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Abstract: Despite the fast development of vaccines, severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is still circulating and generating variants of concern (VoC) that escape the humoral
immune response. In this context, the search for anti-SARS-CoV-2 compounds is still essential. A class
of natural polyphenols known as flavonoids, frequently available in fruits and vegetables, is widely
explored in the treatment of different diseases and used as a scaffold for the design of novel drugs.
Therefore, herein we evaluate seven flavonoids divided into three subclasses, isoflavone (genistein),
flavone (apigenin and luteolin) and flavonol (fisetin, kaempferol, myricetin, and quercetin), for
COVID-19 treatment using cell-based assays and in silico calculations validated with experimental
enzymatic data. The flavonols were better SARS-CoV-2 inhibitors than isoflavone and flavones. The
increasing number of hydroxyl groups in ring B of the flavonols kaempferol, quercetin, and myricetin
decreased the 50% effective concentration (EC50) value due to their impact on the orientation of
the compounds inside the target. Myricetin and fisetin appear to be preferred candidates; they are
both anti-inflammatory (decreasing TNF-α levels) and inhibit SARS-CoV-2 mainly by targeting the
processability of the main protease (Mpro) in a non-competitive manner, with a potency comparable
to the repurposed drug atazanavir. However, fisetin and myricetin might also be considered hits that
are amenable to synthetic modification to improve their anti-SARS-CoV-2 profile by inhibiting not
only Mpro, but also the 3′–5′ exonuclease (ExoN).

Keywords: SARS-CoV-2; COVID-19; natural product; flavonoids; molecular docking; calu-3 cells;
exonuclease; protease

1. Introduction

Coronavirus disease 2019 (COVID-19) is the most recent global pandemic of the 21st
century, causing over 530 million confirmed cases and 6.29 million deaths worldwide from
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December 2020 until May 2022 [1]. Despite the fast development of vaccines and approved
drugs by the U.S. Food and Drug Administration (FDA), e.g., remdesivir and baricitinib [2],
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still circulating due to
variants of concern (VoC) that escape the humoral immune response; antiviral resistance
might occur in the future [3–6]. Therefore, drug development against COVID-19 is still
urgently needed in the current pandemic.

Basically, COVID-19 pathophysiology begins with SARS-CoV-2 virus binding to a type
1 transmembrane protein, known as angiotensin-converting enzyme 2 (ACE2), found on
the host cell’s membrane. Upon viral fusion and release of the viral genome, several viral
enzymes are critical in the replication process: e.g., the main protease (Mpro) and papain-like
protease (PLpro), which are responsible for polyprotein chain cleavage; the RNA-dependent
RNA polymerase (RdRp), which replicates and transcribes the viral genome; and the 3′–5′

exonuclease (ExoN), which serves a proofreading function to maintain the integrity of the
virus genome [7,8]. These enzymes were widely evaluated as feasible targets for drug
repurposing, the design of novel drugs, and natural products screening [9–12].

Despite the great interest in drug repurposing to accelerate the identification of safe
and effective compounds in humans that can cure or prevent COVID-19, there are some
limitations based on their pharmacokinetic profile and required clinical concentration [13].
Natural products, due to their high safety profile, suitable bioavailability, and low level
of adverse effects compared to synthetic drugs, are considered good candidates as novel
antivirals, or as scaffolds for semisynthetic drugs [14]. In this regard, a class of natural
polyphenols known as flavonoids, found in different amounts in plants, is being considered
for the treatment of different diseases [15–17]. Flavonoids gained particular attention as
potential anti-SARS-CoV-2 agents due to their ability to target some essential viral proteins
in their entry and replication steps [17–20]. However, most of these reports are based on in
silico screening or viral growth assessed in Vero-E6- and A549-cells, which are not consid-
ered ideal cellular models for SARS-CoV-2 infection [21,22]; thus, a better characterization
of flavonoids for COVID-19 is still needed. Additionally, since infection by SARS-CoV-2
is associated with leukopenia and uncontrolled release of pro-inflammatory cytokine me-
diators in critically ill patients [23], and as previous reports for other infectious diseases
demonstrated the immunomodulatory and anti-inflammatory effects of flavonoids [24],
it is reasonable to expect that this class of natural products has a multi-target activity
against COVID-19. Recently, this hypothesis was reinforced by Alzaabi and coworkers,
who identified luteolin (a flavone) and quercetin (a flavonol) as promising multi-target
compounds against SARS-CoV-2 that decrease both viral replication and pro-inflammatory
mediators’ levels [25].

Based on the importance of natural products in the development of drugs against
COVID-19 and the critical participation of certain viral enzymes in the replication process
of the pathogen, e.g., exonucleases and proteases, the present work reports the screening of
seven flavonoids (divided into isoflavone, flavones, and flavonols, Figure 1) using Calu-
3-based infectivity assays (a type II pneumocyte line considered physiologically relevant
in SARS-CoV-2 infection). The corresponding anti-inflammatory profile of each flavonoid
was also determined in Calu-3 cells, as assessed by the levels of interleukin-6 (IL-6) and
tumor necrosis factor-alpha (TNF-α). Finally, to identify the possible targets of the assayed
compounds, in silico calculations regarding their binding capacity for the SARS-CoV-2
spike, RdRp, ExoN, PLpro, and Mpro proteins were carried out and correlated with the
experimental enzymatic data for SARS-CoV-2 ExoN and Mpro.
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Figure 1. The chemical structures of the flavonoids evaluated in this work.

