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Abstract  21 

Recent associations between Major Depressive Disorder (MDD) and measures of premature 22 

aging suggest accelerated biological aging as a potential biomarker for MDD susceptibility or 23 

MDD as a risk factor for age-related diseases. Statistical and machine learning regression models 24 

of biological age have been trained on various sources of high dimensional data to predict 25 

chronological age. Residuals or “gaps” between the predicted biological age and chronological 26 

age have been used for statistical inference, such as testing whether an increased age gap is 27 
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associated with a given disease state. Recently, a gene expression-based model of biological age 28 

showed a higher age gap for individuals with MDD compared to healthy controls (HC). In the 29 

current study, we propose a machine learning approach that simplifies gene selection by using a 30 

least absolute shrinkage and selection operator (LASSO) penalty to construct an expression-31 

based Gene Age Gap Estimate (GAGE) model. We construct the LASSO-GAGE (L-GAGE) 32 

model in an RNA-Seq study of 78 unmedicated individuals with MDD and 79 HC and then test 33 

for accelerated biological aging in MDD. When testing L-GAGE association with MDD, we 34 

account for factors such as sex and chronological age to mitigate regression to the mean effects. 35 

The L-GAGE shows higher biological aging in MDD subjects than HC, but the elevation is not 36 

statistically significant. However, when we dichotomize chronological age, the interaction 37 

between MDD status and age is significant in L-GAGE model. This effect remains statistically 38 

significant even after adjusting for chronological age and sex. We find cytomegalovirus (CMV) 39 

serostatus is associated with elevated L-GAGE. We also investigate feature selection methods 40 

Random Forest and nearest neighbor projected distance regression (NPDR) to characterize age 41 

related genes, and we find functional enrichment of infectious disease and SARS-COV 42 

pathways.  43 

  44 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.610913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.03.610913
http://creativecommons.org/licenses/by-nc-nd/4.0/


1. Introduction 45 

Major depressive disorder (MDD) has been hypothesized to show characteristics of premature 46 

aging [1]. Biological aging can be measured in multiple dimensions such as telomere length, 47 

immunosenescence, brain volume, and gene expression. These measures of biological aging are 48 

correlated with chronological age, but environmental and genetic factors can increase or decrease 49 

an individual’s biological age relative to their chronological age and influence their risk for age 50 

related diseases. For example, MDD has been associated with markers of cellular and immune 51 

aging including shortened leukocyte telomere length [2, 3], elevated indicators of oxidative 52 

stress[4], and elevated circulating inflammatory cytokines [5]. Epigenetic clocks predicting 53 

biological age based on the accumulation of methylated CpG sites have found higher biological 54 

age in MDD subjects compared with healthy controls [6]. Brain age models constructed from 55 

T1-weighted magnetic resonance image (MRI) data from 2,188 healthy controls predicted a gap 56 

of +1.08 years (SE 0.22) between predicted and chronological age across 2,675 depressed 57 

subjects [7].  58 

 59 

A recent RNA-Seq MDD study from Cole at el. found that gene expression based biological 60 

aging was elevated in MDD subjects compared to HC [8]. The PBMC samples included four 61 

groups: 44 healthy controls, 94 MDD treatment-resistant, 47 MDD treatment-responsive and 46 62 

MDD untreated [8]. They selected age genes iteratively by varying the P-value threshold for the 63 

t-test between upper and lower chronological age quartiles. For a given iteration, a biological age 64 

was computed for each subject based on the signed z-score of the age-related genes, and the P-65 

value threshold was chosen to optimize the correlation between biological and chronological age 66 

of the subjects (Spearman Correlation Coefficient (SCC) = 0.72, p < 0.01).  A linear model of 67 
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biological age was fit to chronological age and association with MDD was computed by 68 

comparing the number of MDD and HC subjects above and below the regression line.  69 

