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Abstract: Aptamers are RNA/DNA oligonucleotide molecules that specifically bind to a targeted
complementary molecule. As potential recognition elements with promising diagnostic and thera-
peutic applications, aptamers, such as monoclonal antibodies, could provide many treatment and
diagnostic options for blood diseases. Aptamers present several superior features over antibodies,
including a simple in vitro selection and production, ease of modification and conjugation, high
stability, and low immunogenicity. Emerging as promising alternatives to antibodies, aptamers
could overcome the present limitations of monoclonal antibody therapy to provide novel diagnostic,
therapeutic, and preventive treatments for blood diseases. Researchers in several biomedical areas,
such as biomarker detection, diagnosis, imaging, and targeted therapy, have widely investigated
aptamers, and several aptamers have been developed over the past two decades. One of these is
the pegaptanib sodium injection, an aptamer-based therapeutic that functions as an anti-angiogenic
medicine, and it is the first aptamer approved by the U.S. Food and Drug Administration (FDA)
for therapeutic use. Several other aptamers are now in clinical trials. In this review, we highlight
the current state of aptamers in the clinical trial program and introduce some promising aptamers
currently in pre-clinical development for blood diseases.

Keywords: aptamers; diagnostic; therapeutic; blood diseases

1. Introduction

Nucleic acid aptamers constitute a special class of synthetic polymers or oligomers of
single-stranded ssDNA or RNA molecules, and they have the capacity to bind to a specific
target by forming secondary and/or tertiary structures. The word “aptamer” derives from
the Latin word aptus, meaning “to fit”, and the Greek word meros, meaning “particle”, and
was chosen to describe the “lock and key model” of the relationship between aptamers and
their binding targets. Aptamers bind with a high affinity and specificity to a wide range
of targets, such as proteins, peptides, small molecules, metal ions, bacteria, viruses, and
whole live cells.

Aptamers were first developed in 1990 during an experiment by Tuerk and Gold using
the systematic evolution of ligands in an exponential enrichment (SELEX) procedure [1].
The SELEX procedure was used for the aptamer selection process, and in a typical SELEX,
it was carried out using purified target molecules, starting with a large library of random
oligonucleotides. The oligonucleotides that were strong binders to the target molecule were
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selected from the initial library through cycles of target binding, selection, and amplification
(Figure 1).

Figure 1. Schematic representation of the protein-based SELEX process used to select an aptamer.
The conventional SELEX method is typically carried out using purified target molecules and includes
incubating the target molecule. This cycle has to be performed in several rounds, and the binding
affinity is monitored until significant binding affinity is reached. High-affinity aptamers for the
ligands are isolated and identified by classical cloning and the sequencing results using bioinformatics
analysis. The aptamer selection process is followed by selectivity study to the specific target molecule,
and the thus identified molecules are used for potential diagnostic or therapeutic applications.

Aptamers can be considered a promising class of molecules that are the chemical
equivalents of antibodies. Monoclonal antibodies (mAbs) are recognized as one of the
most powerful tools in modern medicine for therapeutic and diagnostic applications.
Although aptamers are comparable to traditional antibodies, they possess some superior
aspects, including a high chemical stability and quick and easy bulk chemical production.
In addition, they can be produced on a large scale with low cost, while retaining high
reproducibility and reliability (Table 1).

Table 1. Comparison of the critical properties of antibodies and aptamers.

Monoclonal Antibodies Aptamers

Large molecule (IGG monoclonal antibody approximately
150 kDa) Small molecule (10–100 times smaller than antibodies)

Produced biologically (in vivo) in animal house facilities
or reactors Produced chemically (in vitro)

High cost of synthesis Low cost of synthesis,
large-scale bulk production

Widely distributed technologies (widely used) Limited distribution of technologies

Difficult to modify Easy to modify by simple bioconjugate chemistry

Contamination by viral or bacterial during manufacturing
process can affect product quality

Chemical/lab manufacturing process carries no risk of
biological contamination
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Table 1. Cont.

Monoclonal Antibodies Aptamers

High batch-to-batch variation Low batch-to-batch variation

Clonal variation No clonal variation

Long half-life in vivo (less susceptible to serum degradation
and renal filtration)

Short half-life in vivo (susceptible to serum degradation and
renal filtration)

Often immunogenic Less immunogenic

Thermally unstable Thermally stable

Limited shelf life Long shelf life

Poor internalization into cells/tumors Efficient cellular internalization

Less susceptible to nuclease degradation, rapid elimination
from plasma by renal filtration

Susceptible to nuclease degradation, rapid elimination from
plasma by renal filtration

Antibody conjugation with one type of signaling or binding
molecule, such as organic dyes, fluorescent proteins, colored

particles, or enzymes, is typically achieved after
antibody formation.

Aptamers can be easily conjugated to different secondary
reagents such as small nanoparticles, chemotherapeutic drugs,

toxins, enzymes, radionuclides, small interfering RNAs and
microRNAs, etc., often during aptamer synthesis, secondary

reagents. Conjugation can be readily introduced
during synthesis

Limited ability to utilize negative selection pressure Ability for a counter (negative) selection

Aptamers are produced using animal-free technologies and offer a superior alternative
to mAbs (Figure 2).
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Figure 2. (a) Hybridoma technology is the fundamental method for producing identical antibodies
(known as mAbs) specific to antigens of interest. It involves injecting animals (usually mice or
rats) with an antigen that provokes an immune response for mAb production. This approach
presents ethical considerations and restrictions related to infectious risks associated with animal use.
Recombinant mAb technology is an essential alternative to using animals for mAb generation and
production [2]. (b) SELEX technology selects specific aptamers from random DNA, RNA, or peptide
libraries without sacrificing animals.

Aptamers can bind to highly toxic or non-immunogenic antigens, an attribute that
cannot be achieved with animal-based methods of mAb production. Aptamers are inter-
mediate in size (8–15 kDa) between antibodies (150 kDa) and small peptides (1–5 kDa),
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and about 20 times smaller than antibodies [3]. Their small size can lead to better tissue
penetration, which can be used in solid tumor therapy.