2. Materials and Methods
2.1. General Materials

Genistein, apigenin, luteolin, fisetin, kaempferol, myricetin, quercetin, remdesivir
(RDV), carboxymethyl cellulose (CMC), tris(4-(dimethylamino)phenyl)methylium chloride
(crystal violet), formaldehyde phosphate buffer solution (PBS), ethanol, dimethyl sulfoxide
(DMSO), sulfuric acid (H2SO4), and 3,3’,5,5’-tetramethylbenzidine (TMB) were purchased
from Sigma-Aldrich/Merck (St. Louis, MO, USA).

2.2. Cells and Virus

African green monkey kidney (Vero, subtype E6) and human lung epithelial (Calu-3) cells
were cultured in high-glucose Dulbecco’s modified Eagle medium (DMEM—HyClone, Logan,
Utah) supplemented with 100 U/mL penicillin, 100 µg/mL streptomycin (P/S—Thermo
Fisher Scientific®, Waltham, MA, USA), and 10% fetal bovine serum (FBS—HyClone, Logan,
UT, USA), and then incubated at 37 ◦C with 5% carbon dioxide (CO2).

The SARS-CoV-2 B.1 lineage (GenBank #MT710714) was isolated in Vero E6 cells from
nasopharyngeal swabs of a confirmed case. All procedures related to virus culture were han-
dled in the biosafety level 3 (BSL3) multiuser facility at Fundação Oswaldo Cruz (FIOCRUZ),
Rio de Janeiro, Brazil, according to World Health Organization (WHO) guidelines [26].

2.3. Yield-Reduction Assays and Virus Titration

Calu-3 cells (2.0 × 105 cells/well) in 96-well plates (Nalge Nunc Int’l, Rochester, NY,
USA) were infected with a multiplicity of infection (MOI) of 0.1 for 1 h at 37 ◦C at 5% CO2.
The inoculum was removed, and cells were incubated with different concentrations of
genistein, apigenin, luteolin or fisetin (0.00, 0.63, 1.25, 2.50, 5.00, and 10.0 µM), kaempferol,
myricetin, or quercetin (0.00, 0.10, 0.30, 1.00, 3.16, and 10.0 µM), and RDV (0.00, 0.0001,
0.001, 0.01, 0.10, 0.50, 1.0, 5.0, and 10.0 µM) in DMEM with 10% FBS. After 48 h, the
virus content in the supernatant was quantified by plaque forming assays in Vero cells
(2.0 × 104 cells/well) according to our previous publications [10,27,28]. The virus titers
were calculated by scoring for plaque-forming units (PFU/mL); and non-linear regression
analysis of the dose–response curves were also performed to calculate the 50% effective
concentration (EC50). All experiments were carried out at least three independent times,
including a minimum of two technical replicates in each assay. Data were analyzed using
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Prism GraphPad software 8.0 (Windows GraphPad Software, San Diego, CA, USA). Values
were presented as means ± standard deviations (SD).

2.4. Cytotoxic Assays

Vero cells (2.0 × 104 cells/well) were treated for 3 days with different concentrations
of flavonoids or RDV (ranging from 1 to 600 µM) following the procedure described
previously [27]. Absorption was read at 595 nm using a plate spectrophotometer; the 50%
cytotoxic concentration (CC50) was calculated using non-linear regression analysis from a
dose–response curve. The assays were conducted in triplicate with results presented as
means ± standard deviations (SD). The selectivity index (SI) for each assayed compound
was calculated as the ratio of CC50 to EC50 values.

2.5. Measurements of Inflammatory Mediators

The levels of IL-6 and TNF-α were quantified from the supernatant of uninfected
Calu-3 cells (MOCK), infected cells without treatment (NIL), and infected cells treated
with flavonoid (10 µM) using specific kits following the manufacturer’s instructions (code
#DY206 and #DY210 for IL-6 and TNF- α, respectively, from R&D Systems® Inc., Minneapo-
lis, MN, USA). Briefly, on the first day, the plate was sensitized with capture antibodies
against the target cytokines and incubated overnight in a refrigerator. On the second day,
the plate was washed three times with PBS containing 0.1% Tween, for later addition of
blocking solution (PBS containing 0.1% bovine serum albumin) and incubation for 1 h.
Then, supernatants from the viral replication inhibition assays in Calu-3 cells were added
and incubated at room temperature for 2 h. After this, the plates were washed again and
the detection antibody, streptavidin solution, and TMB were added. Upon observing the
appearance of blue color, the reaction was stopped with 50 µL of 1 mol/L H2SO4, and
absorption was measured in a spectrophotometer at a wavelength of 450 nm. The assays
were conducted in triplicate, and IL-6 and TNF-α were quantified by a standard curve.

