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Accuracy of ultrasonographic
changes during neoadjuvant
chemotherapy to predict axillary
lymph node response in
clinical node-positive
breast cancer patients

Zhuoxuan Li †, Yiwei Tong †, Xiaosong Chen* and Kunwei Shen*

Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, School of
Medicine, Shanghai Jiao Tong University, Shanghai, China
Purpose: To evaluate whether changes in ultrasound features during

neoadjuvant chemotherapy (NAC) could predict axillary node response in

clinically node-positive breast cancer patients.

Methods: Patients with biopsy-proven node-positive disease receiving NAC

between February 2009 and March 2021 were included. Ultrasound (US)

images were obtained using a 5-12-MHz linear array transducer before NAC,

after two cycles, and at the completion of NAC. Long and short diameter,

cortical thickness, vascularity, and hilum status of the metastatic node were

retrospectively reviewed according to breast imaging-reporting and data

system (BI-RADS). The included population was randomly divided into a

training set and a validation set at a 2:1 ratio using a simple random sampling

method. Factors associated with node response were identified through

univariate and multivariate analyses. A nomogram combining clinical and

changes in ultrasonographic (US) features was developed and validated. The

receiver operating characteristic (ROC) and calibration plots were applied to

evaluate nomogram performance and discrimination.

Results: A total of 296 breast cancer patients were included, 108 (36.5%) of

whom achieved axillary pathologic complete response (pCR) and 188 (63.5%)

had residual nodal disease. Multivariate regression indicated that independent

predictors of node pCR contain ultrasound features in addition to clinical

features, clinical features including neoadjuvant HER2-targeted therapy and

clinical response, ultrasound features after NAC including cortical thickness,

hilum status, and reduction in short diameter ≥50%. The nomogram combining

clinical features and US features showed better diagnostic performance

compared to clinical-only model in the training cohort (AUC: 0.799 vs.

0.699, P=0.001) and the validation cohort (AUC: 0.764 vs. 0.638, P=0.027).
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Conclusions: Ultrasound changes during NAC could improve the accuracy to

predict node response after NAC in clinically node-positive breast

cancer patients.
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Introduction

According to the latest global cancer statistics, breast cancer

has become the most commonly diagnosed cancer in women

with 2.3 million new cases in 2020 (1). Axillary lymph node

status is one of the most important factors for clinical staging

and also an independent prognostic predictor for breast cancer

patients (2). Neoadjuvant chemotherapy (NAC) has become an

important treatment for inoperable locally advanced and large

operable breast cancer patients (3). NAC aims to convert

inoperable breast tumors to operable disease and to downstage

the primary large breast tumor and metastatic axillary lymph

node. According to previous reports, 40%-60% of node-positive

patients could convert to node-negative after NAC. Predictive

markers of candidates who could benefit from NAC such as

molecular subtype, NAC regimens, and clinical response had

been extensively confirmed (3–5). However, accurate evaluation

of the response to NAC remains to be investigated.

For patients with primary node-positive disease, axillary

lymph node dissection (ALND) remains the standard of care

after completion of NAC (6). However, ALND is usually

followed by increased risk of complications, including

lymphedema and paresthesia, which leads to poor quality of

life (7). To avoid such complications, the possibility of sentinel

lymph node biopsy (SLNB) for patients achieving pCR after

completion of NAC with primary node-positive disease was

evaluated by the ACOSOG (American College of Surgeons

Oncology Group) Z1071 and SENTINA (sentinel lymph-node

biopsy in patients with breast cancer before and after

neoadjuvant chemotherapy) trials and the false-negative rates

(FNR) of SLNB in these two randomized trials were 12.6% and

14.2%, which were found to be above the acceptable 10% cut

point. Although a reduced FNR of less than 10% could be

achieved by using dual tracer or removing at least three

sentinel lymph nodes (8, 9), SLNB remains debatable with

relatively FNR for patients presenting clinically node-negative

after completion of NAC according to the guideline (10).