Pegaptanib, an aptamer-based therapy developed from the NX1838 aptamer, serves as
an anti-angiogenic agent and is selective for the vascular endothelial growth factor (VEGF).
Pegaptanib can efficiently bind and inhibit VEGF to limit VEGF–cellular interactions. It
was the first aptamer to receive U.S. Food and Drug Administration (FDA) approval for the
treatment of ocular vascular disease and is now in several clinical trials as a therapeutic. The
success of pegaptanib provides ample evidence of the potential for using aptamers’ specific
and reversible target binding and inhibition as a promising strategy for new therapies [4].

The use of aptamers has been widely investigated in several biomedical areas, such as
biomarker detection, diagnosis, imaging, and targeted therapy. Currently, the aptamers
used in cancer therapy are divided into free RNA and DNA aptamers and are specific to
molecular targets that are the hallmarks of diseases. Because aptamer-based therapeutic
properties are similar to those of mAbs, aptamers can be described simply as chemical
antibodies. They are capable of binding and inhibiting the immunoregulatory components
of carcinogenesis, and they can also be used as carriers for therapeutic agents. Aptamer
bind drugs through covalent and non-covalent conjugation methods [5]. Over the last
few years, aptamers have emerged as promising alternatives to antibodies and have been
used in biosensing, disease diagnosis, therapeutic applications, and a wide range of other
applications. In this review article, we focus on aptamer applications in the diagnosis and
therapy of hematological diseases [6,7].

1.1. Aptamer Selection Technology

The SELEX process is an in vitro selection method for isolating DNA or RNA sequences
that bind to a specific target. It involves selecting RNA/DNA ligands (aptamers) of
oligonucleotides that can be used to screen and select, with a high affinity, a wide range
of target molecules from random libraries of RNA/DNA [4]. The SELEX process is the
gold standard for selecting aptamers. Independent of ssDNA or RNA sequences with
purified proteins, small molecules, metals, whole-cell, or living organisms, the protocols
for a conventional aptamer selection involve three important technical steps: (i) incubation
of a target molecule with the random sequenced ssDNA/RNA library, (ii) separation of
the target bound sequences from the non-bound sequences, and (iii) recovering the bound
sequences, followed by the amplification of the bound sequences. The SELEX cycles are
repeated until the aptamer sequence reaches a significantly high affinity. Because the
SELEX process is complex, it usually requires several weeks to complete. Although the
basic steps of the aptamer selection process do not change, new technologies for SELEX
have provided opportunities to enhance and accelerate. Recent developments have also
helped to minimize the effort, time, and cost of aptamer selection, thereby overcoming
technical difficulties and improving the success rate of aptamer screening. The advanced
technologies enhance the SELEX protocol for developing new aptamers for the desired
targets [8].

During the SELEX process, the target molecules are immobilized on a solid support
(e.g., chromatographic beads or sepharose beads) to facilitate the separation of target-
binding oligonucleotides from non-binding ones. The ssDNA library pool of 1015 random
nucleotide sequences are incubated with immobilized target molecule and the enrich-
ment in the ssDNA binding aptamer is monitored by the fluorescence [9]. SELEX can
be performed against the purified protein as well as against whole cells by cell-SELEX,
and the ssDNA/RNA aptamers bind to specific cell membrane proteins existing on live
cells. Aptamers selected from cell-SELEX can identify target cancer cells and be used for
cancer diagnostics. Furthermore, high-affinity and specific aptamers can be generated by
cell-SELEX against live pathogenic organisms, such as bacteria and viruses [10,11].

It is crucial to consider that the aptamers selected from the conventional SELEX
method using purified proteins might not be applied for a real sample analysis. Using
purified proteins as targets offers the advantage of easy enrichments and a high affinity
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and specificity if the protein has the stable conformation as in the native (in vivo) condition.
There are many clinically important proteins, such as purified MUC1 peptides [12], the
purified extracellular domain of the prostate-specific membrane antigen (PSMA) [13],
the cell adhesion molecule P-selectin [14], and the protein tyrosine phosphatase 1B [15]
which have been used as targets. If the target protein is in different conformations of the
aptamer binding pocket, it is masked or blocked by other associated biomolecules in the
physiological condition, and the aptamer might not recognize the target proteins.

The in vitro selection of an RNA aptamer against histidine-tagged EGFRvIII ectodomain
has been performed using an Escherichia coli system for protein expression and purification.
The aptamer had a high affinity (Kd = 33 nM) and specificity for the target. However,
it did not bind to the same protein expressed from eukaryotic cells, because of the post-
translational modification (glycosylation) of EGFRvIII, which has a different structural
conformation from the protein used for aptamer selection [16]. Cell-SELEX is a complex
process that involves technical challenges [17]. To select aptamers for target proteins that
are expressed less on the cell surface, the cell surface has to be accessible for the aptamer
library to bind to the healthy and viable cell lines and to minimize the nonspecific aptamer
during the SELEX process [18]. Dead cells can be removed using a fluorescence-activated
cell sorter (FACS) and microbead-based methods [19,20]. In general, cell-SELEX requires
more rounds of selection to develop high-affinity aptamers than the conventional SELEX
methods [21,22].

Several strategies have been introduced to modify and optimize SELEX methods. For
example, counter-SELEX improves aptamer selection by discarding nonspecific aptamers,
and this process is conducted by adding a pre-clearing step to the SELEX sequence that
uses closely related structural analogs of the target. Another approach is using capillary
electrophoresis-SELEX to separate a bound target from unbound nucleic acids. Because
nucleic acids (aptamers) that bind the target have different mobilities, they can be collected
as separate fractions. A new electrochemical approach (electrochemical SELEX), based
on immobilizing the target analyte on gold electrodes, has also been used. This approach
eliminates the use of beads as a solid support matrix and the fluorescent labels used in
SELEX [23]. Another example is cell-SELEX, a unique methodology for the in vitro selection
of aptamers for whole-cell. This form of SELEX is not limited to individual molecules
but targets whole living cells, such as cancer cells. This approach generates cell-specific
aptamers and can identify unknown biomarkers for cancer cells [8,10,11,24].