2.6. Molecular Docking Procedure

The chemical structures of the flavonoids apigenin, luteolin, genistein, fisetin, kaempferol,
myricetin, and quercetin, as well as SARS-CoV-2 Mpro peptide substrate (CAS number 730985-
86-1) and SARS-CoV-2 PLpro peptide substrate (CAS number 167698-69-3), were built and
energy-minimized using Density Functional Theory (DFT) through the Becke-3-Lee Yang
Parr (B3LYP) method and the standard 6-31G* basis set, available in Spartan’18 software
(Wavefunction, Inc., Irvine, USA). As the 3D structure for SARS-CoV-2 nsp-14 ExoN was not
available, a structural model was built via the online Swiss Model software toolset (University
of Basel, Basel, Switzerland) using the crystallographic structure of SARS-CoV nsp-14 as the
template (Protein Data Bank (PDB) code: 5C8T) [29] and validated as previously described by
Wang and co-workers [10]. In this study, two structural models were generated and validated:
one considering the presence of one Mg(II) ion and the second with two Mg(II) ions. The
positions of Mg(II) ions in the catalytic pocket of the models were identified according to the
crystallographic structures for SARS-CoV ExoN (PDB code: 5C8T) [29] and the N-terminal
ExoN domain of the epsilon subunit of E. coli DNA polymerase III (PDB code: 1J53) [30]. The
structures for SARS-CoV-2 Mpro, PLpro, RdRp, and spike proteins are available in the PDB
with access codes 7K40, 6W9C, 7BV2, and 6VW1, respectively.

Molecular docking calculations were performed with GOLD 2020.2 software (Cam-
bridge Crystallographic Data Centre, Cambridge, UK). Hydrogen atoms were added to
the biomacromolecules according to the data inferred by software at pH 7.4. The standard
function ChemPLP was used for each docking run. The molecular docking calculations
were carried out in a select 8 Å radius spherical cavity around the active or allosteric
binding site of each enzyme. Figures for the docking poses were generated using PyMOL
Delano Scientific LLC software (Schrödinger, New York, NY, USA).
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2.7. SARS-CoV-2 Exonuclease Reactions

The 3′-exonuclease, referred to as nsp14, and its protein cofactor, nsp10, were cloned
and expressed based on the SARS-CoV-2 genome sequence. The SARS-CoV-2 ExoN
nsp14/nsp10 complex was expressed and purified as described [10]. The RNA oligonu-
cleotide (template-loop primer) was purchased from Dharmacon (Horizon Discovery,
Lafayette, CO, USA).

The 3′ U-terminated template looped primer RNA (sequence shown in Section 3.4)
was annealed by heating to 75 ◦C for 3 min and then cooling to room temperature in
1× ExoN reaction buffer. To a 14 µL solution of 71.4 nM ExoN complex (nsp14/nsp10) in
1× ExoN reaction buffer, 1 µL of DMSO with or without various concentrations of fisetin
was added and incubated for 15 min at room temperature. Next, 5 µL of the annealed
RNA (2 µM) in 1× ExoN reaction buffer was added to the ExoN/fisetin mixture and incu-
bated at 37 ◦C for 15 min. The final concentrations of reagents in the 20 µL reactions were
50 nM nsp14/nsp10, 500 nM RNA, and 0 µM, 50 µM, or 150 µM fisetin in 5% DMSO. The
1× ExoN reaction buffer contains the following reagents: 40 mM Tris-HCl pH 8, 1.5 mM
MgCl2, and 5 mM dithiothreitol (DTT). After incubation for 15 min, each reaction was
quenched by adding 2.2 µL of an aqueous solution of ethylenediaminetetraacetic acid
(EDTA, 100 mM). Following desalting using an Oligo Clean & Concentrator (Zymo Re-
search Corporation, Irvine, CA, USA), the samples were subjected to Matrix-Assisted Laser
Desorption/Ionization-Time Of Flight (MALDI-TOF) mass spectrometry (MS) analysis in a
Bruker ultrafleXtremeTM instrument (Bruker Daltonics, Billerica, MA, USA).