Predictive markers to select axillary pCR patients appropriate

for SLNB is still a challenge.
02
Imaging modalities have been applied to increase the

diagnostic accuracy for lymph node response evaluation. For

instance, when axillary ultrasound (US) was added to assess the

axillary response after NAC, the FNR decreased to 9.8% in the

ACOSOG Z1071 population (11). A previous study has

demonstrated that axillary lymphadenopathy in US after NAC

had the strongest predictive capacity of residual axillary LN

metastasis (OR=13.8), while other clinical predictive features

including clinical N stage, Ki-67 negativity, hormone receptor

positivity, and HER2 negativity showed an OR from 2.3 to 3.7

(12, 13). Moreover, breast pCR was also an independent positive

predictor for nodal response in the Z1071 trial (14). Likewise, as

demonstrated in our previous study, patients with breast pCR

had a significantly lower ypN+ rate than those with residual

tumor (23.9% vs. 62.5%, OR=0.14) (15). US features of lymph

nodes observed after chemotherapy, including shorter short-

axis, shorter long-axis, hilum preservation, and absence of

cortical thickness, have been proven to be associated with

axillary pCR (16, 17). In addition to the observation of the

lymph node status at a certain point in time, US also has the

advantages of convenient, dynamic, and continuous observation

throughout the treatment (16, 18). In one study, axillary

response was evaluated at separate time points before, during,

and after NAC, and the results showed that only mid-NAC US

features including breast tumor size and cortical thickness

showed an average diagnostic performance with an AUC of

0.760 (19). Although different time points were included in this

study, the imaging change of lymph nodes across treatment

cycles, which might reflect treatment response, was not

investigated. To further understand the association between

the specific lymph node US features throughout the treatment

and ALN response after NAC, more markers combining

different time points of lymph node specific US indicators is

needed to be explored.

Therefore, the aim of our study was to evaluate whether

changes of ultrasound features during neoadjuvant

chemotherapy (NAC) could predict axillary node response in

clinically node-positive breast cancer patients, thus to develop a

novel nomogram combining clinical and axillary US features to
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predict the probability of axillary nodal pCR after NAC in

primary node-positive patients, which may guide further ALN

management after NAC.
Materials and methods

Data source and patients selection

We retrospectively reviewed consecutive female patients

diagnosed with primary invasive breast cancer who received

NAC from February 2009 to March 2021 in Comprehensive

Breast Health Center, Shanghai Jiaotong University School of

Medicine affiliated Ruijin Hospital. Eligible patients were women

with node-positive disease confirmed by fine-needle aspiration

biopsy/core needle biopsy before NAC initiation and with US

monitoring of axilla performed at baseline, after two cycles, and

after completion of NAC (Supplementary Figure S1). The

exclusion criteria were as follows (1): without biopsy-proven

nodal metastases (n=163) (2); absence of US images before,

during, or after NAC (n=146) (3); treated with neoadjuvant

endocrine therapy alone (n=9). The current study was approved

by the independent Ethical Committees of Ruijin Hospital,

Shanghai Jiaotong University School of Medicine.
Clinical and pathological evaluation

Patient clinical and pathological data were retrieved from

Shanghai Jiaotong University Breast Cancer Database (SJTU-

BCDB). Core needle biopsy and fine needle aspiration biopsy

were performed for suspicious breast and lymph node lesions.

Pathological evaluation was performed at the Department of

Pathology, Ruijin Hospital by at least two independent

pathologists. Histological type and pathological grade were

referred to the World Health Organization classification (20).

Clinical TNM staging was defined according to the Eighth

edition of the American Joint Committee on Cancer staging

system (21). ER, PR, HER2, and Ki-67 expression were assessed

by immunohistochemistry (IHC) methods in core needle biopsy

samples at baseline. Samples with HER2 IHC 2+ were further

examined by fluorescence in situ hybridization (FISH). The

positivity criteria accorded to the 2018 American Society of

Clinical Oncology/College of American Pathologists (ASCO/

CAP) guidelines (22). Molecular subtypes were classified as

four types: Luminal A (ER+, PR high, HER2-, Ki67 low),

Luminal B (ER+ or/and PR -/low or Ki67 high), HER2-

enriched (ER-, PR-, HER2+), and TNBC (ER-, PR-, HER2-)