1.2. Aptamer Optimization and Modification

Over the last few decades, rapid advancements in aptamer development and nan-
otechnology have rendered aptamers an attractive tool for biomedical applications [25,26].
They can be chemically modified very easily, and several modifications which are achieved
easily without compromising aptamer-target interactions. Introducing such changes to
aptamers can be accomplished during or after the SELEX process. Generally, aptamers are
susceptible to nuclease degradation and fast renal excretion, which significantly limits their
in vivo applications [27,28], and numerous attempts have been undergone to overcome
these obstacles. Aptamer modification can enhance the binding affinity with the target,
improve stability, and avoid degradation by in vivo nucleases [29,30]. Modifying aptamers
for biological applications and enhancing their in vivo stability and pharmacokinetics in
biological environments can be achieved by adjusting the SELEX protocol to optimize the
aptamer libraries and separation schemes and identify aptamer sequences from enriched
libraries, aptamers can be modified for biological applications and to enhance their in vivo
stability and pharmacokinetics in biological environments.

Because aptamers are single-stranded nucleic acids, unchanged aptamers are unstable
in biological fluids and have a short half-life caused by enzymatic degradation in serum
and body fluids. Many new polymerases are available for producing libraries of more
stable aptamers, protected from the nuclease hydrolysis; thus, avoiding post-selection
modification. Introducing unnatural nucleotides into the library would lead to more sta-
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bility in the presence of nucleases, and this process can be achieved by altering the sugar
rings including 2′-fluoro (2′-F) ribose, 2′-amino (2′-NH2) ribose, 2′-O-methyl (2′-OMe)
ribose, and locked nucleic acids (LNAs), (bridging the 2′- and 4′-ribose positions cova-
lently) [31,32]. SomaLogic has introduced the chemical modification of aptamers, in which
chemical modification is carried out on the bases for the stability of the aptamers in the
presence of biological fluids, enhancing the structural diversity and strong target binding
ability. The modified aptamers (SOMAmers) have reflected their best biological functions
in terms of their stability and affinity compared to conventional aptamers. Researchers
have developed SOMAmers by using heterocycles, hydrophobic groups, phenyl, large
naphthyl, and a more complicated indole to replace the dT base in the DNA library with
dU modified at the 5′ position of the base [33]. Many diverse SOMAmer-based array tech-
niques, such as SOMAscan and SOMApanel, have been used for clinical applications [34].
Phosphate linkage modifications have been introduced in the nucleic acid backbone to
improve the stability and binding ability by substituting sulfur-containing ester bonds for
conventional phosphate bonds [35]. Constructing RNA origami, a nanoscale folding of
RNA enables the production of RNA origami anticoagulants [36]. The Spiegelmer is a new
class of drug that consists of mirror-image aptamers. The word Spiegelmer derives from the
German word spiegel, meaning “mirror.” Spiegelmers are aptamers composed of natural
D-oligonucleotides, which can be selected against mirror-image targets, such as D-amino
acid peptides, rather than natural L-amino acid peptides. The L-form RNA is nuclease
resistant and suitable for in vivo applications because of its improved aptamer stability [37].
Nuclease-resistant circular aptamers are used to achieve the metabolic stability of aptamers
in the presence of serum or in the biological fluids. The ligation of 5′ and 3′ terminals in a
nucleic acid is protected from the exonuclease degradation. A stable anticoagulant multiva-
lent circular aptamer has developed. The cyclization increases the thermal stability which
keeps all the aptamers in a uniform conformation. The modification of oligonucleotides
with cholesterol leads to a highly resistant form of nuclease hydrolysis in the serum. A
modified aptamer has a several-fold longer half lifetime compared to the unmodified one.

1.3. Aptamers for Blood Diseases

Knowledge of cancer cells and the molecular mechanisms of their diseases have
rapidly expanded in the last decade, which helped to identify the defects and limita-
tions of conventional strategies for diagnosing and treating hematological diseases [38,39].
Nanotechnology, including the use of aptamers, now provides transformative tools to
translate biomedical findings into novel diagnostic, therapeutic, and preventive tools to
treat different types of diseases in hematology [40,41].

This review discusses the progress of research on aptamers and their use in blood
diseases according to literature published in recent years [39]. It provides a summary of
the current work and a broad perspective on the hematological applications of aptamers,
and it also outlines the principles of these hematological applications to provide an insight
into their therapeutic successes and failures (Table 2).
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Table 2. Summary of different pre-clinical and clinical-stage aptamers for blood diseases.

Target Name of
Aptamer Type of Aptamer Hematological Indication Phase of Testing References

Nucleolin

AS1411 aptamer
(AGRO100, later renamed

AS1411 then
ACT-GRO-777)

26-ntG-rich sequence
pegylated DNA aptamer

Acute myeloid leukemia
(AML)

Phase II clinical trials in a combination therapy for
patients with myeloid leukemia; ClinicalTrials.gov,

#NCT00512083
(completed);

Phase II clinical trials in a combination therapy for
patients with primary refractory or relapsed AML,

ClinicalTrials.gov, #NCT01034410
(terminated)

[42]

CD33;
transmembrane protein Anti-CD33 aptamer DNA aptamer AML

Pre-clinical studies (proof of concept) are binding
and being internalized into CD33-positive

myeloid cell lines, carrier of chemotherapeutic
drugs

[43]

CD30;
transmembrane protein

Anti-CD30 aptamer
(C2NP and PS1NP/

truncated form, PS1NPD)
ssDNA aptamer Hodgkin’s lymphoma (HL)

tumor cells Pre-clinical studies (proof of concept) [44,45]

B-cell activating factor receptor
(BAFF-R)

BAFF-R-specific
aptamer RNA aptamers a

BAFF-R-positive lymphoma
cells, such as non-Hodgkin’s

lymphoma (NHL)

Pre-clinical studies (proof of concept);
specificity of this aptamer to bind and internalize

to BAFF-R-positive lymphoma cells, carrier of
chemotherapeutic drugs

[46,47]

Stromal cell-derived
factor-1 (SDF-1/CXCL 12)

NOX-A12
(olaptesed pegol)

45-nt RNA,
L-ribonucleic acid,

Spiegelmer, pegylated
Multiple myeloma (MM),

CLL

Phase II clinical trials in a combination therapy for
MM,

ClinicalTrials.gov, #NCT01521533;
Phase II clinical trials in a combination therapy for

CLL,
ClinicalTrials.gov, #NCT01486797

[48–52]

CD38;
transmembrane glycoprotein,

myeloma cells

CD38-specific ssDNA
aptamer ssDNA MM

Pre-clinical studies (proof of concept);
conjugated to a cytotoxic agent to target and

release this agent within MM cells and induce
MM cell apoptosis

[53]

Immunoglobulin heavy mu
chain (IGHM) TD05 aptamer ssDNA Burkitt’s lymphoma

Pre-clinical studies (proof of concept);
successfully recognize tumor cells with high

sensitivity and specificity
[54]
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Table 2. Cont.

