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Abstract
Recent advances in genotyping methodologies have allowed genome-wide association

studies (GWAS) to accurately identify genetic variants that associate with common or path-

ological complex traits. Although most GWAS have focused on associations with single

genetic variants, joint identification of multiple genetic variants, and how they interact, is

essential for understanding the genetic architecture of complex phenotypic traits. Here, we

propose an efficient stepwise method based on the Cochran-Mantel-Haenszel test (for

stratified categorical data) to identify causal joint multiple genetic variants in GWAS. This

method combines the CMH statistic with a stepwise procedure to detect multiple genetic

variants associated with specific categorical traits, using a series of associated I × J contin-

gency tables and a null hypothesis of no phenotype association. Through a new stratifica-

tion scheme based on the sum of minor allele count criteria, we make the method more

feasible for GWAS data having sample sizes of several thousands. We also examine the

properties of the proposed stepwise method via simulation studies, and show that the step-

wise CMH test performs better than other existing methods (e.g., logistic regression and

detection of associations by Markov blanket) for identifying multiple genetic variants.

Finally, we apply the proposed approach to two genomic sequencing datasets to detect

linked genetic variants associated with bipolar disorder and obesity, respectively.

Introduction
Many comprehensive genome-wide association studies (GWAS) have now been conducted to
identify previously unknown single nucleotide polymorphisms (SNPs) associated with numer-
ous normal and pathological phenotypes. These novel genetic markers are well tabulated in
GWAS catalogs that are updated regularly [1]. However, the majority of such genetic markers
are obtained via single-marker analysis, due to the constraints of commonly used statistical
methods for judging genetic associations [2,3]. This limitation is problematic to the
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advancement of biomedicine, as it is now known that complex diseases which severely impact
the health of the general population, are coordinately influenced by multiple genetic factors.

Because the biological and biochemical pathways related to genetic markers often interact
to induce disease states, the importance of identifying specific pathway-associated genetic vari-
ants is increasingly being recognized [4,5]. Furthermore, joint identification may improve the
predictive performance of specific types of statistical analyses [6]. However, traditional models,
with logistic regression as one salient example, cannot easily handle multiple genetic markers
[4,7,8] when there are sparse cell counts in contingency tables of a categorical trait and single
nucleotide polymorphism (SNP) combinations, because the standard errors of parameter esti-
mates tend to be inflated, and the p-value becomes close to one. In addition, extensive comput-
ing time is required for estimating parameters in the presence of numerous SNPs.

Consequently, several methods have been proposed to overcome these problems. One such
method, penalized logistic regression, is efficient when a large set of SNPs is needed [6]. For
example, when penalized logistic regression is fitted, multiple SNPs expected to jointly affect a
disease phenotype are selected from the model. However, this approach is not able to simulta-
neously handle whole SNP datasets owing to its intensive computational burden. Therefore, a
small number of SNPs (e.g., 1000 SNPs), having strong marginal effects, are filtered from a
single SNP analysis prior to the application of penalized logistic regression [6]. Even with this
limitation, in most cases, penalized logistic regression still provides a large number of SNPs,
which complicates further biological interpretation.

A second approach, multifactor dimensionality reduction (MDR), is a nonparametric,
model-free, and combinatorial approach for interaction analysis that identifies a multi-locus
model for association in case-control studies [9]. The MDR method reduces multi-locus geno-
types into high- vs. low-risk disease groups. If the ratio of cases and controls in a combination
of genotypes is larger than a pre-assigned threshold T (e.g., T = 1), the cell of combination is
labeled “high risk;” if smaller than the threshold, it is labeled “low risk.” Based on the label of
each cell in the contingency table, MDR runs 10-fold cross-validation to select an SNP set with
the smallest prediction error and/or the most consistently large training accuracies. Thus, this
method avoids the sparsity problem by assuming that sparse cells are undefined. However,
since MDR selects k-way interactions purely by the prediction performance of an exhaustive
search, it is impractical to detect high-order interactions. Additionally, although some MDR
approaches were proposed to reduce computation time [10], or space searching [11], detection
of> 3-way interactions from GWAS data is not yet possible.