(23). Patients were recommended with NAC after a

multidisciplinary discussion (MDT) with surgical oncologist,
Frontiers in Oncology 03
medical oncologist, radiation oncologist, and other related

clinicians. NAC regimes were classified based on anthracycline

(A) and taxane (T). Patients were classified into A+T, such as

EC-T (epirubicin 90 mg/m2 and cyclophosphamide 600 mg/m2

followed by docetaxel 100 mg/m2 q3w), TEC (docetaxel 75 mg/

m2, epirubicin 75 mg/m2 and cyclophosphamide 500 mg/m2

q3w), A (anthracycline)-containing, such as EC (epirubicin 90

mg/m2 and cyclophosphamide 600 mg/m2 q3w), or T (taxane)-

containing, such as PCb (weekly paclitaxel 80 mg/m2 and

carboplatin AUC 2). Neoadjuvant HER2-targeted therapy

based on trastuzumab (8 mg/Kg at first cycle and followed by

6 mg/Kg q3w or 4 mg/Kg at first cycle and followed by 2 mg/Kg

weekly) was also applied to patients according to the

MDT decision.

After completion of NAC, clinical and pathological

evaluations were repeated in the radical surgery specimen.

Clinical response was judged according to RECIST 1.1 criteria

as CR (complete response, disappearance of all target lesions),

PR (partial response, the sum of diameters of target lesions

decreased at least 30%), PD (progressive disease, the sum of

diameters of target lesions increased at least 20%), and SD (stable

disease, neither PD nor PR) (24). The primary endpoint of the

current study was nodal complete response, which was defined

as no metastatic carcinoma in the axillary lymph nodes (25).

Isolated tumor cells or micrometastasis in the nodes were not

considered complete response (26).
US evaluation procedure

Breast and axilla US examinations were performed before

NAC (at baseline, before biopsy), after two cycles of NAC, and

completion of NAC by experienced radiologists with more than

10 years of experience in breast imaging per individual in the

Department of Ultrasonography, Ruijin Hospital. All patients

were assessed with real-time US using a 5-12-MHz linear array

transducer (Esaote MyLab 60, Esaote SpA, Genoa, Italy). The

largest biopsy-confirmed positive node was viewed as the target

lesion. US features for analysis included long diameter, short

diameter, cortical thickness, vascularity (rare, minimal, or

abundant), and hilum (preserved, partially preserved, or

completely obliterated) according to the breast imaging-

reporting and data system (BI-RADS) (27), as presented in

Supplementary Figure S2. Imaging reports were retrospectively

reviewed from SJTU-BCDB and analyzed in the current study.

Changes of the US features were evaluated as the reduction in

diameter compared to the baseline. A reduction of 30% in

diameter at two cycles, as well as a reduction of 50% (1-0.7*0.7

= 0.51) at completion were applied as cut-offs according to the

RECIST 1.1 criteria, where a reduction of 30% in diameter was

considered PR (24).
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Statistical analyses

The included population was randomly divided into a

training set and a validation set at a 2:1 ratio using simple

random sampling method. Categorical variables were analyzed

by using Chi-square test or Fisher’s exact test, if necessary.

Continuous variables were analyzed by using independent t-

test and Mann–Whitney U-test. Univariate and multivariate

binary logistic regression analyses were used to identify the

factors associated with axillary pCR in the training set.

Receiver operator characteristic (ROC) curve was used to

assess the diagnostic performance of clinical and US imaging

features. The area under the curve (AUC) was obtained at the

cut-off value yielding the largest Youden index and compared

using generalized estimating equations and the Delong test.