Target Name of
Aptamer Type of Aptamer Hematological Indication Phase of Testing References

Membrane receptor, protein
tyrosine kinase 7 (PTK7)

tyrosine
Sgc8 aptamer ssDNA

T-cell acute lymphoblastic
leukemia
(T-ALL)

Pre-clinical studies (proof of concept);
sgc8 aptamer–DOX conjugate possesses high

binding affinity and the ability to be efficiently
internalized by target cells;

“Targeted drug delivery to PTK7 T-ALL leukemia”

[55–58]

CD117 (c-Kit), transmembrane
receptor

CD117-specific ssDNA
aptamers ssDNA AML

Proof of concept;
this Apt-MTX used to target AML cells shows

selective growth inhibition of leukemia cells and
had no toxicity to normal marrow cells, potential

clinical value for use in AML

[59–61]

von Willebrand factor (VWF)
A1 domain to platelet GPIb

receptors
ARC1779

ARC1779 A,
pegylated form of

DNA aptamer (ARC1172)

von Willebrand factor-related
platelet function disorders;

Thrombotic thrombocytopenic
purpura (TTP) and von

Willebrand disease type 2B

Phase II clinical trials for cerebral microembolism
in patients undergoing carotid endarterectomy,

ClinicalTrials.gov, #NCT00742612
(terminated because of cessation

of funding);
Phase II for patients with acute TTP,
ClinicalTrials.gov, #NCT00726544

(prematurely closed)

[62–64]

Factor IXa
inhibitor;

pegnivacogin
(RB006)

anivamersen
(RB007),

complementary active control
agent

REG1 System/
Revolixys Kit;

pegnivacogin (RB006) plus
anivamersen (RB007),

a complementary
(antisense)

System consists of
two RNA aptamers:

1-RB006:
2′-ribo purine/2′- fluoro

pyrimidine;
2-RB007:

40 kDa PEG plus
2′-O- methyl antidote

Antithrombotic drug
Phase III clinical trial,

ClinicalTrials.gov, #NCT01848106
(clinical hold because of allergic reactions)

ClinicalTrials.gov
(accessed on 20

May 2021)

Tissue factor (TF) BAX499/
ARC19499

-32 nucleotides
capping with a 3′ inverted

dT—a 5′ 40 kDa PEG
Hemophilia

Phase 1; first-in-human and proof-of-mechanism
study in hemophilia patients,

ClinicalTrials.gov, #NCT01191372
(terminated)

[65–69]
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Table 2. Cont.

Target Name of
Aptamer Type of Aptamer Hematological Indication Phase of Testing References

P-selectin, cell adhesion
molecule

Anti-P-selectin
aptamers:

ARC5690 and ARC5694

ARC5690: -33-mer
oligonucleotide- a

3′-inverted
2′-deoxy-thymidine—a

5′-40 kDa PEG

Sickle cell disease (SCD)

Pre-clinical studies (proof of concept);
Aptamer base p-selectin increases RBC velocity

and wall shear rates and reduces the adhesion of
RBCs and leukocytes in SCD model mice

[70,71]

Complement C5
C5-specific aptamer

(ARC1905, also known as
Zimura)

38-mer 2′F RNA aptamer,
40 kDa PEG to the 5′ end and
3′-3′ linked deoxythymidine

to the 3′ end

Potential for
complement-related diseases,
such as paroxysmal nocturnal

hemoglobinuria (PNH)

Phase II/III clinical trials in age-related macular
degeneration (AMD)

ClinicalTrials.gov, #NCT02686658
Proof of concept of aptamer-based C5 binding and

inhibitory activity
Potential for study in other complement-related

diseases, such as PNH

[72]

Hepcidin peptide NOX-H94, (Spiegelmer®

lexaptepid pegol)
44-nt RNA

L-ribonucleic acid, pegylated
Anemia of chronic disease

(ACD)

Phase II clinical trials,
ClinicalTrials.gov, #NCT02079896
ClinicalTrials.gov, #NCT01691040
ClinicalTrials.gov, #NCT01522794
ClinicalTrials.gov, #NCT01372137

ClinicalTrials.gov
(accessed on 20

May 2021)

Human FXII Anti-FXII aptamer
(Aptamer R4cXII 1t) RNA Aptamer Thrombosis Pre-clinical studies (proof of concept);

inhibits the intrinsic pathway of coagulation [73]

Direct oral anticoagulants
(dabigatran)

DGB-1, DBG-2, DBG-4,
and DBG-5 ssDNA aptamers Direct oral anticoagulants

(dabigatran)
Pre-clinical studies (proof of concept) for

monitoring direct oral anticoagulants (dabigatran) [74,75]

Refrigerated platelets
(for platelet transfusion) Anti-VWF aptamer von Willebrand factor Refrigerated platelets

(for platelet transfusion)

Pre-clinical studies (proof of concept) for the use
of ARC1779 to refrigerated platelets; improves

post-transfusion recovery and preserves the
long-term hemostatic function of refrigerated

platelets

[76]

Serum and plasma in aplastic
anemia (AA),

noncellular compartment of
human bone marrow in AML

SOMAscan
proteomic analysis

RNA-sequencing and
proteomics data set

AA,
AML

Proof of concept to determine the true proteomic
of serum and plasma in AA patients before and

after therapy
Proof of concept to determine the true proteomic

composition of the extracellular
soluble compartment of AML patients’ bone

marrow

[77,78]
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2. Aptamers for Hematologic Oncology
2.1. Anti-Nucleolin Aptamers for Acute Myeloid Leukemia (AML) Treatment

AML is a type of blood cancer from the myeloid line of hematopoietic cells, and it is a
heterogeneous disease with poor survival and a high risk of a relapse. Nucleolin is a major
multifunctional nucleolar protein involved in regulating transcription events, including
various cell proliferation and growth aspects. Nucleolin is expressed more significantly on
several cancer cells than in normal cells and seems to promote tumor growth. In hematology,
nucleolin’s enforced expression increases leukemia cell proliferation and affects both the
pathogenesis and prognosis of AML. Because nucleolin is a membrane protein that serves
as a binding receptor for various ligands involved in cancer pathogenesis, it represents a
potential strategic target for cancer therapy and an attractive target for several types of
malignancies, including AML [79,80].