In addition to the above, a variety of other methods have been proposed to identify gene-
gene interactions. For example, Detection of ASSOciations using Markov Blanket (DASSO-
MB) was proposed to detect interactions via a Markov blanket used to shield a specific variable
from all other variables [12]. This method employs a goodness-of-fit test combined with a step-
wise procedure. In some simulation settings, this method outperforms MDR. However, the
method has their own drawbacks, such as increased degrees of freedom upon the addition of
SNPs.

In this report, we propose a stepwise method for the identification of SNPs that jointly asso-
ciate with specific phenotypes. Our method uses Cochran-Mantel-Haenszel (CMH) statistics,
commonly used in contingency table analysis [13,14] to sequentially test the conditional inde-
pendence phenotypes from genetic factors. Although the use of CMH statistics for association
tests was previously proposed [15], it implementation has proved impractical to handle GWAS
datasets, due to the number of strata, derived by distinct genotype combinations, increasing
exponentially with increased size of the selected SNP set. To resolve this limitation, we propose
a new criterion for stratification categorized by the sum of minor allele counts (MACs). This
categorization alleviates intensive computational burden, and therefore facilitates the joint
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identification of high-order SNPs in large sample datasets. In addition, we also discuss applica-
tion of ordinal phenotypes. In the results section, we use simulations to compare our method
with stepwise logistic regression and DASSO-MB. Finally, we apply our modified CMH
approach to two GWAS datasets to detect collective multiple genetic variants related to bipolar
disorder and obesity, respectively.

Materials and Methods

Generalized CMHMethod
The original CMH test proposed by Mantel and Haenszel is the method to tests conditional
independence of 2×2×K contingency tables [16,17], meaning that the method is commonly
used to test for conditional independence between two binary variables, after adjusting for the
effect of confounding variables with K strata. Statistics of the test follow chi-square distribu-
tions with one degree of freedom and perform best when the associations of two binary vari-
ables have the same directions in each partial table. Situational application of this approach has
been generalized by Birch [18], Landis [19], and Mantel [20] to an I×J×K table in which the
predictor variable and the response variable have I and J levels, respectively, that can be treated
as not only nominal but also as ordinal. Therefore, the generalized CMHmethod consists of
two more tests, in addition to the conditional independence test for two nominal variables.
One test examines the mean score difference when one variable is ordinal, and the other test
evaluates the correlation when both variables are ordinal [20]. The generalized CMH statistics
is given as

L2 ¼ ½PkBkðnk � mkÞ�0½
P

kBkVkB
0
k��1½PkBkðnk � mkÞ�

In the above equation, Bk is the Kronecker product between the row score uk and the column
score vk, nk and μk are vectors of observed and expected counts of length of I×J in the k

th strata,
respectively. Vk is an (I×J)×(I×J) variance matrix of nk, evaluated under an assumed hypergeomet-
ric distribution. Therefore, nk and μk is represented as (n11k,n12k,. . .,nIJk) and (n1+k×n+1k,n1+k×
n+2k,. . .,nI+k×n+Jk)/n++k respectively. Moreover, elements of Vk consist of covariance terms
between nijk and ni'j'k, and are represented as niþkðoii0nþþk � ni0þkÞnþjkðojj0nþþk � nþj0kÞ=
ðn2

þþkðnþþk � 1ÞÞ where ωab = 1, when a = b and ωab = 0 otherwise.
Three types of tests can be derived by imposing ordinal or nominal weights on uk and vk.