 70 

In the current study, we create a biological age model from RNA-Seq gene expression using a 71 

multivariate LASSO penalized regression rather than an iterative univariate test, and we use age 72 

as a quantitative variable during the feature selection in linear regression, as opposed to using 73 

age quartiles as in Ref.[8], which allows our model to include more variation when estimating 74 

the age model. When later using chronological age as covariate for MDD association, we 75 

dichotomize chronological age. LASSO allows automatic feature selection of a multivariate 76 

linear regression model based on the cross-validated penalty hyperparameter optimization. We 77 

train the LASSO biological age model using an existing RNAseq dataset consisting of 157 78 

individuals (78 with MDD and 79 healthy controls) [8, 9], and we use the residual of the LASSO 79 

model as an estimate of the gap between an individual’s chronological age and their biological 80 

gene age. A positive gap indicates higher than average biological age or elevated aging 81 

compared to chronological age. This LASSO Gene Age Gap Estimate (L-GAGE) shows elevated 82 

biological aging in MDD subjects compared to HC, but the elevation is not statistically 83 

significant. However, when we dichotomize chronological age into older and younger, the 84 

interaction between MDD status and age is significant in L-GAGE model. Finally, we use 85 

machine learning feature selection to explore biological pathways that are significantly enriched 86 

for the gene sets identified as being associated with aging.  87 

 88 

2. Materials and Methods 89 

2.1. RNA-Seq Data 90 
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To test our biological age models, we use an extant RNA-Seq dataset [10]. The study was 91 

approved by the Western Institutional Review Board and conducted according to 92 

the principles expressed in the Declaration of Helsinki. The data consists of 78 MDD and 79 HC 93 

subjects (91 females and 66 males). Individuals with current symptoms of depression met DSM-94 

IV-TR criteria for MDD based on the Structural Clinical Interview for DSM-IV-TR Axis I 95 

Disorders and an unstructured psychiatric interview. HC individuals had no personal or immediate 96 

family history of major psychiatric disorders. MDD participants were unmedicated for at least 3 97 

weeks prior to study entry. Exclusion criteria included major medical or neurological illness, 98 

psychosis, traumatic brain injury, and a history of drug/alcohol abuse within 1 year. There is a 99 

higher female/male ratio for MDD (51/27) than HC (40/39), compatible with trends in the general 100 

population. The age distribution is slightly skewed towards younger individuals with age range 101 

from 18 to 55 (Fig. 1). The 8,923 genes in the RNA-Seq gene expression data are normalized by 102 

counts per million reads, which we then quantile normalize and log2 transform to stabilize variance. 103 

We removed genes with a low coefficient of variation (standard deviation divided by absolute 104 

mean). We chose a threshold of 0.045 to obtain 5,587 genes.  105 

 106 

2.2. Gene Age Gap Estimate (GAGE) using RNA-Seq  107 

We use LASSO for gene selection and modeling biological age, and then we use the residual of 108 

this model, which we call LASSO Gene-Age Gap Estimate (L-GAGE), for association testing 109 

with MDD. For the LASSO biological aging model, we build a full penalized regression model 110 

with all gene expression variables and with chronological age as the outcome variable. We 111 

include both MDD and HC samples in the age model, which was also the approach in Ref. [8]. 112 

Our biological age model is based on the non-zero coefficient genes from the lambda-1se 113 
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LASSO penalty (the largest 𝜆 for which the average cross-validation (CV) error is within one 114 

standard error of the minimum CV error). We compute the gap/residuals of the LASSO model 115 

between predicted biological age and chronological age (i.e., the L-GAGE score). Our goal is to 116 

use L-GAGE to test for increased biological age in MDD subjects (Fig. 2).   117 

 118 

2.3. Relationship between gene age gap, chronological age, MDD and sex 119 

It is important to consider adjustments for chronological age in biological age models because of 120 

regression to the mean as discussed for brain age models [11], but sex is also an important 121 

covariate for MDD.  To further explore covariate effects, we add MDD x Age and MDD x Sex 122 