2.8. SARS-CoV-2 Mpro Inhibition

The capacity of fisetin and myricetin to inhibit the enzymatic velocity of SARS-CoV-2
Mpro was determined using a commercial kit (BPS Biosciences®, catalog number: #79955-1)
following the procedure and recommendations from the literature and manufacturer [31,32].
This enzymatic kit is based on a FRET assay using a substrate peptide of Mpro labeled with
a fluorescent dye (Dabcyl) and an acceptor−quencher (Edans) at the N- and C-terminus,
respectively. The substrate peptide does not fluoresce in the uncleaved state, where the
quencher blocks the fluorescence of the dye. However, after Mpro cleaves the substrate, the
fluorescence of the dye is de-quenched, and an emission signal is observed. An inhibitor
blocking the activity of Mpro will prevent FRET-peptide cleavage and a reduced fluorescence
signal will be observed. Briefly, 88.8 nM Mpro was incubated overnight in reaction buffer
(20 mM Tris pH 7.3, 100 mM NaCl, 1 mM EDTA, 1 mM DTT, and 1 µM BSA) containing
25 µM of substrate (modified peptide Dabcyl-KTSAVLQSGFRKME-Edans, CAS number
730985-86-1) and fisetin, myricetin, or GC376 (positive control) [33] at concentrations of
0.0, 0.08, 0.16, 0.31, 0.63, 1.25, 2.5, 5.0, and 10 µM. The fluorescence signal was measured at
460 nm upon excitation at 360 nm in a GloMax® (Promega, Madison, WI, USA) plate reader.
The Morrison’s inhibitory constant (Ki) value was calculated by non-linear regression
using GraphPad Prism 9. In addition to the inhibitory curve, an inhibitory screening of
each flavonoid (10 µM) was also conducted under the same condition described above.
A Michaelis–Menten plot was generated for 88.8 nM Mpro incubated overnight in assay
buffer with substrate concentrations ranging from 0 to 100 µM in the presence and absence
of 2.5 µM of fisetin or myricetin. After fluorescence quantification, the Michaelis–Menten
constant (Km) and maximum velocity (Vmax) were also calculated by non-linear regression
using GraphPad Prism 9 (Windows GraphPad Software, San Diego, CA, USA). Values were
presented as means ± standard deviations (SD).

3. Results
3.1. Cell-Based Assays: SARS-CoV-2 Inhibition in Calu-3 Cells

Screening for the capacity of seven flavonoids (an isoflavone (genistein), flavones
(apigenin and luteolin), and flavonols (fisetin, kaempferol, myricetin, and quercetin)) to
inhibit SARS-CoV-2 replication was performed using cell-based assays. Figure 2 depicts
the antiviral profile of each natural product; Table 1 summarizes the corresponding EC50,
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CC50, and SI values. Flavonols showed lower EC50 values than isoflavone and flavones;
among the flavonols, fisetin and myricetin presented the lowest EC50 values (2.03 ± 0.10
and 0.91 ± 0.05 µM, respectively), indicating that these two natural products are good
candidates to inhibit SARS-CoV-2 replication. The CC50 value in most cases is approxi-
mately 60 times higher than the EC50 value, which provided a selective index (SI) consistent
with an adequate safety profile in vitro, particularly for myricetin, with a SI value of 787
(Table 1).
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Table 1. The 50% effective concentration (EC50 for MOI 0.1), 50% cytotoxic concentration (CC50), and
selectivity index (SI) for the flavonoids and RDV (positive control) in Calu-3 cells.

Compound EC50 (µM) CC50 (µM) SI

Genistein 5.25 ± 0.26 305 ± 15 58.1
Apigenin 5.11 ± 0.26 302 ± 15 59.1
Luteolin 5.92 ± 0.30 332 ± 17 56.1
Fisetin 2.03 ± 0.10 256 ± 13 126

Kaempferol 3.02 ± 0.15 357 ± 18 118
Myricetin 0.91 ± 0.05 716 ± 36 787
Quercetin 2.40 ± 0.12 852 ± 43 355

RDV 0.0305 ± 0.0031 512 ± 30 1.68 × 104

3.2. Cell-Based Assays: Anti-Inflammatory Profile

COVID-19 frequently leads to fatal inflammatory responses and acute lung injury
in critically ill patients. It was already reported that monocytes/macrophages from pa-
tients with severe COVID-19 may be the main source of uncontrolled levels of the pro-
inflammatory mediators TNF-α and IL-6 in the peripheral blood of the respiratory tract [23].
Figure 3 depicts the flavonoids’ anti-inflammatory profile, focusing on TNF-α and IL-6
inhibition in Calu-3 SARS-CoV-2 infections. The isoflavone genistein was the only com-
pound that reduced both IL-6 and TNF-α levels, while the other flavonoids impacted only
TNF-α levels.

3.3. In Silico Calculations for the Main SARS-CoV-2 Targets to Natural Products

Experimental information about the mechanism of flavonoids regarding SARS-CoV-
2 enzymes is lacking. Therefore, based on a literature survey of the proteins that play
a major role in the pathogenicity of SARS-CoV-2, several target proteins were explored
using molecular docking studies under different approximations (competitive and/or non-
competitive interaction models). We performed this analysis on the spike glycoprotein with
a single receptor binding domain in the presence and absence of ACE2 (PDB: 6VW1), due
to its central role in viral entry [34], and the proteases PLpro (PDB: 6W9C) and Mpro (PDB:
7K40), due to their role in cleavage and maturation of viral polyproteins [35]. Each protease
was evaluated in silico in the absence and presence of the corresponding commercial
synthetic peptide substrate (CAS numbers 730985-86-1 and 730985-86-1 for PLpro and
Mpro, respectively), and for the two allosteric sites for Mpro [36,37]. Finally, RdRp and
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ExoN are critical for SARS-CoV-2 genome replication and proofreading, respectively [10].
Interestingly, these two last enzymes have Mg(II) ions in their catalytic pocket; since
previous reports of the biological activity of flavonoids indicate that these natural products
might interact with Mg(II) ions in inhibiting the integrase of the human immunodeficiency
virus (HIV) [38–40], SARS-CoV-2 RdRp and ExoN were also considered feasible targets for
in silico evaluation.
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Figure 3. The anti-inflammatory profile of flavonoids was assessed using the (A) IL-6 and (B) TNF-α
levels from uninfected Calu-3 cells supernatant (MOCK), SARS-CoV-2 infected cells without treatment
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isoflavone, flavones, and flavonols, respectively. * p < 0.05.