When uk is used as the nominal variable, it is described as a (I−1)×Imatrix (I, -1), where I is an
identity matrix of size I−1, and 1 denotes a column vector of I−1 ones. When uk is used as the
ordinal variable, it is given as (u1,u2,. . .,uI), with an ordered score vector given to each level of
predictor. vk is constructed similarly with uk. Therefore, the general association test is con-
ducted if both variables are nominal, the mean score test is conducted if only one variable is
ordinal, and the correlation test is conducted if both variables are ordinal. The degrees of free-
dom are given as (I−1)×(J−1) for the general association test, I−1 or J−1 for the mean score
test, and 1 for the correlation test [21].

Application of the CMHMethod to SNP Data
We next applied the CMH test to identify genetic variants that mutually associate with a trait
of interest. Let Y represent the trait status of a subject, for example, a specific disease. The num-
ber of values which Y can have is two for a binary trait, or>2 for ordinal or multinomial traits.
Let I denote the number of values which Y can have. If there is one SNP associated with Y, the
data can be summarized by an I×3 contingency table. We further assume that the genetic
model is codominant for generality, and the CMH test is performed without stratification.

An Efficient Stepwise Test to Detect Multiple Genetic Variant

PLOS ONE | DOI:10.1371/journal.pone.0138700 September 25, 2015 3 / 13



When there are two SNPs, S1 and S2, the data can be summarized in a I×3×3 contingency table,
and the CMH test evaluates the conditional independence between Y and S1, given S2. When
there are three SNPs, S1, S2, and S3, the data can be summarized in a I×3×32 contingency table
and the CMH tests the association between Y and S1, given (S2, S3). Consequently, the genetic
frequency data of case-control study can be summarized in an I×J×K contingency table, where
I = 2 J = 3, K = 3p-1, and p = the total number of SNPs (Fig 1). However, this stratification
scheme has the potential problem that K would be too large in the case of many SNPs. Because
this scheme may require excessive computation, it is impractical to apply this stratification
scheme to GWAS data. For example, if there are 10 SNPs in hand, the number of strata could
reach 39 = 19683, indicating that this dataset is too divided to accurately reflect its properties.
Therefore, we propose an alternative stratification scheme, based on the assumption that sub-
jects with similar sums of minor allele counts (MACs) may have similar risks of disease traits
[22,23]. In addition, we can fix the maximum number of strata through clustering subjects
whose MACs exceed a predefined criterion as one stratum. This new scheme makes computa-
tion much faster than the former scheme, and we expect that several dozen SNPs can be easily
identified in a reasonable time.

Stepwise CMH Test
The general CMH test has (I−1)×(J−1) degrees of freedom. Therefore, when we apply this test
to the codominant genetic model, it follows a chi-squared distribution with (I−1)×2 degrees of
freedom at most. Next, the test for the additive, dominant or recessive genetic models can be
similarly developed using the mean score of the CMH test [20].

To identify multiple causal SNPs among a large total number of SNPs, we propose the fol-
lowing stepwise CMH procedure, following determination of stratification criteria based on
MACs. Firstly, in the forward step, the most significant SNP associated with the disease of
interest is added to the previously selected SNPs via the CMH test. Therefore, if there are N
SNPs in the total dataset, and p (= 0 for the first step) SNPs previously selected by the test, a
SNP whose CMH statistic p-value conditioned on the p selected SNPs is the smallest and
smaller than the threshold would be added. For the first forward step, the CMH test is applied
without stratification.

Secondly, in the backward step, we implement the CMH test to remove the least significant
SNPs among the previously selected SNP set. All SNPs in the set are tested in the presence of
all of the other SNPs. If any SNP has a p-value that exceeds the removal threshold, the SNP
whose p-value is largest is excluded from the SNP set; otherwise, this step does not remove any
SNPs. This backward step can be optionally skipped by the researcher.

