − CNF  deletion, and 2 − SAT  deletion20.

In the “Almost 2 − SAT ” problem, there are a 2 − CNF  formula ϕ, an integer k, and the question of 
whether one can delete at most k clauses from ϕ to make it satisfiable. In “Variable Deletion Almost 2 − SAT ” 
(variable-deletion variant), instead, it is allowed to detect at most k variables. Each variable is deleted along with 
all clauses containing it. One can think of deleting a variable as setting it both to true and false at the same time. 
These two problems are NP-hard, and in this regard, the following lemma has been proved19,21.

Fig. 1. IIoT ecology where devices have shaped two Disjoint Convex hulls with overlap.
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Lemma 2 Variable Deletion Almost 2 − SAT  can be solved in 4knO(1) time.

The main problem
Detecting and testing the intersection between objects are among the most important applications of 
computational geometry in the Network domain. This problem has many other applications in text mining, and 
NLP in which we need to separate the given data set into some disjoint subsets22. It is one of the main questions 
addressed in Shamos’ article that lays the groundwork for computational geometry23, the first application of the 
plane sweep technique24. It is hard to overstate the importance of finding efficient algorithms for intersection 
testing or collision detection as this class of problems has many applications in Robotics, Computer Graphics, 
Computer-Aided Design, and VLSI design25–27. In the plane, Shamos23 presents an optimal linear algorithm to 
construct the intersection of a pair of convex polygons. Another linear time algorithm is later presented by O 
Rourke et al.28.

For the testing version of the problem, Lemma 3 has been proved29.

Lemma 3 Let P and Q be two convex polygons with n and m vertices, respectively. The 2D-algorithm determines if 
P and Q intersect in O(log n + log m) time29.

As discussed earlier, the problems are applicable to binary sensor networks and target tracking. Assume that 
some of the sensors do not work properly in a binary sensor network; these sensors send incorrect signs. Clearly, 
if two convex hulls overlap, it means that some of the sensors are making mistakes (Fig. 1), but the reverse is not 
necessarily right.

In some applications, the minimum sensors are ignored because they are prone to make a wrong sign at the 
moment. This problem is summarized as Problem 1.

Problem 1 Minimum Sign to Remove There are a plus set P1 and a minus set P2 of points on the plane. For an 
integer K ≤ min{|P1|, |P2|}, are there K points in P1 ∪ P2 whose removing yields two disjoint convex hulls 
for P1 and P2?

At first glance, it seems that the problem is NP − hard and structurally very similar to Variable Deletion Almost 
2 − SAT  problem. For some geometric reasons, however, the problem can be solved in polynomial time. The 
following observations can be considered easily about two disjoint convex hulls of given points in the 2D plane.

Observation 1 For two given sets A and B of points in Problem 1, the minimum points which should be re-
moved might be located outside of CH(A) ∩ CH(B)( Fig. 2).

Observation 2 Removing each pair of points on convex hull forces to remove all the points between them (ei-
ther clockwise or counterclockwise), which are on the convex hull (Fig. 3).

Observation 3 If we know the regions containing only plus (minus) signs, the problem may become simpler 
(Fig. 4).

To decide whether two convex polygons are intersecting, the Separating Axis Theorem can be used30,31. Clearly, 
for two not-intersecting convex polygons, there exists a line passing between them. Obviously, such a line exists 
if and only if an edge of one of the polygons forms that line. The closest point of this line to the other polygon is 
one of its corners which is closest to the first polygon (Fig. 5). This edge will then form a separating axis between 
the polygons. And also, if two middle edges of two polygons are parallel, both of them are separating axes. These 
are summarized in Lemma 4, and the idea has been used in the algorithm of this study30,32.

Lemma 4 (Hyperplane Separation Theorem) Let A and B be two disjoint nonempty convex subsets of Rn. Then 
there exist a nonzero vector v and a real number c such that < x, v >≥ c and < y, v >≤ c for all x in A and all y 
in B; i.e., the hyperplane < ., v >= c, v the normal vector, separates A and B30.

Fig. 2. Removing only two (minimum) IIoT devices yields two disjoint convex hulls.
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For every two arrays A2∗n and B2∗m of points in the plane, Algorithm 1 computes a cost for each line segment 
made by a pair of points. It chooses the pair with the minimum cost and returns the points that should make 
the separating axis. As a result, the minimum number of removing signs (plus or minus) of Problem 1 will be 
represented. So, a glance at the algorithm reveals that Theorem 1 is clear.

Fig. 4. All the sensors in region A (B) are plus (minus) and we can remove only from region C.

 

Fig. 3. Removing points (a) and (d) forces to remove either (e) or (b, c).
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Algorithm 1. A Naive Algorithm for Two Disjoint Convex Hulls

Theorem 1 Algorithm 1 solves Two Disjoint Convex Hulls in O(m + n)3.

Fig. 5. Dividing axis for two convex hulls.
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An O(m + n)2 algorithm
As mentioned earlier, in this section, a new fast algorithm is presented for the problem that uses the duality of 
given points. As illustrated in Fig. 6, if the dual space is drawn, (m + n)2 regions appear in which m = |A| and 
n = |B|. In order to find the optimal line lopt in the primal space, an optimal cell cellopt and a point vopt in it 
should be found in dual space that vopt demonstrates the dual of lopt which has been depicted in Fig. 9.