interactions for L-GAGE associations with MDD. We use the OLS model 123 

𝐿𝐺𝐴𝐺𝐸 = 𝛽! + 𝛽"𝑀𝐷𝐷 + 𝛽#𝑍 + 𝛽$(𝑀𝐷𝐷 ∗ 𝑍) + 𝜀,                (Eq. 1) 124 

where Z represents the adjustment or interaction variable (Age or Sex).  We focus on the effect 125 

of β3, which represents how much the average L-GAGE of the MDD group changes for the Z=1 126 

condition.   127 

 128 

We consider two cases when age is used as a covariate with interactions (Z in Eq. 1): as 129 

continuous and as dichotomous with a threshold. To verify our choice of age threshold, we use a 130 

threshold regression model in the “chngpt” package in R [12]. We use this approach to check for 131 

possible nonlinear relationship between MDD and age and whether the effect of chronological 132 

age on MDD increases at some threshold point. The mean function of the threshold model is: 133 

𝜂 = 𝛼" + 𝛼#𝑧 + 𝛽"𝐼(𝑥 > 𝑒),              (Eq. 2) 134 
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where x stands for chronological age, e is the age threshold and z are additional predictors. “I” is 135 

a step indicator function. The threshold is optimized using the exact criterion function with a 136 

logistic-based smooth function.  137 

 138 

2.4. Feature selection, Gene-Age pathway Enrichment, and interpretable classifier 139 

We use LASSO to create the gene-based residual age model, L-GAGE, but LASSO feature 140 

selection also results in a set of age-related genes. As a secondary analysis, we use LASSO and 141 

other feature selection methods to identify important age-related genes for pathway enrichment 142 

to understand the biological mechanisms of the age models. We use univariate linear regression, 143 

random forest (RF) regression, and nearest-neighbor projected distance regression (NPDR) [10] 144 

as feature selection methods. RF has the ability to find more complex models than LASSO and 145 

linear regression, but RF has limited ability to detect interactions [13], whereas NPDR has the 146 

ability to detect interaction effects [10]. For univariate feature selection, we use a linear model of 147 

individual genes with age, and we use a P-value threshold of 0.05 (uncorrected for improved 148 

pathway overlap).  We use the standard NPDR with an adjusted P-value threshold of 0.05 FDR, 149 

and we use the LASSO penalized NPDR. For NPDR, we use the imbalanced k-nearest-neighbor 150 

value (k=47) that approximates the 0.5 standard deviation of the hyper-radius [10]. We use 151 

permutation variable importance with RF. We use the Reactome Pathway database in MSigDB 152 

[14, 15] for biological pathway enrichment of age related genes. For additional interpretation of 153 

the gene-age prediction of MDD along with consideration for other covariates, we train a 154 

decision tree to predict MDD based on L-GAGE, chronological age, and sex. Decision trees have 155 

high variance, but they are useful for interpreting the relationships between covariates.  156 

 157 
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3. Results and Discussion  158 

3.1. Testing Association of Gene Age L-GAGE with MDD.  159 

We test for association of the LASSO Gene Age Gap Estimate (L-GAGE) score with MDD status.  160 

L-GAGE is the residual from a LASSO gene expression model of chronological age. The LASSO 161 

model uses the cross-validation tuned lambda-1se value (𝜆 = 1.636048), which is the largest 𝜆 at 162 

which the mean-squared error (MSE) is within one standard error of the minimum MSE. The 163 

residuals are constant, and heteroscedasticity is not present based on the Non-constant Variance 164 

Score Test. The penalty results in a multivariate linear model of age with 22 genes and a Spearman 165 

Correlation Coefficient (SCC) with chronological age of 0.77 (Fig. 2). Counting the number of 166 

HC or MDD above or below the regression line (Fig. 2), we find that the biological age is greater 167 

in MDD subjects than HC (HC – 45 (56.96 %) below, 34 (43.037%) above, MDD 35 (44.87%) 168 

below, 43 (55.128%) above). The P-value of the Chi-squared test of GAGE sign (above or below 169 

the line) for MDD is not significant (0.1753). The greater L-GAGE in MDD versus HC can be 170 

seen in L-GAGE density (Fig. 3A). The L-GAGE distribution for males and females is very similar 171 