Fig 1. Contingency table for CMH test between trait and p SNPs. This test can be represented as H0: Y?SNP|(number of p-1 SNPs). “A” and “a”
represent major andminor alleles, respectively.

doi:10.1371/journal.pone.0138700.g001
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Our stepwise CMHmethod iterates between the forward and backward steps until no addi-
tional variable is added to the current model at the forward step. Once a set of significant SNPs
is identified, these are removed from the whole SNP dataset, and the first step of the stepwise
procedure is repeated. The whole stepwise procedure is repeated until no more significant
SNPs are selected in the first forward step.

Results and Discussion

Simulation Studies
To investigate the utility of our stepwise CMHmethod, we conducted a simulation study to
compare it with the logistic regression and DASSO-MB approaches. For simplicity, we only
considered the main effects of two and three causal SNP models. The odds and penetrances for
the three causal SNP model are provided in Tables 1 and 2 [24]. The corresponding true logis-
tic model for binary traits is assumed as follows:

logitðpðy ¼ 1ÞÞ ¼ b0 þ
PP

p¼1 bp � SNPp

To generate datasets according to the true model, we first determined the total penetrance,
which defines the proportion of cases in whole samples. Then, we set the values for the baseline
effect α and genetically additive effect θ. In case of the codominant model and binary traits, θ
has two values: θ1 and θ2, where θ1 is the marginal effect between major homogeneous and het-
erogeneous genotypes, given by 0.7, and θ2 is the marginal effect between major and minor
homogeneous genotypes, given by 0.5.

In this simulation study, we assumed linkage equilibrium between causal SNPs, with minor
allele frequencies (MAFs) set to 0.03, 0.05, 0.1, and 0.2. We then generated 1000 datasets, each
consisting of 1000 cases, 1000 controls. We set the number of SNPS to be 100, 300, 500, and
1,000 (including non-causal SNPs). Two accuracy measures were used to compare the stepwise
CMHmethod to others. First, the detection probability (Dprob) was estimated by dividing the
number of correctly captured SNPs by the total number of true SNPs. Second, the proportion
of datasets out of all 1000 datasets that detected all of the causal SNPs was evaluated (power).
In addition, two threshold values were used to evaluate significance: Bonferroni correction cri-
terion 5×10−4 and a looser criterion 5×10−3.

The simulation results are shown in Figs 2 and 3. Fig 2 shows the results for the model with
two causal SNPs, and Fig 3 for the model with three causal SNPs. For the codominant model
with binary traits, both accuracy measures for the stepwise CMHmethod, when the MAF was
relatively low (0.03 and 0.05), were clearly greater than those of the stepwise logistic method.
However, with moderate MAFs (0.10 and 0.20), the two approaches provided comparable
results. This is because when the MAF value is small enough to induce sparse minor allele
counts of some strata, logistic regression produces very large standard errors, and some p-val-
ues of the coefficients are greatly inflated. However, the CMH statistic has a more robust vari-
ance estimate that is not substantially affected by sparse cells, due to the fact that the CMH

Table 1. Odds table for simulation studies and binary trait in three causal SNPmodel (θ0 = 0).

((#of c) = k) AA Aa Aa

BB α(1+θk) α(1+θ1)(1+θk) α(1+θ2)(1+θk)

Bb α(1+θ1)(1+θk) α(1+θ1)
2(1+θk) α(1+θ1)(1+θ2)(1+θk)

Bb α(1+θ2)(1+θk) α(1+θ1)(1+θ2)(1+θk) α(1+θ2)
2(1+θk)

doi:10.1371/journal.pone.0138700.t001
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variance is only calculated using marginal counts. Therefore, the performance of the stepwise
CMHmethod is better than that of the stepwise logistic method. This pattern is consistent
regardless of the number of SNPs.

By contrast, DASSO-MB generally showed low power and Dprob values, with a few excep-
tions. DASSO-MB is unfavorable in situations when a model contains only main effects, due to
increased degrees of freedom of tests with increased numbers of variables included in the
selected set. For example, if the second SNP in the forward step was tested once a SNP was
already selected, the degrees of freedom could reach six (Fig 2), while including a third variable
could result in 18 degrees of freedom (Fig 3). Such increases in degrees of freedom result in
decreased power.