Table 2 summarizes the docking score values for all flavonoids evaluated in cell-based
assays. In the GOLD 2020.2 software, a more positive score indicates better interactions;
thus, docking score values suggest that all evaluated targets may feasibly interact with the
flavonoids. However, the SARS-CoV-2 spike, RdRp, and PLpro proteins had lower docking
scores than SARS-CoV-2 ExoN and Mpro, indicating that the latter two proteins might be
the main targets for the evaluated natural products.

Table 2. Docking score values (dimensionless) for the flavonoids in spike, RdRp, ExoN, PLpro, and Mpro.

Spike RdRp ExoN PLpro Mpro

Compound Without
ACE2

With
ACE2

Without
RNA

With
RNA

1 ×
Mg(II)

2 ×
Mg(II)

Without
Sub-
strate

With
Sub-
strate

Without
Sub-
strate

With
Sub-
strate

Allosteric
Site 1

Allosteric
Site 2

Genistein 39.9 39.6 37.3 36.6 45.7 46.3 46.1 47.3 52.6 53.3 50.5 47.7
Apigenin 38.8 42.3 41.2 43.9 44.9 49.9 46.8 48.0 50.9 54.8 45.0 44.8
Luteolin 42.3 43.9 43.2 42.5 48.9 53.4 48.5 48.9 53.2 56.0 48.1 48.3
Fisetin 42.9 42.0 47.0 46.3 53.7 56.1 50.4 50.9 55.2 56.9 50.7 50.4

Kaempferol 38.4 07.6 42.2 37.1 54.9 55.8 48.9 49.5 51.5 52.1 48.0 46.4
Myricetin 43.0 28.3 48.4 47.1 55.2 57.9 47.7 48.9 56.8 64.0 52.8 53.2
Quercetin 44.7 34.8 46.4 45.9 46.5 51.5 50.5 50.7 51.8 55.7 51.1 50.2

The replacement of one Mg(II) ion for two Mg(II) ions in the catalytic site of SARS-CoV-
2 ExoN increased the binding capacity of all flavonoids. The flavonols (fisetin, kaempferol,
myricetin, and quercetin) had a higher docking score than isoflavone (genistein) and the
flavones (apigenin and luteolin); while among the flavonols, fisetin and myricetin appear
to be the best candidates for SARS-CoV-2 nsp14 ExoN inhibition.

The interaction between flavonoids and SARS-CoV-2 Mpro had a better fit in the pres-
ence of substrate than in its absence, suggesting a non-competitive inhibitory mechanism.
Among all flavonoids, fisetin and myricetin had the highest docking scores, indicating that
Mpro might also be a feasible target for these compounds.
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3.4. In Silico Evaluation for SARS-CoV-2 nsp-14 ExoN and Enzymatic Validation

Molecular docking analysis was carried out for SARS-CoV-2 nsp14 ExoN in two
different enzymatic 3D-structures differing in the number of cofactor Mg(II) ions in the
catalytic pocket (Figure S1). Ten solutions for each flavonoid were obtained, and those
poses with the best docking scores were subjected to more in-depth analysis. Figure 4
depicts the electrostatic potential maps for SARS-CoV-2 nsp14 ExoN in the presence of
flavonoids with one or two Mg(II) ions. None of the flavonoids interacted with all the
catalytic amino acid residues (Asp-90, Glu-92, Glu-191, His-268, and Asp-273); however,
all potential inhibitors presented a favorable conformation to coordinate with Mg(II) ions,
indicating that complexation with the cofactor might be the main mechanism by which
flavonoids inhibit SARS-CoV-2 nsp14 ExoN, which is reminiscent of the integrase inhibitors
of HIV [38–40]. Figure 5 shows the main amino acid residues that interact with fisetin and
myricetin (the two flavonols with the highest docking scores). Tables 2 and 3 summarize
the interaction profiles. Molecular docking results indicate van der Waals and hydrogen
bonding as the main intermolecular forces for the interaction between fisetin or myricetin
and the amino acid residues in the SARS-CoV-2 nsp14 ExoN active site. Among the five
catalytic amino acids, fisetin and myricetin interact with those closest to the Mg(II) ions:
Asp-90, Glu-92, and Glu-191.
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the best docking poses for the flavonoids (A) isoflavone, (B) flavones, and (C) flavonols in the SARS-
Figure 4. The electrostatic potential map (−68.065 and +68.065 a.u, in red and blue, respectively) of
the best docking poses for the flavonoids (A) isoflavone, (B) flavones, and (C) flavonols in the SARS-
CoV-2 nsp14 ExoN active site in the presence of one and two Mg(II) ions (left and right, respectively).
The catalytic amino acid residues, genistein, apigenin, luteolin, fisetin, kaempferol, myricetin, and
quercetin are in stick representation in cyan, violet, pink, brown, gray, light green, purple, and marine,
respectively. Mg(II) and Zn(II) ions are represented as green and indigo blue spheres, respectively.
Hydrogen, oxygen, and nitrogen are shown in white, red, and dark blue, respectively.
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Figure 5. The main amino acid residues from SARS-CoV-2 nsp14 ExoN that interact with (A) fisetin
and (B) myricetin in the presence of one Mg(II) ion, and (C) fisetin and (D) myricetin in the presence of
two Mg(II) ions. The interactive and catalytic amino acid residues are in beige and cyan, respectively;
fisetin and myricetin are in gray and purple, respectively. Mg(II) ions are represented as green spheres.
Hydrogen, oxygen, and nitrogen are shown in white, red, and dark blue, respectively.