(Fig. 3B). While L-GAGE is greater in MDD than HC subjects, we do not find a statistically 172 

significant replication of the effect found in Ref. [8]. However, we do see a suggestive difference 173 

with an effect size similar to what they found. Using the same genes as their model also does not 174 

replicate.  175 

 176 

3.2 Testing MDD-Age interaction for L-GAGE association model.  177 

We test for the effect of L-GAGE on MDD by introducing an MDD-Age interaction term (Eq. 178 

1).  Dichotomizing age at threshold 40, MDD alone is not significant, but we find a statistically 179 

significant effect of the interaction between MDD and Age 40 on L-GAGE (Table 1, Fig. 4). For 180 
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individuals younger than 40, L-GAGE shows very little difference between MDD and HC, but 181 

for older individuals, there is greater biological aging (L-GAGE) for the MDD versus HC group 182 

(Fig. 4 and Table 1). Age alone is also statistically significant (Table 1). These age effects 183 

remain significant when we add sex as a covariate (Table 1B), but sex is not significant (Table 184 

1B and Table 2).  185 

 186 

The MDD-Age interaction and the MDD term (Eq. 1) do not have a significant effect on L-187 

GAGE when age is treated as a continuous variable (MDD P-value = 0.364, Age P-value = 188 

0.316, MDD*Age P-value = 0.197). Also, there is no direct statistical association between MDD 189 

and age and between MDD and sex (Two Sample T-test of MDD and Chronological age: P-190 

value = 0.167; Chi-squared-test of MDD and sex: P-value = 0.08716).  To further support our 191 

choice of age threshold, we use a threshold regression (Eq. 2). The change point for age in 192 

relation to MDD is estimated to be 39 years (Fig. 5). Combined with the third quartile being age 193 

41, the threshold regression suggests that age 40 is a suitable cutoff point for dividing the 194 

subjects into two age groups.  195 

 196 

Additional support for the age-40 threshold can be seen in the decision tree for predicting MDD 197 

(Fig. 6), where age with threshold 39.5 is the second important split variable, following L-198 

GAGE. The decision tree also suggests interaction effects, where the effect of L-GAGE on MDD 199 

is conditioned on chronological age. If L-GAGE (top node) is below a threshold, subjects tend to 200 

be HC. If the L-GAGE is below the threshold and chronological age is above 39.5 (i.e., an 201 

interaction), subjects tend to be MDD. However, for chronological age less than 39.5, the 202 
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prediction of MDD is more complex (Fig. 6). We note that this decision tree was trained on the 203 

full dataset to maximize power, but it is instructional for interpretation.  204 

 205 

A subset of our subjects (136 out of 157) have anti-CMV (human cytomegalovirus) IgG antibody 206 

data. Of the 136 samples, 70 are CMV seropositive and 66 CMV seronegative CMV. Although 207 

the P-value is not significant (0.097), we find that the mean biological age gap (L-GAGE) is 208 

higher in CMV positive subjects compared to CMV negative (Fig. 7A). For the subset of 209 

subjects with both CMV data and MDD status data, there are 75 HC and 61 MDD and 83 female 210 

and 54 male. While CMV positive subjects tend to have an elevated biological age, the effect is 211 

not MDD or sex specific (Fig. 7B and 7C).  In other words, being CMV positive elevates gene 212 

age regardless of MDD/HC status or sex. 213 

 214 

3.3 Characterizing Age-Associated Genes  215 

The LASSO regression used in L-GAGE selected 22 age genes with non-zero coefficients (Table 216 

3). We broaden the characterization of age related genes in our MDD data through pathway 217 

enrichment from statistical and machine learning feature selection methods linear regression, RF, 218 

and nearest-neighbor projected distance regression (NDPR) [10]. Across all feature selection 219 

methods, the four common age genes are NAA20 (N-alpha-acetyltransferase 20), CCNE1 220 