Comparison of CMH with Two Other Methods via a Toy Example
To demonstrate the superiority of the stepwise CMHmethod more clearly, we provided an
artificially generated toy example consisting of samples of 50 cases and 50 controls, and geno-
types of two informative SNPs denoted S1 and S2, respectively. The structure of the dataset is

Table 2. Penetrance table for Table 1 in three causal SNPmodel (θ0 = 0).

(#of c = k) AA Aa Aa

BB að1þ ykÞ
1það1þ ykÞ

að1þ y1Þð1þ ykÞ
1það1þ y1Þð1þ ykÞ

að1þ y2Þð1þ ykÞ
1það1þ y2Þð1þ ykÞ

Bb að1þ y1Þð1þ ykÞ
1það1þ y1Þð1þ ykÞ

að1þ y1Þ2ð1þ ykÞ
1það1þ y1Þ2ð1þ ykÞ

að1þ y1Þð1þ y2Þð1þ ykÞ
1það1þ y1Þð1þ y2Þð1þ ykÞ

bb að1þ y2Þð1þ ykÞ
1það1þ y2Þð1þ ykÞ

að1þ y1Þð1þ y2Þð1þ ykÞ
1það1þ y1Þð1þ y2Þð1þ ykÞ

að1þ y2Þ2ð1þ ykÞ
1það1þ y2Þ2ð1þ ykÞ

doi:10.1371/journal.pone.0138700.t002

Fig 2. Performance comparison of stepwise CMHmethod, stepwise logistic and DASSO-MBmethods for the codominant model with two causal
SNPs. Blue bars represent the result of the DASSO-MBmethod, green bars represent the result of the stepwise logistic method, and red bars represent the
result of the stepwise CMHmethod. Bars with diagonal lines are the results of power and solid bars are those of Dprob. The x-axis represents the MAF of true
causal SNPs and the y-axis represents the value of two accuracy measures based on three approaches.

doi:10.1371/journal.pone.0138700.g002
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shown in Fig 4. If we set an entrance cutoff of 0.05, S1 would be selected in the first forward
step by all three methods, because all three p-values would be< 0.05. However, in the second
forward step, S2 was selected only by the CMHmethod, while some sparse cells in the genotype
table resulted in p-value inflation in logistic regression (Fig 4, Table 3). DASSO-MB also could
not detect the second SNP, because this method allows larger degrees of freedom than the
other two methods (Table 3).

Fig 3. Performance comparison of stepwise CMHmethod, stepwise logistic and DASSO-MBmethods for the codominant model with three causal
SNPs.

doi:10.1371/journal.pone.0138700.g003

Fig 4. Toy example dataset structure to show superiority of the stepwise CMHmethod.We counted the
numbers of cases and controls for each genotype combination and expressed them as vertical bars to
visualize. Orange bars represent the counts of cases and the green bars do counts of controls.

doi:10.1371/journal.pone.0138700.g004
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Application of the CMH Approach for Analyzing Wellcome Trust Case
Control Consortium (WTCCC) Bipolar Disorder Data
We next applied our proposed CMHmethod to a WTCCC bipolar disorder (BD) dataset. BD
is well known to be highly heritable and polygenic [25,26], and the dataset consisted of 2,938
controls and 1,868 cases, and a total of 354,022 genome-wide SNP markers. We filtered out
SNP markers with MAFs< 1%, or having call rates< 95%. We also selected tagged SNPs,
based on the criteria of r2 > 0.5 between 50 adjacent SNPs. These filtering steps resulted in
134,254 SNPs usable for our analysis. We then applied the stepwise CMHmethod to the data-
set, based on a codominant genetic model. We set the entry and removal threshold value of sig-
nificance as α = 5×10−5. After all the stepwise procedures were completed, two SNP sets were
selected (Table 4).