Table 3. The main amino acid residues that interact with fisetin and myricetin in the catalytic pocket
of SARS-CoV-2 nsp14 ExoN in the presence of one or two Mg(II) ions.

Compound Amino Acid Residue Interaction Distance (Å)

Fisetin
(1 ×Mg(II))

Met-58 Van der Waals 3.40
Glu-92 Van der Waals 3.10

Asn-104 Hydrogen bonding 2.80
Phe-146 Van der Waals 3.80
Ala-187 Van der Waals 2.00
Phe-190 Van der Waals 3.40
Glu-191 Hydrogen bonding 2.10

Myricetin
(1 ×Mg(II))

Met-58 Van der Waals 2.30
Asp-90 Van der Waals 3.80

Val-91 (C=O) Hydrogen bonding 1.70
Glu-92 Van der Waals 2.80

Asn-104 Hydrogen bonding 3.30
Phe-146 Van der Waals 3.40
Ala-187 Van der Waals 2.20
Phe-190 Van der Waals 3.80
Glu-191 Hydrogen bonding 2.10

Fisetin
(2 ×Mg(II))

Met-58 Van der Waals 2.30
Asp-90 Van der Waals 3.70
Glu-92 Van der Waals 2.40
His-95 Van der Waals 2.90

Asn-104 Van der Waals 2.80
Ala-187 Van der Waals 3.40
Gly-189 Van der Waals 2.80
Glu-191 Hydrogen bonding 2.20
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Table 3. Cont.

Compound Amino Acid Residue Interaction Distance (Å)

Myricetin
(2 ×Mg(II))

Met-58 Van der Waals 2.60
Asp-90 Van der Waals 3.80

Val-91 (C=O) Hydrogen bonding 1.70
Glu-92 Van der Waals 3.00
His-95 Van der Waals 2.80

Asn-104 Hydrogen bonding 2.20
Ala-187 Van der Waals 2.40
Gly-189 Van der Waals 3.00
Phe-190 Van der Waals 3.70
Glu-191 Hydrogen bonding 2.90

To confirm the in silico trend for this target, enzymatic assays for processive cleavage
by SARS-CoV-2 pre-assembled ExoN complex (nsp14/nsp10) of a specific ribonucleic acid
(RNA) sequence were conducted in the presence and absence of fisetin. Molecular docking
calculations suggested a very similar docking score value for fisetin and myricetin to ExoN.
Therefore, enzymatic assays were conducted for both flavonols; however, the data are
shown only for fisetin, as the results for myricetin were not clean and no inhibition was
seen, even at 150 µM. Figure 6 depicts the mass spectra for the specific sequence of RNA
without and with two different concentrations of fisetin. In the absence of fisetin, ExoN
cleaves 1–7 nucleotides from the 3′-end of the RNA, while in the presence of 150 µM fisetin,
ExoN activity was reduced, as shown by the reduced intensities of the fragmentation
peaks and increased intact RNA peak. This profile indicates that fisetin might inhibit
SARS-CoV-2 nsp14 ExoN at high concentration, in contrast to the EC50 values in the Calu-3
cell-based virus inhibition assays, suggesting that ExoN is probably not the main target for
this natural product.

3.5. In Silico Evaluation for SARS-CoV-2 Mpro and Enzymatic Validation

SARS-CoV-2 Mpro was another feasible target based on its molecular docking score;
therefore, an in-depth analysis of isoflavone, flavones, and flavonols in the Mpro/substrate
complex system (which may help distinguish between a competitive and non-competitive
inhibitory mechanism) was conducted. Ten solutions for each flavonoid were obtained, and
those poses with the best docking scores were analyzed. In this case, all the flavonoids were
docked inside the loop formed by the substrate in the active site. As depicted in Figure 7,
genistein (isoflavone) is not completely buried within the substrate loop, while apigenin
and luteolin (flavones) are buried more deeply in the substrate loop. The flavonols fisetin
and myricetin showed the highest interactive profile, probably due to the presence of a
hydrophobic interaction (π-stacking) between the aromatic ring of these flavonols with the
acceptor−quencher (Edans) moiety of the substrate, within a distance of 3.90 Å (the zoom
representation in Figure 7C).