AS1411 is the first aptamer-based anticancer therapeutic that has undergone human
clinical trials. It is a unique DNA aptamer that consists of a 26-base nucleolin-binding
G-rich oligonucleotide, and it uses a novel approach for targeting nucleolin. Initially named
AGRO100, it was renamed to AS1411 and then ACT-GRO-777. AS1411 combined with
high-dose cytarabine is used as a cancer-targeting agent. The combination of AS1411
and high-dose cytarabine has been evaluated in phase II clinical trials for refractory and
relapsed AML (ClinicalTrials.gov, #NCT00512083 and #NCT01034410), and the results were
promising. This combination had a synergistic effect on cancer cell growth inhibition and
an acceptable safety profile with side effects typically associated with cytarabine treatment
in these patients [42,81,82]. Nanomaterials constructed using the AS1411 aptamer have
been successfully applied for the inhibition of tumor growth [83–85].

2.2. CD33-Specific Aptamer for AML Treatment

CD33 is a transmembrane protein that is expressed by mature myeloid cells, AML
blasts, and normal myeloid progenitors [86]. The recent use of a humanized anti-CD33 mAb
in combination with chemotherapy has been considered a major advance against AML.
Actinium-225 (225Ac, alpha emitter isotopes that emit α-particles)-lintuzumab is a new
approach in AML therapy; it is composed of actinium-225 linked to a humanized anti-CD33
mAb and a low-dose cytarabine (LDAC). This drug can safely induce remission in older
patients with untreated AML [87]. CD33-specific aptamers have properties comparable to
anti-CD33 antibodies in terms of binding and internalization into CD33-positive myeloid
cell lines, and they also have the potential to carry chemotherapeutic drugs to CD33-positive
cells in adult and pediatric patients with AML [43]. The CD-33 aptamer was conjugated
with doxorubicin (Dox) and produces Dox–aptamer conjugates. The target-specific drug
aptamer could inhibit CD33-positive acute myeloid leukemia [88].

2.3. Anti-CD30 Aptamers for Diagnosing and Treating CD30-Positive Malignant Lymphomas

CD30 is a cell membrane receptor that is significantly expressed in some types of
lymphoma cells in classical Hodgkin’s lymphoma; it is also expressed by a subset of diffuse
large B-cell lymphoma (DLBCL) cells [44]. CD30 is used as a therapeutic target, and the
ssDNA aptamer for CD30 selected via a hybrid SELEX methodology specifically binds
to the CD30 receptor targets with a high affinity. This aptamer has been modified to the
truncated variant of the CD30 aptamer, which has a 50-fold higher affinity than its longer
version. The CD30 aptamer works by inducing the oligomerization of CD30 receptors
and, ultimately, inducing the apoptosis of lymphoma (ALCL) cells. This aptamer-based
model of immunotherapy offers an alternative to targeted mAbs and has the potential to
transform the lymphoma treatment [45].

CD30 aptamers are potential agents for disease diagnosis. A fluorescently labeled
RNA aptamer was tested in cultured anaplastic large cell lymphoma and Hodgkin’s
lymphoma cells that expressed high levels of CD30. The flow cytometry and fluorescence
microscopy revealed the specific and sensitive binding of a CD30 aptamer probe at low
concentrations (0.3 nM) of CD30-positive lymphoma cells. The CD30 aptamer-based



Molecules 2022, 27, 383 11 of 21

probe shows a potential application in the multicolor flow cytometry for detecting CD30-
positive cells, indicating that it can act as an alternative or supplement to antibodies for
diagnosing CD30-positive lymphomas [89]. Anti CD30 aptamer-conjugated nanoparticles
are a potential candidate for the specific delivery of doxorubicin to anaplastic large cell
lymphoma cells [90].

2.4. BAFF-R-Specific Aptamer for Non-Hodgkin’s Lymphoma (NHL)

The B-cell activating factor receptor (BAFF-R) is necessary for B-cell maturation and
survival. A high expression of BAFF receptors has been recognized in several B-cell
malignancies (e.g., follicular lymphoma, DLBCL, mantle cell lymphoma, and Burkitt’s
lymphoma) but not in T/NK cell lymphoma or Hodgkin’s lymphoma [46]. Aptamers for
BAFF-R that are expressed by B-cell lymphoma cells are developed by cell-SELEX, and
this aptamer binds specifically to BAFF-R. Zhou’s group isolated 20-fluoro-modified RNA
aptamers that bind specifically to BAFF-R from an 81-nucleotide RNA library using in vitro
SELEX. The BAFF receptor aptamers showed specific binding and internalization in the
BAFF-R-positive lymphoma cells but, not in the BAFF-R-negative T-cells (CEM) [47]. The
B-cell-specific aptamer was labelled with Cy5 and used for fluorescence imaging in tumor
xenograft nude mice, which was used for the temporal mapping of the aptamer. The Cy-5
aptamer successfully recognized the tumor cells [91,92].

2.5. Anti-CXCL12 Spiegelmer in Chronic Lymphocytic Leukemia and Multiple Myeloma

In cancer, the tumor microenvironment and interactions between tumor cells and
the cellular and noncellular components of the tumor microenvironment play a critical
role in the initiating, maintaining, and relapsing of hematological and solid tumors. The
CXCR4/CXCL12 axis plays a crucial role in multiple myeloma (MM) cells homing to
the bone marrow and the interaction between the bone marrow microenvironment and
MM cells. CXCL12 (stromal cell-derived factor-1/SDF-1) is a chemokine that binds to
membrane proteins, specifically the CXC receptor 4 (CXCR4, CD184) and CXC receptor 7
(CXCR7) [93], and it is expressed by stromal cells in several tissues and organs, including
bone marrow [94–96]. The interaction of cancer cells with the surrounding microenviron-
ment plays a critical role in chronic lymphocytic leukemia (CLL), and MM cells utilize
the CXCR4/CXCL12 axis for bone marrow homing. In MM, SDF-1 is an essential partici-
pant of the bone marrow microenvironment, regulating numerous processes related to its
malignant transformation during MM development. CXCL12 also plays a crucial role in
chemoresistance via leukemia–stromal interactions. The homing of CLL cells into the bone
marrow and lymph node’s protective microenvironments rescues these tumor cells from
both spontaneous and chemotherapy-induced apoptosis [49].