In the first SNP set, rs11112069, located in the gene CHST11, encoding carbohydrate sulfo-
transferase-11, which catalyzes sulfate transfer to position 4 of the N-acetylgalactosamine (Gal-
NAc) residue of chondroitin. Chondroitin sulfate is known to facilitate axonal patterning and
cell migration during the early growth and development of the mammalian central nervous
system [27]. CHST11 is also related to neuronal function, suggesting a possible (but yet
unknown) relationship to BD. Another SNP, rs420259, is located in the partner and localizer of
BRCA2 (PALB2), which facilitates DNA repair by recruiting BRCA2 and RAD51 to double-
stranded DNA breaks, and PALB2 and BRCA2 have been associated with both BD and schizo-
phrenia in a Scandinavian study [28]. BRCA2, expressed in the mouse brain, was shown to be
important for normal neurogenesis, particularly in the cerebellum, a region involved in emo-
tional processing that is often dysfunctional in BD [29]. rs17484671 is located in the gene
NR3C2, encoding nuclear receptor subfamily 3, group C, and member 2 [30], the drug target
for dipolar disorder [31]. The SNP rs12537100 is located in an intronic region of the gene
THSD7A, thrombospondin, type I, domain containing 7A. Thrombospondins are key regula-
tors of synaptogenesis in the central nervous system [32]. rs7260296, located 10KB downstream
of the gene NTE, also known as PNPLA6, patatin-like phospholipase domain containing 6.
NTE is a lysophospholipase that maintains intracellular phospholipid homeostasis by convert-
ing lysophosphatidylcholine to glycerophosphocholine [33]. PNPLA6 is directly related to

Table 3. Toy example dataset application result.

Methods p-value (1st forward step) DF p-value (2nd forward step) DF

Stepwise CMH 0.0146 2 0.0304 2

Stepwise Logistic 0.0203 2 0.2450 2

DASSO-MB 0.0498 2 0.1330 6

doi:10.1371/journal.pone.0138700.t003

Table 4. WTCCC bipolar disorder data analysis result (Entrance cutoff = 5×10−5, Removal
cutoff = 5×10−5).

Set SNP name GENE

1st

Set
rs11112069,rs420259,rs17484671, rs7260296,
rs4918068,rs6705537, rs12594576, rs6908950,

rs11984645, rs8021692, rs4027132,
rs4276227, rs7152966, rs17561681,

rs9510385, rs4567706

CHST11, PALB2, NR3C2, PNPLA6, OBFC1,
USP34, FAH, GLTSCR1L, OPRK1, TDRD9,
LPIN1, CMTM8, TSHR, GABRA5, unknown,

unknown,

2nd

Set
rs7184080, rs12537100, rs2609653 LOC101928392, THSD7A, unknown,

doi:10.1371/journal.pone.0138700.t004
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neuronal function [34], and its dysfunction may associate with the onset of BD. Moreover, the
majority of other SNPs in our set were reported previously [35–38].

In summary, many selected SNPs directly or indirectly related to neuronal function. There-
fore, joint identification of the putative causal SNPs could provide more biologically meaning-
ful interpretation and motivation of further investigation, such as pathway analysis.