Calibration was assessed by calibration plot with 1000

bootstrap resampling. P <0.05 was considered to indicate a

statistically significant difference. Statistical analysis was

performed using SPSS (version 24.0) and R software

(version 4.0.5).
Results

Baseline patient characteristics

Baseline characteristics of the 296 participants in the training

and validation set are described in Table 1. Among the 296

patients included, 108 (36.5%) achieved axillary pCR while 188

(63.5%) had residual axillary lymph nodes. No significant

difference was observed at baseline between the training set

and validation set, which justified their use as two independent

sets. The average age of patients was 50 ± 11.9 years. In the

training set, the ALN pCR group showed a higher proportion of

ER negative (60.0%, P<0.001), PR negative (75.0%, P=0.002),

and HER2 positive (52.3%, P=0.001) disease. Patients receiving

NAC T-containing regimen (57.6%, P=0.006) and neoadjuvant

HER2-targeted therapy (50.8%, P<0.001) were more likely to

achieve ALN pCR. The rate of ALN pCR ranged from 71.4% to

9.1% among patients who had clinical CR and PD.
Ultrasound features

US features of the biopsy-confirmed metastatic axillary

lymph node are shown in Table 2. At baseline, no significant

difference in US features was observed between pCR and non-

pCR groups (all P>0.050). After two cycles of NAC, medians of

long diameter (15.6mm vs. 18.9mm, P=0.041), short diameter

(7.3mm vs. 9.0mm, P=0.013), and cortical thickness (4.2mm vs.

5.4mm, P=0.011) were shorter in the pCR group compared with

the non-pCR group, while vascularity (P=0.739) and hilum
Frontiers in Oncology 04
(P=0.270) remained similar. After completion of NAC,

medians of long diameter (11.0mm vs. 15.6mm, P=0.006),

short diameter (5.3mm vs. 7.1mm, P=0.001), and cortical

thickness (3.0mm vs. 3.6mm, P=0.005) were significantly

decreased in the pCR group, and hilum preservation was more

common (65.4%) in the pCR group compared to the non-pCR

group. Abundant vascularity tended to be more observed in the

ypN+ population (11.1% vs. 1.9%, P=0.052).

The changes of US features for biopsy-confirmed metastatic

axillary lymph node were evaluated in the training set (Table 3).

Patients with ALN pCR tended to show more reduction in

lymph node US quantitative features, reduction in cortical

thickness ≥30% after two cycles of NAC (69.2%, P=0.034),

reduction in short diameter ≥50% (69.2%, P<0.001), and

cortical thickness ≥50% (76.9%, P<0.001) after completion of

NAC were associated with axillary pCR.
Univariate and multivariate analysis of
predictors for axillary pCR

In the univariate analysis, clinical features including ER

status (P<0.001), PR status (P=0.002), HER2 status (P=0.001),

molecular subtype (P=0.005), clinical response (P=0.010), NAC

regimen (P=0.006), as well as neoadjuvant HER2-targeted

therapy (P<0.001) were associated with axillary pCR rate in

the training set (Figure S3). Among US features after two cycles

of NAC, short diameter (P=0.022), cortical thickness (P=0.015),

and reduction in cortical thickness (P=0.036) were associated

with axillary pCR. Among US features after completion of NAC,

short diameter (P=0.003), cortical thickness (P=0.004), hilum

status (P=0.016), reduction in short diameter ≥50% (P<0.001),

and reduction in cortical thickness (P<0.001) were associated

with axillary pCR.

In further multivariate logistic regression analysis,

neoadjuvant HER2-targeted therapy (P=0.009), clinical

response (P=0.016), US features after completion of NAC

including cortical thickness (P=0.001), hilum status (P=0.012),

and reduction in short diameter ≥50% (P=0.006) were

independent predictors for axillary pCR (Figure 1). Patients

receiving neoadjuvant HER2-targeted therapy (OR=4.06, 95%CI

1.43-11.57, P=0.009) were more likely to achieve nodal pCR.

Patients who had PR (OR=0.22, 95%CI 0.06-0.75, P=0.016), SD

(OR=0.13, 95%CI 0.03-0.60, P=0.009), and PD (OR=0.03, 95%

CI 0.00-0.37, P=0.005) were less likely to achieve nodal pCR than

those who achieved CR. After completion of NAC, patients with

lymph node reduction in short diameter ≥50% showed the

highest possibility to achieve nodal pCR (OR=2.47, 95%CI

1.30-4.67, P=0.006), while patients with greater cortical

thickness (OR=0.83, 95%CI 0.74-0.93, P=0.001) and hilum

completely obliterated (OR=0.09, 95%CI 0.02-0.45, P=0.003)

compared to hilum preservation were less likely to achieve

nodal pCR.
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TABLE 1 Baseline characteristics for the training set and the validation set.