A new therapeutic approach of targeted therapy can attack cancer cells through the
SDF-1/CXCR4 axis, which is a fundamental driving force for tumor cell growth and
survival. The NOX-A12 (olaptesed pegol) Spiegelmer is a pegylated L-stereo-isomer RNA
aptamer (a mirror-image RNA oligonucleotide) that binds and neutralizes CXCL12 and
CXCL12 (anti-CXCL12), and it forms the basis of the therapeutic concept. The anti-CXCL12
aptamer can inhibit tumor-supporting pathways and mobilize CLL cells away from their
protective microenvironment, thereby inducing apoptosis and chemotherapy sensitization
in these leukemic cells [48]. In MM, CXCL12 serves as a chemokine that regulates various
MM development processes through signaling via CXCR4 and CXCR7. In a phase II pilot
study, to evaluate the activity and safety of olaptesed, this aptamer was combined with
BTZ and DEX for patients with relapsed or refractory MM. The results showed that this
combination was safe and well-tolerated without any significant increase in adverse events,
and a single dose of olaptesed effectively mobilized MM cells. A CXCR4 antagonist is
another way to target the SDF-1/CXCR4 axis for cancer treatments with an overexpression
of the SDF-1/CXCR4 axis such as in MM. This approach is a promising strategy for
disrupting myeloma–stroma interactions and inhibiting myeloma growth and survival by
disrupting the adhesion of MM cells to bone marrow stromal cells [50–52].
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2.6. CD38-Specific Aptamer in Multiple Myeloma

CD38 is a transmembrane glycoprotein that has been broadly used to recognize plasma
cells and MM, and it is considered an attractive biomarker for targeted MM therapy. In a
study examining targeted therapy for MM, researchers used CD38-specific ssDNA aptamers
selected by a hybrid SELEX process to efficiently target myeloma cells. The aptamers were
conjugated to cytotoxic agent doxorubicin (DOX), forming an aptamer–drug conjugate
(ApDC) to target and release this agent within MM cells. Subsequently, ApDCs induced
MM cell death by apoptosis, but they did not affect CD38-negative cells and had only a
minimal impact on control cells [53].

2.7. Aptamers for B-Cell Burkitt’s Lymphoma Cells

High-quality aptamers were developed using cell-SELEX for a viable B-cell Burkitt’s
lymphoma cell line (Ramos cells) as the target. Among a panel of DNA-selected aptamers,
the TD05 aptamer was recognized for its specificity to target proteins on the surface of
Ramos cells. TD05 is an immunoglobulin-heavy mu chain (IGHM) that is not present in
normal CD19+ B cells or other hematopoietic cells. Because IGHM is the main component
of the B-cell receptor complex, it can be used to identify new potential targets for the
therapeutic regulation of the neoplastic B-cell function [54].

The successful use of Cy5-labeled aptamer TD05 (Cy5-TD05) as a probe for in vivo
aptamer-based molecular imaging in Ramos cells confirmed that these aptamers can rec-
ognize tumor cells with a high sensitivity and specificity. Although fluorescence-labeled
aptamers are promising molecular probes for cancer diagnostics and in vivo imaging [91],
the TD05 aptamer has poor stability in blood, and the degradation by nucleases can affect
the use of aptamer-based in vivo probes for cancer diagnosis. A polyethylenimine (PEI)–
aptamer complex was generated for in vivo cancer imaging by using deoxyribonuclease
(DNase)-activatable fluorescence probes (DFProbes) to follow the degradation of DNA
aptamer. PEI-protected aptamer molecular probes were used successfully to protect the
TD05 aptamer probes from DNase degradation while still maintaining this aptamer’s ability
to recognize Ramos cells [91].

2.8. Aptamers for T-Cell Acute Lymphoblastic Leukemia (T-ALL) Cell Lines

Initially, a number of DNA aptamers were selected through a cell-SELEX selection
process for the recognition of human T-cell ALL CCRF-CEM cell lines. The sgc8 aptamer
was then selected to identify the human protein tyrosine kinase-7 (PTK7) as a binding
target protein present on the leukemia cell surface [55]. Sgc8 is a DNA aptamer that can
specifically recognize human T-cell ALL CCRF-CEM cell lines, and it is specific for the
membrane receptor and PTK7 as a molecular target [55]. This two-step strategy for aptamer
selection is very effective in biomarker discovery and requires no prior knowledge of the
cell biomarker population. It is also valuable in identifying biomarkers for minimal residual
disease (MRD) diagnostics in the detection of leukemia cells in bone marrow [56].

2.9. Aptamer–Drug Conjugates for Targeted Drug Delivery to Tumor Cells

Aptamer–drug conjugates are able to distinguish between target leukemia cells and
normal human bone marrow aspirates. The sgc8 aptamer has been conjugated to the
anticancer drug DOX for targeted drug delivery to PTK7 T-ALL leukemia cells. The sgc8
aptamer–DOX conjugate shows a high binding affinity and is efficiently internalized by the
target cells [57]. In addition, sgc8-PEG-liposome nanoparticles provide powerful binding
to the target cells and enhanced cellular internalization across the cell membrane [97]

2.10. CD117-Specific Aptamer in AML

CD117 (c-Kit) is a transmembrane receptor that is highly expressed in leukemia cells
in 95% of patients with relapsed AML [60]. Because the ideal targeted therapy should be
specific to AML cells with no effect on normal cells, CD117 is a possible molecule for devel-
oping a new targeted therapy [98]. Recently, hybrid SELEX using human erythroleukemia
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(HEL) cells expressing the CD117 antigen identified CD117-specific ssDNA aptamers with
a high ability to bind to AML cells. The researchers used an aptamer–MTX conjugate to
target CD117-positive AML cells for the selective growth inhibition of leukemia cells, and
they found that it had no toxicity to normal cells. This result illustrates the potential clinical
value of aptamers in AML treatment [61].