(Cyclin E1), and SESTD1 (SET domain containing protein 1A), and TAF9 (TATA-box-binding 221 

protein associated factor 9). Using the feature selection gene sets and the Reactome database, we 222 

find enrichment for Infectious Disease, Adaptive Immune System, and SARS-CoV-2 Infection 223 

pathways (Tables 5 and 6). SARS-CoV-2 can cause neurological complications, and a recent 224 
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study showed that differentially expressed genes for COVID infection overlap with many gene 225 

associations for neuropsychiatric disorders including depression [16]. 226 

 227 

Conclusion 228 

We presented a procedure for creating an expression-based biological age model using LASSO 229 

penalized regression, and we explored the association of the residual, or the LASSO-based Gene 230 

Age Gap Estimate (L-GAGE) on MDD while adjusting for chronological age and sex. We found 231 

increased biological aging based on L-GAGE in MDD versus HC subjects with an effect size 232 

similar to a previous study [8], but the difference was not statistically significant. Larger sample 233 

sizes are needed to further test this effect. We found a statistically significant MDD-Age 234 

interaction for L-GAGE when age is dichotomized with threshold 40 years. We used multiple 235 

statistical criteria for choosing this threshold. This finding could indicate an effect of lifetime 236 

number of MDD episodes on biological aging that is not detectible until middle-age.  The 237 

interaction effect remained significant when adjusting for chronological age and sex, and we 238 

reiterate the importance of including age in L-GAGE association tests to avoid confounding due 239 

to regression to the mean [11].  240 

 241 

We explored the top age-associated genes with different feature selection methods, and we 242 

identified a consensus set of genes, CCNE1, NAA20, SESTD1, and TAF9 that have been 243 

associated with aging, senescence, and infectious disease. In a study of Lung Adenocarcinoma, 244 

CCNE1 gene expression was found to be correlated with patients’ age [17], and NAA20 and 245 

SETD1A are involved in senescence, which is related to aging and age-related diseases. It was 246 

shown that depletion of NAA20 in non-transformed mammal cells led to senescence [18], and in 247 
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another study knockdown of SETD1A triggered cellular senescence. [19]. TAF9 cross-reactivity 248 

was shown to be associated with immunity to CMV in the context of autoimmune disease [20]. 249 

Recall, we found that CMV positive status is associated with elevated biological age based on L-250 

GAGE. Pathway enrichment of the broader set of age genes selected by linear regression, 251 

random forest, and NPDR resulted in the detection of Infectious Disease, Adaptive Immunity, 252 

and SARS-CoV Infection pathways. As noted in Ref. [8], evaluating PBMC transcription can 253 

increase the risk for false positive immune pathways.  254 

 255 

This study contributes a new approach to estimating biological aging and contributes to the 256 

evidence for the role of aging and inflammation in depression. Future studies are needed with 257 

broader age ranges, more uniform age distributions, large sample sizes, and utilization of MDD 258 

age-of-onset and number of depressive episodes. Future gene age models may help identify 259 

individuals that need different treatment or management for depression due to an increase in their 260 

relative biological age.   261 

 262 

Research data for this article 263 

Data and code for this research will be available at https://github.com/insilico/GeneAgeMDD. 264 
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  Figures 347 
 348 

 349 

 350 
 351 

Figure 1. Histogram of chronological ages with a bin size of 1: Bars are separated by Healthy 352 
Control (HC, red) and major depressive disorder (MDD, blue). There are more younger subjects 353 
in the dataset with the same age, especially from age 20~28. For example, there are 15 subjects 354 
that are 24 years old. Chronological age is not associated with MDD versus HC (T-test P-value 355 
0.167).  356 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.610913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.03.610913
http://creativecommons.org/licenses/by-nc-nd/4.0/