For this purpose, firstly, the dual line of all the given points in A (plus signs) and B (minus signs) is drawn 
in the dual space. Red and blue colors are assigned to dual lines of set A and B, respectively (Lines 2–3). There 
appear O(m + n)2 segments and half-lines in two colors in the dual space. The dual space is stored in a Doubly 
Connected Edge List (DCEL) in which the edge list contains the color of every edges as well. This process takes 
O(m + n)2 time. At this time, a planar graph G(V, E) (Lines 4–6) can be generated as follow. The starting cell to 
which vertex v1 is assigned to that is the cell above the upper envelope (Fig. 7). A vertex vi is assigned to every 
other cell in any order. There is an edge between two vertices if those are adjacent, so E contains all the edges 
between every two adjacent vertices (Line 6) (Fig. 8). The resulting graph has O(m + n)2 vertices and edges, 
each of which processes once (Fig. 9).

The next step is computing a pair of numbers w1 and w2 as weights of the vertices (7–25). Firstly, set 
w1(v1) = m and w2(v1) = 0, then set weights of the adjacent vertices according to the segment between them, 
so that if the segment is red decrease w1 without any change in w2 and if the segment is blue reduce w1 and 
w − 1 stay without change. Therefore, for each vertex v, w1(v) and w2(v) show the number of red lines under v 
and the number of blue lines above it respectively. Using a queue structure Q, the weight for all the vertices (Lines 
8–25) is computed. In each step, when an unweighted vertex appears by crossing a red (blue) segment, w1( w2) is 
decreased (increased) by one. Computing the weight for a new vertex takes constant time; hence, in O((m + n)2) 
time, the weighted planar graph can be computed in which the weights w1(v) and w2(v) demonstrate the red 
lines below and blue lines above the cell containing vertex v. In both sensor network applications and finding two 

Fig. 7. Vertex V1 is assigned to the starting cell in the upper envelope.

 

Fig. 6. Primal Plane, red points {r1, r2, ..., r7} and blue points {b1, b2, ..., b8}.
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Fig. 9. Dual plane of Fig. 6, dual of points (lines) and a black point in a region that separates blue and red lines 
with minimum error (only D(b7) and D(r8) are at the wrong side of black point.

 

Fig. 8. Every other cell is labeled in any order and there is an edge between two vertices if and only if their 
corresponding cells are adjacent.
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disjoint convex hulls, if the separation line is the dual line of vertex v, then w1(v) plus signs and w2(v) minus 
signs should be removed. Algorithm 2 find the optimal vertex vopt with min{w1 + w2} and line lopt in Lines 
(26–27) in O((m + n)2) time. We can conclude all the results in Theorem 2.

Theorem 2 Let A and B be two sets of points in the plane, |A| = m and |B| = n. Then Algorithm 2 finds the 
minimum number of removal points in order to have two disjoint convex hulls in O(m + n)2.

Algorithm 2. Two Disjoint CHs by Dual Space

Scientific Reports |        (2025) 15:17200 8| https://doi.org/10.1038/s41598-025-88932-2

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Note to practitioners
This paper has been inspired by a real challenge in the world: imperfect IoT device detection. Specifically, the 
challenge stems from the fact that we need to leverage existing generated data of a variety of IoT devices to find 
imperfect ones. This problem literally is NP-hard which means there is no solution that can solve this issue in a 
logical polynomial time. In this paper, we have extracted the geometric version of IoT devices data forging an 
accurate and fast algorithm for it. We demonstrate that the geometric version of the problem is not NP-hard. 
To the best of our knowledge, this is the first study to address this complex challenge. Moreover, we address this 
geometric version through two novel fast algorithms for a large number of IoT devices in O(n2). The achieved 
result demonstrates we can address this important challenge in a short time. To show the superior performance 
of our solution, we have implemented it in an IoT environment and evaluated it from several evaluation metrics.

Conclusion and future work
In this paper, we addressed the accurate clustering issue in the Industrial IoT environment by addressing a 
big challenge which is “Almost 2 − SAT ” problem. In this case, at first, we have depicted it in a geometric 
environment. Then, we solved it via two different algorithms, while the first one is a naive and simple but slower 
approach with O(n3) time complexity. However, the second algorithm uses dual space and is faster with O(n2) 
time complexity. Beyond mathematical proof, we showed the effectiveness of our solution in the Industrial IoT 
environment. We showed that through our solution, we could remove the minimum number of IoT devices in 
the Industrial IoT ecology and perform accurate clustering of IoT devices.

As highlighted throughout the paper, the two algorithms presented in this paper fall within class P and 
exhibit polynomial computational complexity, ensuring high execution speed and making them suitable for real-
time applications. However, the system’s scalability and adaptability to diverse healthcare scenarios could face 
limitations, particularly in environments with higher complexity or a larger number of IoT devices. While the 
algorithms perform well in real-time localization using low-cost devices, further optimization may be necessary 
to enhance their robustness and scalability in more demanding settings, such as large-scale hospital networks 
or disaster response scenarios. Future work will focus on improving system adaptability to various healthcare 
applications, optimizing the algorithms for even greater scalability, and addressing any constraints related 
to real-time performance. Additionally, future research may explore integrating advanced machine learning 
models to detect sensor malfunctions more effectively and expanding the system’s applicability to other fields, 
such as drones, wildfire detection, and smart city infrastructure.

Data availability
All data generated or analysed during this study are included in this published article (data is validated through 
mathematical proof in this published paper).
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