Application to Korea Association Resource (KARE) project
We also applied our stepwise CMHmethod to a GWA dataset from the Korean Association
REsource (KARE) project, initiated in 2007 to undertake a large-scale GWAS of 260 traits
among 10,038 participants (aged between 40 and 69) of Ansung (n = 5,018) and Ansan
(n = 5,020) population-based cohorts. Among the 260 traits, we selected body mass index
(BMI) to detect causal variants associated with obesity. Here, BMI was treated as an ordinal
variable with four categories: normal (18.5� BMI< 25), overweight (25� BMI< 30), mildly
obese (30� BMI< 35), and severely obese (35� BMI< 40), and the subjects were numbered
from 1 (normal) to 4 (severe), respectively. The dataset consisted of 8842 individuals with a
total of 352,228 genome-wide SNPs. We filtered out SNP markers with MAFs< 1% or call
rates< 95%. We also selected tagged SNPs, based on the criteria of r2 > 0.5 between 50 adja-
cent SNPs. These criterions resulted in 137,400 SNPs usable for our analysis, with the same cut-
off used in our analysis of the BD dataset. After all stepwise procedures were completed, the
two SNP sets were selected (Table 5). Among the selected SNPs, we found no SNPs that were
reported in previous studies. However, in the first SNP set, ATP10B,MACROD2, and HIP2, to
which rs6893893, rs6079272, and rs4518599 respectively annotated, were reported to associate
with various BMI-related traits [39–41]. Moreover, in the second SNP set, ZCCHC17, the loca-
tion of rs6656287, was previous associated with alcohol dependence, which may affect eating
behavior [42,43].

Conclusions
Our stepwise CMHmethod has two large advantages over stepwise logistic regression. The
first is that it addresses the sparsity problem, as variance inflation can only be induced in the
presence of sparse cells of a genotype count table. Secondly, while logistic regression suffers
from intensive computing time (necessary for its iterative optimization algorithm), the stepwise
CMH test avoids this problem, as the CMH test statistic is calculated by a simple matrix opera-
tion, and the standard error is not affected by the sparsity of cells. In GWAS, as the number of
SNPs increases, the chance of including rare SNPs in the stepwise procedure also increases,
making it difficult for logistic regression to identify high-order joint identification. Therefore,
the stepwise CMH approach is a more appropriate approach than stepwise logistic regression
for identification of rare variants in GWAS.

Even though the CMH statistic was originally proposed for detecting conditional indepen-
dence, a specific SNP set identified via the stepwise CMH approach is informative for

Table 5. KARE BMI data analysis result (Entrance cutoff = 5×10−5, Removal cutoff = 5×10−5).

Set SNP name GENE

1st

Set
rs6893893,rs2196534,rs6079272, rs1736913,
rs4639483,rs6462517, rs4518599,rs10878690,

rs1012780, rs7107562,rs11682163

ATP10B, Unknown, MACROD2, HLA-F-AS1,
RSPO2, AK025321, HIP1, AK055974,
LOC100289473, Unknown, ALLC

2nd

Set
rs6656287 ZCCHC17

doi:10.1371/journal.pone.0138700.t005
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identifying joint genetic variants, as the forward and backward steps guarantee that all of the
components in the SNP set are significant in the presence of the other SNPs.

Recently, many variable selection methods were developed which use penalization such as
LASSO or SCAD [44,45]. We have not directly compared the proposed CMHmethod to these
penalized approaches, due to the fact that our stepwise CMHmethod tends to select a small
number of SNPs with joint effects, while the penalized approaches tend to select a large number
of SNPs, if an optimal value of tuning parameter is selected via cross validation. In future com-
parative studies, we will compare our stepwise CMH to the penalization approaches, while also
controlling the number of variables selected. In the presence of ordinal or multinomial traits
[46,47], we expect the usefulness of our approach to increase.

Our method focuses on statistical analysis of common variants from GWAS. The traditional
GWAS are usually based on the assumption of common disease and common variant
(CD-CV). A next generation sequencing (NGS) technique adopts the assumption of common
disease and rare variant (CD-RV). Recently, several gene-based aggregation methods for the
analysis of rare variants have been proposed [48, 49]. A more complete review of aggregation
methods, please refer to [50, 51]. Those aggregation methods are powerful in detecting causal
rare variants which are expected to explain missing heritability. However, they may have low
power when only a small portion of variants are causal in a region [52]. We are working on
developing the stepwise CMH type of statistics for the rare variant analysis.

R code for the stepwise CMH test is provided at a dedicated website (http://bibs.snu.ac.kr/
software/stepCMH).
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