 357 
Figure 2. Scatter plot with regression line of biological age and chronological age: Biological 358 
age model is based on LASSO regression and the residual is later used for LASSO Gene Age Gap 359 
Estimate (L-GAGE). The points are colored by MDD (blue) and HC (red). The points are shaped 360 
by Female (circle) and Male (triangle). Spearman Correlation Coefficient (SCC = 0.77, slope P-361 
value < 0.01).  362 
 363 
 364 
 365 
  366 
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 367 
 368 
Figure 3. Density plots of the LASSO based Gene Age Gap Estimate (L-GAGE) separated 369 
by MDD (A) and sex (B). A positive gene-age residual (x-axis) indicates a sample above the 370 
gene age regression line and negative below. A. Biological age relative to chronological age (L-371 
GAGE)  is greater in MDD patients than in HC. B. The L-GAGE difference between males and 372 
females is less pronounced.  373 
 374 
 375 
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 391 
 392 
Figure 4. MDD x Age interaction for L-GAGE with age 40 threshold. A. The average L-393 
GAGE for people older than 40 with MDD is higher than the L-GAGE value for people younger 394 
than 40 with MDD (blue line), whereas in the HC group the average L-GAGE  is lower for 395 
people older than 40 than for people younger than 40 (red line). B. For individuals younger than 396 
40, L-GAGE shows very little difference between MDD and HC.  For older individuals, there is 397 
greater biological aging (L-GAGE) for the MDD versus HC group. The L-GAGE association 398 
with MDD is still significant when adjusted by age and sex.  399 
 400 
 401 
 402 
 403 
 404 
 405 
 406 
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 407 
Figure 5. Effect of Chronological Age on MDD Determined by Threshold Regression Model. 408 
A. Threshold regression (Eq. 2) shows the nonlinear relationship between MDD and chronological 409 
age. The prediction indicates an increase in MDD up to the age of 39, which is identified as the 410 
change point by the model. B. The likelihood analysis of the threshold regression model also 411 
indicates that age 39 is the optimal threshold, having the highest model likelihood. 412 
 413 
 414 
 415 
 416 
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 417 
Figure 6. Gene age decision tree for MDD with covariates. For added interpretation, we train a 418 
decision tree on all samples to predict MDD. The model identifies the gene age residual L-GAGE 419 
as the most important predictor, with chronological age being the second most significant factor. 420 
In the first split, if the gene age gap is low, L-GAGE < -2.251 (Node 1), there is high probability 421 
for a subject to be HC (Node 2). If the gene age gap is higher, L-GAGE ≥ -2.251, the model 422 
becomes more complex and initially depends on chronological age with split 39.5 years (Node 3). 423 
If L-GAGE is high and Age ≥ 39.5, then there is a high probability a subject is MDD (Node 15).  424 
When Age < 39.5, the model again becomes dependent on L-GAGE, and at a certain split, females 425 
exhibit a higher probability of MDD compared to males (Nodes 8 and 9).  426 
 427 
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 437 
Figure 7. Distribution of Gene Age Gap Estimate (GAGE) conditioned on positive/negative 438 
cytomegalovirus (CMV) status. A. Mean biological age (GAGE) relative to chronological age 439 
is greater in CMV positive subjects (blue) than in CMV negative (red). B. Healthy controls (HC) 440 
that are CMV positive (blue) have a higher GAGE than CMV negative subjects. The MDD-441 
CMV+ subjects also have a slightly higher GAGE than MDD-CMV- subjects, but the difference 442 
in GAGE for MDD subjects based on CMV status is very small. C. Similarly, mean biological 443 
age relative to chronological age based on GAGE increases with positive CMV status for both 444 
females and males. 445 
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Tables  475 
 476 
Table 1. LASSO Gene-age-gap estimate (L-GAGE) association with MDD and 477 
dichotomized age interaction. A. Based on the ordinary least squares model (Eq. 1 with 478 
Z=Age), where chronological age is dichotomized with threshold is Age>=40 and Age<40, the 479 
MDD x Age interaction is significant. Biological age (L-GAGE)) is similar for MDD and HC 480 
when Age<40, but when the chronological age is higher than 40, biological age is significantly 481 
greater in MDD individuals than HC. B. The MDD x Age interaction remains significant when 482 
Sex is added as a covariate.  483 
 484 
A 485  