To confirm the in silico trend for this target, experimental enzymatic screening was
performed which indicated that fisetin and myricetin are the two main SARS-CoV-2 Mpro in-
hibitors (Figure 8A). Figure 8B,C show the enzymatic inhibition profile for fisetin, myricetin,
and GC376 (positive control) and their corresponding enzymatic mechanisms. Morrison’s
inhibitory constant (Ki) value for the flavonols is lower than that for GC376, indicating that
these natural products are good candidates to inhibit SARS-CoV-2 Mpro. More specifically,
myricetin has a Ki value four times lower than fisetin, corroborating the experimental
cell-based assays’ trend. The Michaelis–Menten constant (Km), in the absence and in the
presence of flavonols, is the same within experimental error, while the maximum velocity
(Vmax) value decreased in the presence of the flavonols, supporting a non-competitive
inhibitory mechanism and validating the in silico approximation.
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Figure 6. Inhibition of SARS-CoV-2 ExoN activity by fisetin. A mixture of 500 nM RNA (se-
quence shown at the top of the figure) and 50 nM SARS-CoV-2 pre-assembled exonuclease complex
(nsp14/nsp10) was incubated in buffer solution at 37 ◦C for 15 min (B) in the absence and (C,D)
presence of 50 µM and 150 µM fisetin. The (A) RNA and the (B–D) products of the ExoN reaction
were analyzed by MALDI-TOF MS. The signal intensity was normalized to the highest peak. The
peak at 8164 Da corresponds to the intact RNA (8157 Da expected).
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Figure 7. The 3D-representation of the best docking pose and the corresponding zoom representation
for the flavonoids (A) isoflavone, (B) flavones, and (C) flavonols in the SARS-CoV-2 Mpro active site in
the presence of peptide substrate (CAS number 730985-86-1). Catalytic amino acid residues genistein,
apigenin, luteolin, fisetin, kaempferol, myricetin, and quercetin are in stick representation in cyan,
violet, pink, brown, gray, light green, purple, and marine, respectively. Catalytic water (H2Ocat) is
shown in spherical configuration. Hydrogen, oxygen, and nitrogen are shown in white, red, and dark
blue, respectively.
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Figure 8. (A) Inhibition percentage of flavonoids (10 µM) to 88.8 nM Mpro. Blue, green, and red
bars correspond to isoflavone, flavones, and flavonols, respectively. (B) The enzymatic inhibition
profile for fisetin, myricetin, and GC376 (positive control) for 88.8 nM Mpro in PBS. (C) Michaelis–
Menten enzymatic mechanism for Mpro in the absence and presence of a fixed fisetin or myricetin
concentration (2.5 µM) at different substrate concentrations.
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4. Discussion

Studies demonstrate the broad spectrum antiviral activity of flavonoids [18–20,41].
Indeed, these molecules can interfere in different virus infections, e.g., many aglycone
and mono-glycoside flavonols, including fisetin, quercetin, rutin, and isoquercetin, are
potent antivirals against influenza A and B viruses [41]. Recently, in silico calculations
and Vero-based assays suggested this class of natural products as potential inhibitors
of SARS-CoV-2, mainly by disturbing virus entry and protease activity [9,18–20,24,25].
However, there is little work validating these in silico calculations with enzymatic assays
and confirming SARS-CoV-2 inhibition using physiologically relevant cells, making the
information regarding the biological activity of flavonoids for COVID-19 treatment less
convincing. Therefore, we performed pre-clinical study steps for isoflavone, flavones,
and flavonols by screening for their antiviral and anti-inflammatory profile in Calu-3-
based assays and evaluating their main targets using in silico calculations validated by
enzymatic assays.

Using cell-based assays, we discovered that the tested flavonols (fisetin, kaempferol,
myricetin, and quercetin) are more potent SARS-CoV-2 inhibitors than isoflavone (genistein)
and flavones (apigenin and luteolin). In fact, kaempferol, quercetin, myricetin, fisetin,
and their derivatives are the most documented flavonoids, with a broad spectrum of
biological activities, and thus the best theoretical candidates as antivirals against SARS-
CoV-2 [15]. Interestingly, our data indicate that the presence of more hydroxyl groups
in ring B of the flavonols (kaempferol (one hydroxyl group), quercetin (two hydroxyl
groups), and myricetin (three hydroxyl groups)) increased the capacity of these compounds
to inhibit SARS-CoV-2 replication; i.e., they had EC50 values of 3.02 ± 0.15, 2.40 ± 0.12,
and 0.91 ± 0.05 µM, respectively. This is probably due to their impact on the orientation
of the compounds inside the enzyme target, which was supported by the experimental
evidence in the inhibitory percentage of kaempferol, quercetin, and myricetin (10 µM) to
SARS-CoV-2 Mpro. The EC50 value for myricetin was comparable to that of atazanavir
(ATV), a repurposed SARS-CoV-2 inhibitor that targets Mpro [27], reinforcing the good
prospects of flavonols as SARS-CoV-2 antivirals. The CC50 value in most cases is about
60 times higher than the EC50 value, which provided a selective index (SI) consistent with
an adequate safety profile.