characteristics Training set Validation set

ypN0
n=65

ypN+
n=131

P ypN0
n=4

ypN+
n=57

P

Age (mean ± SD) 49.63 ± 11.14 50.08 ± 11.73 0.796 51.70 ± 13.17 51.56 ± 12.28 0.958

Palpable node 0.917 0.891

No 12 (18.5%) 25 (19.1%) 8 (18.6%) 10 (17.5%)

Yes 51 (81.5%) 106 (80.9%) 35 (81.4%) 47 (82.5%)

cT 0.483 0.873

1 12 (18.8%) 26 (19.8%) 9 (21.4%) 10 (17.9%)

2 44 (68.8%) 76 (58.0%) 25 (59.5%) 37 (66.1%)

3 4 (6.3%) 19 (14.5%) 3 (7.1%) 5 (8.9%)

4 3 (4.7%) 8 (6.1%) 3 (7.1%) 3 (5.4%)

x 1 (1.6%) 2 (1.5%) 2 (4.8%) 1 (1.8%)

cN 0.503 0.896

1 37 (56.9%) 65 (49.6%) 25 (58.2%) 31 (54.3%)

2 24 (36.9%) 51 (38.9%) 17 (39.5%) 23 (40.4%)

3 4 (6.2%) 15 (11.5%) 1 (2.3%) 3 (5.3%)

Histology 0.793 0.076

IDC 63 (96.9%) 126 (96.2%) 40 (93.0%) 57 (100.0%)

Others 2 (3.1%) 5 (3.8%) 3 (7.0%) 0 (0.0%)

Grade 0.734 0.838

I-II 19 (29.2%) 50 (38.2%) 12 (27.9%) 22 (38.6%)

III 27 (41.5%) 63 (48.1%) 18 (41.9%) 30 (52.6%)

NA 19 (29.2%) 18 (13.7%) 13 (30.2%) 5 (8.8%)

ER <0.001 0.034

Negative 39 (60.0%) 42 (42.3%) 25 (58.1%) 21 (36.8%)

Positive 26 (40.0%) 89 (57.7%) 18 (41.9%) 36 (63.2%)

PR 0.002 0.049

Negative 49 (75.0%) 68 (51.9%) 33 (76.7%) 33 (57.9%)

Positive 16 (25.0%) 63 (48.1%) 10 (23.3%) 24 (42.1%)

HER2 0.001 0.013

Negative 31 (47.7%) 94 (71.8%) 18 (41.9%) 38 (66.7%)

Positive 34 (52.3%) 37 (28.2%) 25 (58.1%) 19 (33.3%)

Molecular subtype 0.004 0.021

Luminal A 2 (3.1%) 8 (6.1%) 0 (0.0%) 4 (7.0%)

Luminal B 25 (38.5%) 81 (61.8%) 18 (41.9%) 32 (56.1%)

HER2 enriched 22 (33.8%) 21 (16.0%) 12 (27.9%) 11 (19.3%)

TNBC 16 (24.6%) 21 (16.0%) 13 (30.2%) 10 (17.5%)

Ki-67 0.270 0.109

< 14% 5 (7.7%) 17 (13.0%) 2 (4.7%) 8 (14.3%)

≥ 14% 60 (92.3%) 114 (87.0%) 41 (95.3%) 48 (85.7%)

NAC regimen 0.006 0.028

A containing 4 (33.3%) 8 (66.7%) 1 (33.3%) 2 (66.7%)

T containing 19 (57.6%) 14 (42.4%) 17 (65.4%) 9 (34.6%)

A+T 42 (27.8%) 109 (72.2%) 25 (35.2%) 46 (64.8%)

Neoadjuvant HER2-targeted therapy <0.001 0.048

No 34 (25.2%) 101 (74.8%) 21 (35.0%) 39 (65.0%)

Yes 31 (50.8%) 30 (49.2%) 22 (55.0%) 18 (45.0%)

(Continued)
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Nomogram development and validation

Clinical and US variables that were statistically significant

from multivariate analysis were included to construct a

nomogram predicting the probability of axillary pCR

(Figure 2A). For each patient, scores of neoadjuvant HER2-

targeted therapy, clinical response, hilum status after NAC,

cortical thickness after NAC, and reduction in short diameter

were added up for a total pCR score from 28 to 236. The greater

the pCR score, the more probable nodal pCR would

be achieved.