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.1225 0.3495 0.35 0.7265 

MDD -0.1286 0.5203 -0.247 0.8052 
Age40 -1.606 0.7535 -2.131 0.0347* 

MDD*Age40 2.2764 0.9984 2.28 0.024*  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 486 
B 487  

Estimate Std. Error t value Pr(>|t|) 
(Intercept) 0.2644 0.4172 0.634 0.5273 

MDD -0.1870 0.5296 -0.353 0.7246 
SexMale -0.2838 0.4534 -0.626 0.5324 
Age40 -1.6144 0.7551 -2.138 0.0341* 

MDD*Age40 2.3274 1.0038 2.319 0.0217*  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 488 
 489 
Table 2. Gene-age-gap regression with MDD-sex interaction with Female and Male. Based 490 
on the ordinary least squares model (Eq. 1 with Z=Male/Female instead of age), L-GAGE score 491 
of MDD in males is slightly lower than the L-GAGE score of MDD in females, but the 492 
interaction term MDD*Male is not statistically significant. 493 

 494  
Estimate Std. Error t value Pr(>|t|) 

(Intercept) -0.24481 0.44221 -0.554 0.581 
MDD 0.64637 0.5907 1.094 0.276 
Male 0.04395 0.62938 0.07 0.944 

MDD* Male -0.55121 0.91608 -0.602 0.548  

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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 495 
Table 3. Age associated genes selected by LASSO. Multivariate coefficients are shown that 496 
survived LASSO penalty. Negative coefficients (left columns) indicate higher expression of the 497 
gene tends to occur with younger age. Positive coefficients (right columns) indicate higher 498 
expression of the gene tends to occur in older individuals. These genes are used in the gene age 499 
model and the L-GAGE residual.   500 
 501 

Down Regulated with Increasing Age Up Regulated with Increasing Age 

Gene Coefficient Gene Coefficient 
NAA20 -6.7070152 CCNE1 14.2689027 
ZNF347 -2.9514771 SESTD1 8.8624231 
PRMT6 -2.4559818 ZNF334 2.4209761 
WDR13 -1.7979357 ANTXRL 2.0255277 
DDX19B -1.3737037 DTD2 1.8502139 
TAF9 -1.2672137 CYTH3 1.5349361 
ADSS -1.1724134 DYRK1A 1.2905045 
TGFBR3 -1.0316785 HTATSF1 1.078388 
SMYD5 -0.8454683 SFXN4 0.7870119 
CISD1 -0.6212633 UBE2F-SCLY 0.2252943 
TGIF2-C20orf24 -0.5057642     

 502 
 503 
Table 4. Age associated genes selected by linear regression with adjusted P-value 0.05 FDR. 504 
Negative coefficients (left columns) indicate higher expression of the gene tends to occur with 505 
younger age. Positive coefficients (right columns) indicate that higher expression of the gene 506 
tends to occur in older individuals. These genes are shown for comparison but not used in the 507 
gene age model.  508 
 509 

Down Regulated with Increasing Age Up Regulated with Increasing Age 

Gene Coefficient P-value Adjusted 
P-value 

Gene Coefficient P-value Adjusted 
P-value 

NAA20 -16.1918 8.86E-08 0.0005 CCNE1 42.8022 5.59E-07 0.0013 

CIART -22.7969 6.87E-07 0.0013 SESTD1 12.2045 1.19E-05 0.0111 

TAF9 -21.2804 2.85E-06 0.0040 ITGB1BP1 10.7847 2.46E-05 0.0197 

MLXIPL -20.0949 4.55E-06 0.0051 ANTXRL 13.8739 4.23E-05 0.0295 

TGFBR3 -17.7019 7.91E-05 0.0491 
    

 510 
 511 
 512 
Table 5. MSigDB Reactome results of the age genes selected by linear regression. We collect 513 
the 464 age associated genes with P-value lower than 0.05 (not adjusted for better pathway 514 
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detection) and query MSigDB Reactome database for pathway enrichment. Notably, these age 515 
associated genes are enriched for infectious disease and SARS-CoV Infections pathways.  516 
 517 