All the natural products evaluated in this work might reduce the severity of COVID-19
symptoms by significantly decreasing the production of the pro-inflammatory mediator
TNF-α. This finding corroborates previous studies that identified some flavonoids, e.g.,
fisetin, kaempferol, myricetin, astragalin, and rutin, as inhibitors of pro-inflammatory
cytokines in other human infections [17,42]. An increase in TNF-α levels in the peripheral
blood of the respiratory tract is associated with patients with severe COVID-19 [23]. Our
data suggest that flavonols, mainly fisetin and myricetin (all natural products), engage in
multi-target activity against COVID-19.

In silico calculations for different SARS-CoV-2 proteins (spike, RdRp, ExoN, PLpro,
and Mpro) were carried out to identify flavonoids’ main targets; molecular docking score
values clearly suggest SARS-CoV-2 ExoN and Mpro as feasible targets. The two main
in vitro SARS-CoV-2 inhibitors, fisetin and myricetin, had the highest docking scores when
compared with the other flavonoids, providing confiability for the in silico approach.

Generally, the SARS-CoV-2 ExoN has two Mg(II) ions in the catalytic site; however, the
absence of the second Mg(II) ion was already reported and attributed to the lack of substrate
or product binding [29,30,43]. For this reason, two possibilities were evaluated in our in
silico models. We found that the presence of two Mg(II) ions improved the docking score
and binding profile of fisetin and myricetin, suggesting that these natural products might
interact with ExoN in the presence of substrate or product binding, similar to clinically
approved HIV integrase inhibitors (raltegravir, elvitegravir, dolutegravir, bictegravir, and
cabotegravir) [38–40]. Experimental enzymatic validation showed that fisetin can interfere
with RNA processing by ExoN with a 74-fold lower potency than the EC50 value; thus
SARS-CoV-2 ExoN is likely not the main target for flavonols.
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On the other hand, fisetin and myricetin non-competitively inhibited SARS-CoV-2
Mpro processability with 48- and 82-fold higher potency (respectively) than their corre-
sponding EC50 value, suggesting Mpro as the main target for flavonols. Indeed, the docking
score value for Mpro in the protease/substrate complex was slightly higher than for ExoN;
and the impact of an increasing number of hydroxyl groups in ring B of the flavonols was
identified for Mpro more clearly than for ExoN (myricetin’s pose in the protease’s substrate
loop is totally different compared with those of kaempferol and quercetin), reinforcing the
claim that this protease is the main target.

Overall, our results reveal that the flavonols myricetin and fisetin are the best candi-
dates for further testing, given both their anti-inflammatory effects and their inhibition of
SARS-CoV-2 replication mainly by targeting Mpro processability in a non-competitive fash-
ion (interaction with the protease/substrate complex in the active site), which demonstrates
a potency comparable to the repurposed drug ATV. However, considering the design and
structure of clinically approved HIV-integrase inhibitors, fisetin and myricetin might also
be considered hits that will be advanced further into the development of lead compounds.
For instance, their anti-SARS-CoV-2 activity profile of targeting both Mpro and ExoN might
be improved by inserting hydrophobic moieties into rings A or B to better orient the ligands
in the ExoN hydrophobic cleft, increasing the inhibitors’ affinity for Mg(II) ions, thereby
reducing ExoN’s ability to proofread RNA. Approximately 19% of FDA-approved drugs
on the market are semisynthetic [14,44]; this bolsters our positive opinion regarding the
continuous effort to identify natural products as a hit for future development of leads based
on their phytochemical core.

Moreover, we understand that while most natural products are still not considered
in clinical studies, mainly due to the lack of abundant natural supply or the exhaustive
laboratory cost to synthesize them, we consider that there is enough world capital to
invest in the synthesis of novel drugs. However, investment is proportional to financial
return; the pharmaceutical industry is betting on molecules with a much greater degree
of complexity due to the inherent barriers that prevent competitors from synthesizing
generics, e.g., PF-07321332 in PAXLOVIDTM, a SARS-CoV-2 Mpro inhibitor [45]. In this
regard, the straightforward chemical accessibility of flavonoids facilitates drug discovery
and optimization mainly by health agencies focusing on neglected populations. We hope
that COVID-19 will change this paradigm, and that flavonoids’ economic accessibility
encourages collaboration with poor populations to produce certain plants that might be
used for the extraction of compounds of interest, thus helping achieve the third and eighth
Sustainable Development Goals (SDGs) of the United Nations [46].
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model 2 (with two Mg(II) ions). The beige and orange colors are ExoN and N7-MTase domains,
respectively. Selected amino acid residues in the ExoN catalytic site are represented using stick
representations in cyan. The cosubstrate involved in methyltransferase, S-adenosyl methionine
(SAM), is represented using a stick model in green. Hydrogen atoms were omitted for better clarity.
The oxygen (red), nitrogen (dark blue) and sulfur (yellow) atoms are presented in the stick structure.
The Mg(II) (dark green) and Zn(II) (indigo blue) ions are represented as spheres.
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