The predictive value of the pCR score was further tested

using ROC in both the training and validation set. The combined

clinical and US model showed the highest AUC of 0.799 (95%

CI: 0.723-0.876) in the training set, indicating the promising

predictive power for nodal pCR (Figure 2B). Compared to the

clinical-only model (AUC=0.699, 95% CI: 0.626-0.779), adding

changes of US features in the model could significantly improve
Frontiers in Oncology 06
the diagnosis performance (0.799 vs. 0.699, P=0.001). The

improvement effect of US characteristics in the combined

model (AUC=0.764, 95% CI: 0.659-0.869) also confirmed in

the validation set of 100 patients (0.764 vs. 0.638, P=0.027)

compared to the clinical-only model (AUC=0.638, 95% CI:

0.560-0.769) as shown in Figure 2C. The calibration curves of

the nomograms are shown in Figure 2D for the training set and

Figure 2E for the validation set with 1000 steps bootstrap

resampling, illustrating good consistency between the

predicted result and actual probability.
Discussion

In this study, we developed a predictive model to identify

responders achieving axillary nodal pCR after NAC by

combining the clinical features and changes of US features in a

cohort of 296 primary node-positive breast cancer patients. Our
TABLE 1 Continued

characteristics Training set Validation set

ypN0
n=65

ypN+
n=131

P ypN0
n=4

ypN+
n=57

P

Clinical response 0.003 0.195

CR 10 (15.4%) 4 (3.1%) 5 (11.6%) 2 (3.5%)

PR 47 (72.3%) 93 (71.0%) 32 (74.4%) 39 (68.4%)

SD 7 (10.8%) 23 (17.6%) 5 (11.6%) 14 (24.6%)

PD 1 (1.5%) 11 (8.4%) 1 (2.3%) 2 (3.5%)
frontiersi
ypN0, nodal pathological complete response; ypN+, residual nodal disease; SD, standard deviation; IDC, infiltrating ductal carcinoma; NA, not available; ER, estrogen receptor; PR,
progesterone receptor; HER2, human epidermal growth factor 2; TNBC: triple negative breast cancer; A, anthracycline; T, taxanes; CR, complete response; PR, partial response; SD, stable
disease; PD, progressive disease.
TABLE 2 Ultrasound features of biopsy-confirmed metastatic axillary lymph node(s)a of the training set.

Baseline 2 cycles Completion

yPN0
n=65

yPN+
n=131

P ypN0
n=65

ypN+
n=13

P ypN0
n=65

yPN+
n=131

p

Long diameter (mm) 25.0 (17.7-32.8) 25.0 (18.1-32.0) 0.951 15.6 (12.0-22.9) 18.9 (13.2-28.0) 0.041 11.0 (6.8-16.7) 15.6 (9.6-21.3) 0.006

Short diameter (mm) 13.0 (10.0-17.1) 13.0 (9.5-17.0) 0.831 7.3 (5.5-10.0) 9.0 (6.5-11.4) 0.013 5.3 (3.4-7.2) 7.1 (4.8-9.3) 0.001

Cortical thickness (mm) 7.9 (5.9-10.8) 8.5 (5.5-11.2) 0.835 4.2 (3.1-6.2) 5.4 (3.6-7.1) 0.011 3.0 (0.7-4.1) 3.6 (2.6-5.5) 0.005

Vascularity* 0.535 0.739 0.052

Rare 20 (30.8%) 44 (33.6%) 31 (48.4%) 65 (49.6%) 33 (63.5%) 60 (51.3%)

Minimal 39 (60.0%) 69 (52.7%) 26 (40.6%) 48 (36.6%) 18 (34.6%) 44 (37.6%)

Abundant 6 (9.2%) 18 (13.7%) 7 (11.0%) 18 (13.7%) 1 (1.9%) 13 (11.1%)