3. Aptamers in Hemostasis Disorders
3.1. Aptamers for von Willebrand Factor-Related Diseases

The ARC1779 aptamer is a pegylated form of the DNA aptamer ARC1172. The
pegylation prevents digestion by nucleases while stabilizing the same affinity for the von
Willebrand factor (VWF) A1 domain. Pegylation also inhibits the prothrombotic function
of the VWF by blocking the binding of the VWF A1 domain to platelet GPIb receptors
and by reducing platelet adhesion, aggregation, and thrombus formation. ARC1779 is an
intravenous infusion agent for patients with VWF-related platelet function disorders of
the thrombotic thrombocytopenia purpura (TTP) and von Willebrand disease type 2B [99].
The aptamer-based anti-von Willebrand factor (ARC1779) is a potent inhibitor of the
VWF A1 domain interaction with GPIb and effectively prevents the consumption of VWF
and platelets in response to desmopressin in VWD type 2B and prevents desmopressin-
induced thrombocytopenia in VWD type 2B [62]. A clinical trial assessed the safety,
pharmacokinetics, and pharmacodynamics of ARC1779 injection in patients with VWF-
related platelet function disorders, and the results suggested that ARC1779 can inhibit
platelet aggregation without a significant increase in bleeding in healthy volunteers [63]. A
phase II clinical trial proposed to study the effect of ARC1779 on cerebral microembolism
in patients undergoing carotid endarterectomy in the immediate postoperative period, and
it planned to recruit 100 patients. However, the study had to be suspended after recruiting
only 36 patients [64]. In a phase II clinical trial, the anti-VWF aptamer ARC1779 was used
in patients with TTP. However, as mentioned earlier, the study was prematurely closed.
Nonetheless, significant observations of the acute TTP patients enrolled confirmed that
blocking the A1 domain of the VWF had the potential to increase platelet counts when
used in combination with plasma-exchange therapy [100]. DTRI-031, an anti VWD aptamer,
was selected, which selectively binds and inhibits the VWD mediated platelet adhesion
and arterial thrombosis, while enabling the rapid reversal of this antiplatelet activity by
an antidote oligonucleotide (AO). The dose-dependent study indicates the inhibition of
platelet aggregation and thrombosis in whole blood and mice. The aptamer can achieve a
potent vascular recanalization of platelet-rich thrombotic occlusions in murine and canine
carotid arteries. A murine toxicological study of the aptamer showed that it is very well
tolerated in the environment [101].

3.2. Aptamers in Hemophilia

The tissue factor (TF) is important in hemostasis and performs a key step in the
initiation of the extrinsic (tissue factor) pathway of the blood coagulation cascade. TF
is controlled by the tissue factor pathway inhibitor (TFPI), considered to be the primary
inhibitor of beginning blood coagulation; it also modulates the severity of a variety of
bleeding and clotting disorders [102]. The TFPI, or extrinsic pathway inhibitor is a natural
anticoagulant synthesized by endothelial cells and megakaryocytes. It is produced from a
single gene transcription of alternatively spliced mRNAs that translate into three principal
spliced isoforms in humans: TFPIα, TFPIβ, and TFPIδ. TFPIα (or the full-length TFPI) is the
predominant isoform expressed in humans, and these isoforms differ in their C-terminal
domain structure, cell surface association mechanism, and anticoagulant activity. The TFPI
is primarily distributed in endothelial cells, and a small fraction of body TFPI circulates
in plasma or is bound to lipoproteins [103]. TFPI negatively regulates the coagulation
cascade by inhibiting two potent procoagulant complexes. TFPI complexes with factor
Xa subsequently impair the extrinsic pathway coagulation system’s trigger mechanism
by the tissue factor and factor VIIa (TF–FVIIa) complex [65]. The anti-TFPI aptamer, BAX
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499, (formerly ARC19499) binds to multiple domains: Kunitz 1, Kunitz 3, and the C-
terminal domains of TFPI. The inhibition of TFPI enables the initiation and propagation
of blood coagulation via the extrinsic pathway of the coagulation system for thrombin
generation and clot formation [66]. Another thrombin-binding aptamer, HD1, inhibits
the conversion of soluble fibrinogen into insoluble fibrin strands. However, it is easily
degraded by nucleases in vivo. A combination of duplex/quadruplex sequences and homo
and hetero-bivalent constructs have introduced the biological performances in therapeutic
applications [104].

In hemophilia A, factor VIII deficiency limits clot propagation via the intrinsic pathway.
Inhibiting TFPI by antagonists directs the coagulation process to a primitive condition that
enables the initiation and propagation of the blood coagulation cascade and clot formation
of the inhibitor, and TFPI enables this response via the extrinsic (TF) pathway and clot for-
mation. Using an anti-TFPI aptamer (BAX 499) is a new treatment strategy for hemophilia
by interfering with the TFPI inhibition of both factor Xa and the tissue factor/factor VIIa
complex. This enables the initiation of TF-mediated coagulation and propagation via
the extrinsic pathway for the treatment of bleeding associated with hemophilia [67]. The
first-in-human and proof-of-mechanism study of an anti-TFPI aptamer was conducted in
hemophilia patients to test the safety and tolerability of ARC19499. The administration in-
volved single and multiple injections, which elevated the TFPI plasma levels; this response
was due to the induction of the binding of intracellularly stored TFPI and the binding of
BAX 499 to the Kunitz 3-C terminus domain of TFPI, thereby prolonging the circulatory
half-life of full-length TFPI [68,69].

4. Aptamers for Hemoglobinopathies
4.1. Anti-P-Selectin RNA Aptamers for Sickle Cell Disease

Sickle cell disease (SCD) is the most common hereditary blood disease and can lead to
severe complications, such as hemolytic anemia, episodic vaso-occlusion, and progressive
multiple organ damage. The major pathophysiology of SCD complications are related
to a poor microvascular blood flow and adhesive interactions between circulating sickle
red blood cells (RBCs), leukocytes, and endothelial cells. A correlation exists between the
clinical vaso-occlusive severity and adherence of the red blood cells (RBCs) to endothelial
cells [70]. P-selectin, a cell adhesion molecule is expressed in activated vascular endothelial
cells and platelets. One of the new therapeutic strategies for managing SCD is to target
these major complications by inhibiting adhesive interactions with endothelial cells [71].