Gene Set Name Genes 
in Gene 
Set (K) 

Description Genes in 
Overlap 
(k) 

k/K p-value 

REACTOME_RNA_POLYMERASE_II_TRANSCRIPTION 1393 RNA Polymerase II 
Transcription 

46 0.0330 3.84E-11 
REACTOME_POST_TRANSLATIONAL_PROTEIN_MODIFICATION 1442 Post-translational 

protein 
modification 

44 0.0305 1.21E-09 

REACTOME_METABOLISM_OF_RNA 714 Metabolism of 
RNA 

29 0.0406 2.05E-09 
REACTOME_TRANSCRIPTIONAL_REGULATION_BY_TP53 363 Transcriptional 

Regulation by 
TP53 

20 0.0551 4.74E-09 

REACTOME_INFECTIOUS_DISEASE 1019 Infectious disease 33 0.0324 3.95E-08 
REACTOME_MEMBRANE_TRAFFICKING 629 Membrane 

Trafficking 
23 0.0366 6.11E-07 

REACTOME_METABOLISM_OF_LIPIDS 742 Metabolism of 
lipids 

25 0.0337 8.86E-07 
REACTOME_SUMOYLATION 187 SUMOylation 12 0.0642 1.19E-06 
REACTOME_SARS_COV_INFECTIONS 471 SARS-CoV 

Infections 
19 0.0403 1.4E-06 

REACTOME_VESICLE_MEDIATED_TRANSPORT 724 Vesicle-mediated 
transport 

23 0.0318 6.34E-06 

 518 
 519 
Table 6. MSigDB Reactome results of the 145 age genes selected by nearest-neighbor 520 
projected distance regression (NPDR) with LASSO penalty.  521 
 522 

Gene Set Name Genes in 
Gene Set 
(K) 

Description Genes in 
Overlap (k) 

k/K p-value 

REACTOME_NEF_MEDIATES_DOWN_MODUL
ATION_OF_CELL_SURFACE_RECEPTORS_BY
_RECRUITING_THEM_TO_CLATHRIN_ADAPT
ERS 

21 Nef-mediates down 
modulation of cell 
surface receptors by 
recruiting them to 
clathrin adapters 

4 0.1905 7.44E-07 

REACTOME_NEF_MEDIATED_CD4_DOWN_RE
GULATION 

9 Nef Mediated CD4 
Down-regulation 

3 0.3333 3.22E-06 

REACTOME_RNA_POLYMERASE_II_TRANSC
RIPTION 

1393 RNA Polymerase II 
Transcription 

16 0.0115 2.38E-05 

REACTOME_LDL_CLEARANCE 19 LDL clearance 3 0.1579 3.62E-05 
REACTOME_TRANSCRIPTIONAL_REGULATI
ON_BY_TP53 

363 Transcriptional 
Regulation by TP53 

8 0.022 3.78E-05 

REACTOME_MHC_CLASS_II_ANTIGEN_PRES
ENTATION 

126 MHC class II antigen 
presentation 

5 0.0397 7.56E-05 

REACTOME_ADAPTIVE_IMMUNE_SYSTEM 829 Adaptive Immune 
System 

11 0.0133 1.38E-04 

REACTOME_TRAFFICKING_OF_AMPA_RECE
PTORS 

31 Trafficking of 
AMPA receptors 

3 0.0968 1.63E-04 

REACTOME_TP53_REGULATES_METABOLIC
_GENES 

87 TP53 Regulates 
Metabolic Genes 

4 0.046 2.32E-04 

 523 
 524 
 525 
 526 

 527 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.610913doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.03.610913
http://creativecommons.org/licenses/by-nc-nd/4.0/