Hilum* 0.486 0.270 0.005

Preserved 30 (46.2%) 56 (42.7%) 35 (54.7%) 56 (42.7%) 34 (65.4%) 54 (46.2%)

Partially preserved 17 (26.2%) 45 (34.4%) 13 (20.3%) 37 (28.2%) 16 (30.8%) 35 (29.9%)

Completely obliterated 18 (27.7%) 30 (22.9%) 16 (25.0%) 38 (29.0%) 2 (3.8%) 28 (23.9%)
aThe largest reported node on ultrasound was chosen as the target lesion.
*One patient achieved nodal pCR during NAC; twenty-seven patients achieved nodal pCR after NAC.
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model including neoadjuvant HER2-targeted therapy, clinical

response, cortical thickness after completion of NAC, hilum

status, and reduction in short diameter ≥50% after completion of

NAC showed better predictive capability compared to the
Frontiers in Oncology 07
clinical-alone model. To our knowledge, the current study is

the first to combine clinical features and changes of axillary US

imaging during NAC to predict the probability of axillary nodal

pCR in primary node-positive patients.
TABLE 3 Changes of ultrasound features for biopsy-confirmed metastatic axillary lymph node during NACa in the training set.

Characteristics All
n=196

yPN0
n=65

yPN+
n=131

P

After 2 cycles of NAC

Reduction in long diameter b 0.076

< 30% 134 (68.4%) 39 (60.0%) 95 (72.5%)

≥ 30% 62 (31.6%) 26 (40.0%) 36 (27.5%)

Reduction in short diameter 0.077

< 30% 102 (52.0%) 28 (43.1%) 74 (56.5%)

≥ 30% 94 (48.0%) 47 (56.9%) 57 (43.5%)

Reduction in cortical thickness 0.034

< 30% 81 (41.3%) 20 (30.8%) 61 (46.6%)

≥ 30% 115 (58.7%) 45 (69.2%) 70 (53.4%)

After completion of NAC

Reduction in long diameter c 0.091

< 50% 116 (59.2%) 33 (50.8%) 83 (63.4%)

≥ 50% 80 (40.8%) 32 (49.2%) 48 (36.6%)

Reduction in short diameter <0.001

< 50% 96 (49.0%) 20 (30.8%) 76 (58.0%)

≥ 50% 100 (51.0%) 45 (69.2%) 55 (42.0%)

Reduction in cortical thickness <0.001

< 50% 82 (41.8%) 15 (23.1%) 67 (51.1%)

≥ 50% 114 (58.2%) 50 (76.9%) 64 (48.9%)
frontiers
aThe largest reported node on ultrasound was chosen as the target lesion.
bChange compared to baseline. The cut-off of 30% was set according to the RECIST 1.1 criteria, where a reduction of 30% in diameter was considered partial response.
cChange compared to baseline. The cut-off of 50% was set according to the RECIST 1.1 criteria, where a reduction of 30% in diameter was considered partial response, 50% referred to a
reduction of 30% in diameter after two cycles of NAC, and another reduction of 30% in diameter compared to two-cycle after completion of NAC (1-0.7*0.7 = 0.51).
FIGURE 1

Results from multivariate logistic regression analysis of different variables predicting axillary pCR in the training set (N=196).
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Clinical factors including neoadjuvant HER2-targeted

therapy and clinical response have been commonly reported to

be related to axillary nodal pCR. As expected, patients receiving

neoadjuvant HER2-targeted therapy were more likely to achieve

nodal pCR (28, 29). Among patients who achieved clinical CR,

60%-68% achieved nodal pCR (30, 31). Our results showed the

71% nodal pCR rate in clinical CR patients, which was consistent
Frontiers in Oncology 08
with the previous studies. The predicted accuracy using only

clinical features of our study was in average with an AUC of

0.699, comparable with a previous study ranging from 0.649 to

0.835 (30–32).