Crizanlizumab (formerly SelG1), an antibody-based P-selectin inhibitor used against
the adhesion molecule P-selectin, was evaluated in a double-blind, randomized, placebo-
controlled phase II clinical trial to assess its efficacy. Patients who received high-dose
crizanlizumab had significantly fewer sickle cell-related pain crises per year compared
with control groups who received the placebo [105]. In mice, an aptamer-based P-selectin
inhibitor was developed and investigated, and it showed the ability to inhibit the adhesion
of sickle RBCs and leukocytes to endothelial cells by 90% and 80%, respectively, thereby
showing potential as a new therapeutic agent for SCD [106].

4.2. Aptamers for Complement-Related Disorders

The complement system makes up part of the immune system and is composed of
several distinct plasma proteins. These complements play a crucial role in the immediate
responses for protection from common pathogens. Complements are groups of plasma
proteins that play an important role in innate and acquired host defense mechanisms
against infection and in various immunoregulatory processes. Usually, complements are in-
active until stimulated by recognizing exogenous materials or pathogen-associated molecules,
after which an enzyme cascade activates other inactive precursors (zymogens). When acti-
vated, they lead to target cell lysis and facilitate phagocytosis through opsonization [14,107].
Complements act as key mediators of several pathophysiological processes, and extreme
complement activation has a pivotal role in the pathogenesis of several diseases, including
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paroxysmal nocturnal hemoglobinuria (PNH) and atypical hemolytic uremic syndrome
(aHUS) [108].

Eculizumab, an antibody against the complement component C5, was first intro-
duced in 2004 in a preliminary pilot study of eleven participants, and it became the first
complement-specific drug approved by the FDA for the treatment of PNH and aHUS.
The therapy results showed that complement-targeted therapeutics are safe and effective
and can improve patient’s quality of life. However, eculizumab (Soliris) is one of the
most expensive drugs in the world, costing around $400,000 a year and putting enormous
pressure on public health systems [109–112]. Aptamer-based therapeutics can offer several
cost-effective treatment options. Researchers used SELEX methodology to develop a spe-
cific aptamer for the human complement C5 component. This selection process yielded
a 38-mer 2′F RNA anti-C5 aptamer, which inhibits the activity of the human factor C5 of
the complement cascade [72]. Subsequently, a 38-mer 2′F RNA aptamer was modified by
adding 40 kDa PEG to the 5′ end and 3′-3′-linked deoxythymidine to the 3′ end to produce
a complement to the C5 inhibitor ARC1905 with a high affinity for complement C5 [72,107].
At the moment, ARC1905 (an anti-C5 aptamer/avacincaptad pegol sodium) is undergo-
ing phase II and III clinical trials for an intravitreal injection (monotherapy/combination
therapy) as a treatment for patients with AMD (ClinicalTrials.gov, #NCT02686658). The
avacincaptad pegol intravitreal injection led to a significant reduction in geographic atrophy
development in eyes with AMD over 12 months. In the future, aptamer-based C5 inhibitors
will be studied for other complement-related diseases [72,113].

4.3. Aptamers for Anemia of Chronic Disease

Hepcidin, a small 2.8 kDa peptide, is produced predominantly by hepatocytes and is
considered the key mediator for iron homeostasis. Its production is regulated by multiple
opposing signals, including systemic iron availability, hepatic iron stores, erythropoietic
activity, hypoxia, and inflammatory states. In anemia of chronic disease (ACD) and anemia
of inflammation, serum hepcidin concentrations are elevated and play a central role in
retaining iron within the mononuclear phagocytic system, thereby leaving inadequate iron
for the erythroid progenitor cells and, subsequently, causing ACD [114,115]. NOX-H94 is
a structured mirror-image pegylated RNA aptamer that can specifically bind to human
hepcidin with a high affinity (Kd = 0.65 ± 0.06 nM), thereby antagonizing its role in ACD.
This hepcidin inhibitor is able to bind with high-affinity human hepcidin, preventing its
binding to ferroportin and the reduction in serum iron [116]. The first clinical trial for the
use of NOX-H94 (Spiegelmer® lexaptepid pegol) in single and repeated intravenous and
subcutaneous administration in healthy subjects showed that it is generally safe and well
tolerated, with mild and transient increases in transaminase, serum iron concentration, and
transferrin in proportion to the dose [117].

5. Conclusions

As the aptamers exhibit a high binding specificity and affinity and have several
superior advantages over antibodies, they have become excellent alternatives to antibodies
in the diagnostics and therapeutics of blood diseases (Table 1). Aptamers offer a set
of tools for novel diagnostics, drug delivery, and therapeutics to treat several types of
diseases. Since the first aptamer was discovered, several aptamers have been studied for
many biomedical applications. The antivascular endothelial growth factor oligonucleotide-
aptamer (NX1838) was the first aptamer to reach human clinical testing in the study
titled “Vascular Endothelial Growth Factor (VEGF) as a Therapeutic Target”, and NX1838
(pegaptanib sodium), a nuclease-resistant aptamer, has been designated for use as an
ophthalmology injection and was approved by the FDA in December 2004. This approval
provided motivation to advance novel aptamer-based therapeutics, unfortunately, no
other aptamers have been approved for clinical use since that approval. However, several
aptamers are in proof-of-concept studies and various stages of clinical trials, including
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aptamers for blood diseases. This review presented the relevant research from recent years
on aptamers for blood diseases (Figure 3).

Figure 3. Aptamers in the therapeutics and diagnostics pipeline for blood diseases.

6. Future Perspectives

Attention to therapeutic aptamers is dramatically increasing year by year. The aptamer-
based therapeutics’ main limitations appear to be their rapid degradation by nucleases in
the blood and their rapid excretion through renal clearance. Interestingly, this is not the case
for limitations in aptamer-based diagnostics, which have fewer limitations and no direct
health risks. Some modifications for aptamers have been accomplished, and addressing
the aptamer stability may offer more versatile processes for generating aptamers suitable
for in vivo use. Aptamers show beneficial therapeutic effects for some blood diseases,
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and establishing personalized molecular medicine will allow the development of a new
generation of targeted therapeutics using agents such as aptamers. However, significant
research is still needed to accelerate aptamers’ entry into clinical trials and their clinical
use approval.
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