Regarding US features, cortical thickness and complete

obliteration of hilum after completion of NAC were found to

be related to axillary pCR. High frequency linear array US could
A

B

D E

C

FIGURE 2

A nomogram for predicting the probability of axillary pCR (A). Variables including neoadjuvant HER2-targeted therapy, clinical response, reduction
in short diameter after NAC, hilum after NAC, and cortical thickness after NAC were assigned with points value. A total point added with these
variables’ points indicated the probability of axillary pCR. The vertical lines between five variables and the first row can be added as a total point, the
probability of axillary pCR can be finally obtained by drawing a vertical line between total points and the final row. Receiver operating characteristic
curves (ROCs) of the clinical features and both clinical and US features for the prediction model in the training set (B), P=0.001) and in the validation
set (C), P=0.027). Calibration curve of the nomogram predicting axillary pCR after neoadjuvant chemotherapy of the training set (D) and the
validation set (E).
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evaluate LNs structure such as cortex, medulla, and hilum (33).

Tumor cell infiltration in LNs could cause cortical thickening,

finally efface the hilum, and obscure the visualization of the

hilum (16, 33). Cortical thickness can be measured as an

objective and quantitative variable while status of hilum always

described as a qualitative variable. Previous studies have

reported that cortical thickness >3 mm after NAC is the

strongest independent predictor of axillary node metastasis

with an OR of 46.754 (P=0.000) (34). Akissue used cortical

thickness as a continuous variable and found that longer cortical

thickness was more likely to have axillary node metastasis

(OR=1.84, P=0.005) (35). Our study corroborated these

findings; longer cortical thickness was more less likely to

achieve nodal pCR (OR=0.83, P=0.001). The absence of hilum

as a later change of cortical thicken also considered to be a

marker for LN metastasis. The presence of hilum was proven to

be significantly associated with nodal pCR (OR=2.94, P=0.001)

by Huong T (16). Won Hwa kim also proved that the absence of

hilum was a strong predictor for lymph node metastasis

(OR=14.06, P=0.002) (17). This result was also verified in our

study; complete obliteration of hilum had the lowest OR of 0.09

(P=0.003) for axillary nodal pCR.

Several studies have proven that primary tumor size or tumor

size change after NAC as independent characteristics associated

with lymph node metastasis, indicating lymph node status as an

indicator of the tumor spreading ability (12, 13, 17, 35). However,

in biopsy-proven node-positive patients receiving NAC, few

studies focused on the response of the lymph node itself during

treatment. According to the RECIST 1.1 guideline, tumor

response to treatment requires the assessment of reduction in

the long diameter of the target lesions, while in the lymph node,

short diameter was considered more reproducible rather than long

diameter (36). Therefore, we intended to investigate the changes

of lymph node US features. Our results indicated that reduction in

short diameter ≥50% after NAC had an OR of 2.47 (P=0.006) for

axillary nodal pCR.

This study aimed to evaluate the changes of axillary lymph

node in order to predict axillary nodal pCR in the clinically

node-positive population. US monitoring of axilla before, after

two cycles, and after completion of NAC was also obtained in

this current study. With the help of US techniques, nodal

features can be obtained before surgery in a non-invasive, low

cost, and time-saving way. Moreover, US enables us to monitor

the axilla continuously at different time points of NAC,

providing dynamic observation of nodal response to

treatment. This concise nomogram combining the clinical and

changes of US features would provide an accurate and

personalized evaluation to select potential candidates who may

be exempt from ALND.

There are several limitations in our study. First, this was a

retrospective study which enrolled patients in a single

institution. Only a limited number of patients who completed

three US examinations before, during, and after NAC were
Frontiers in Oncology 09
included, leading to possible selection bias. Therefore,

further prospective multicenter validations in larger

populations are needed to verify our conclusions. Second, the

largest suspicious reported node on US was chosen as the target

lesion. Without special marking, the observed lymph node may

not necessarily be the same, which may lead to a decrease in

accuracy of our research. In our future work, we would trace the

US change of lymph nodes during treatment by using potential

special marking technology before NAC initiation to loce the

biopsy-proven positive lymph node.

In conclusion, ultrasound feature changes during NAC

could improve the accuracy of predicting node response after

NAC in clinically node-positive breast cancer patients,

indicating continuous US monitoring of tumor response as

well as axillary lymph node feature changes would help us

identify candidate patients to receive potential axilla de-

escalation treatment after completion of NAC.
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