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Introduction
The human lung epithelium is continuously exposed to 
various environmental stressors, including cigarette smoke 
(CS). In line with “21st Century Toxicology”, new strate-
gies for a systems biology-based risk assessment of environ-
mentally hazardous substances, such as tobacco products, 
are currently under development.1–4 The establishment 
of reliable in vitro systems is extremely important in this 
because human testing is very limited, and animal studies 
are expensive and laborious, with disputable translatability 
to humans.5,6

Cell culture models using primary human cells are valu-
able screening tools for both risk assessment purposes and 
mechanistic investigations. The most common in vitro mod-
els used to investigate the effect of aerosols on human lung 
epithelium mainly consist of monolayers of lung-derived 
epithelial cells. However, although transformed (tumor-
derived or immortalized) cells are readily available, they have 
a number of limitations. These include (i) their inherent tum-
origenicity (eg, BEAS-2B and A549 cells); (ii) their ability to 
only partially mimic normal bronchial epithelial cell behavior 
(eg, A549, a type-2 alveolar cell-like adenocarcinoma-derived 

A Systems Biology Approach Reveals the Dose- and Time-Dependent Effect 
of Primary Human Airway Epithelium Tissue Culture After Exposure to 
Cigarette Smoke In Vitro

Carole Mathis1, Stephan Gebel2, Carine Poussin1,*, Vincenzo Belcastro1,*, Alain Sewer1,*,  
Dirk Weisensee2, Arnd Hengstermann2, Sam Ansari1, Sandra Wagner1, Manuel C. Peitsch1  
and Julia Hoeng1

1Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel, Switzerland. 2Philip Morris International R&D, Philip Morris Research 
Laboratories GmbH, Cologne, Germany. *Contributed equally to this work.

Abstract: To establish a relevant in vitro model for systems toxicology-based mechanistic assessment of environmental stressors such as cigarette 
smoke (CS), we exposed human organotypic bronchial epithelial tissue cultures at the air liquid interface (ALI) to various CS doses. Previously, we com-
pared in vitro gene expression changes with published human airway epithelia in vivo data to assess their similarities. Here, we present a follow-up evalu-
ation of these in vitro transcriptomics data, using complementary computational approaches and an integrated mRNA–microRNA (miRNA) analysis. The 
main cellular pathways perturbed by CS exposure were related to stress responses (oxidative stress and xenobiotic metabolism), inflammation (inhibition of 
nuclear factor-κB and the interferon gamma-dependent pathway), and proliferation/differentiation. Within post-exposure periods up to 48 hours, a tran-
sient kinetic response was observed at lower CS doses, whereas higher doses resulted in more sustained responses. In conclusion, this systems toxicology 
approach has potential for product testing according to “21st Century Toxicology”.

Keywords: air liquid interface, cigarette smoke, mechanistic investigations, organotypic culture, systems biology

Citation: Mathis et al. A Systems Biology Approach Reveals the Dose- and Time-Dependent Effect of Primary Human Airway Epithelium Tissue Culture After Exposure to Cigarette 
Smoke In Vitro. Bioinformatics and Biology Insights 2015:9 19–35 doi: 10.4137/BBI.S19908.

Received: September 07, 2014. ReSubmitted: December 03, 2014. Accepted for publication: December 04, 2014.

Academic editor: J.T. Efird, Associate Editor

TYPE: Original Research

Funding: The research described in this article was supported by Philip Morris International. The authors confirm that the funder had no influence over the study design, content of the 
article, or selection of this journal.

Competing Interests: Authors disclose no potential conflicts of interest.

Copyright: © the authors, publisher and licensee Libertas Academica Limited. This is an open-access article distributed under the terms of the Creative Commons CC-BY-NC 3.0 
License.

Correspondence: julia.hoeng@pmi.com

Paper subject to independent expert blind peer review by minimum of two reviewers. All editorial decisions made by independent academic editor. Upon submission manuscript was 
subject to anti-plagiarism scanning. Prior to publication all authors have given signed confirmation of agreement to article publication and compliance with all applicable ethical and 
legal requirements, including the accuracy of author and contributor information, disclosure of competing interests and funding sources, compliance with ethical requirements relating to 
human and animal study participants, and compliance with any copyright requirements of third parties. This journal is a member of the Committee on Publication Ethics (COPE).

http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39
http://www.la-press.com
http://www.la-press.com
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39
http://www.la-press.com/journal-bioinformatics-and-biology-insights-j39
http://dx.doi.org/10.4137/BBI.S19908
mailto:julia.hoeng@pmi.com


Mathis et al

20 Bioinformatics and Biology Insights 2015:9

tumor cell line)7; (iii) the lack of multiple cell types, which 
as multicellular in vitro systems would better represent the 
tissue reaction to certain exposures8; and (iv) the inability of 
the cell monolayer, normally covered with culture medium, 
to achieve organotypic differentiation, including epithelial 
polarity. Moreover, although submerged cells that have not 
undergone organotypic differentiation can be exposed directly 
to complex aerosols such as CS,9–12 the nonspecific stress and 
damage caused by removal of the culture medium and the lack 
of differentiated features that protect against airborne toxi-
cants (eg, mucociliary or squamous differentiation) cannot be 
excluded. Therefore, exposure surrogates such as aqueous CS 
extracts13 or specific fractions diluted in solvents such as dim-
ethyl sulfoxide are still used in most models.14

In recent years, progress has been made in the develop-
ment of valuable in vitro systems that mimic human airway 
and lung epithelia. Organotypic pseudostratified bronchial 
epithelium-like tissue derived from primary human bron-
chial epithelial cells that closely resembles normal human 
tracheobronchial epithelium after differentiating into ciliated, 
non-ciliated, goblet, and basal cells is now available.15,16 Such 
tissue cultures have been used to investigate the effects of CS-
related substances such as nicotine, formaldehyde, urethane, 
cadmium,17 and hydrogen peroxide.18 Applying these sub-
stances as liquid solutions to the air liquid interface (ALI) has 
identified a number of exposure-specific molecular defense 
mechanisms.17–19 We and others have previously exposed 
organotypic murine20 and human bronchial epithelial tissue 
cultures21,22 to whole mainstream CS at the ALI. By analyz-
ing different endpoints, including gene expression, the effects 
of CS were observed on many cellular processes, including 
xenobiotic metabolism, the oxidant/antioxidant balance, cell 
proliferation, and DNA damage and repair.

Recently, we exposed human organotypic bronchial epi-
thelial tissue cultures (AIR-100 tissue) at the ALI to main-
stream CS using the Vitrocell® system. Data generated in this 
in vitro experiment as well as in vivo published data were 
used to perform a comparative analysis of different CS expo-
sure durations (corresponding to different doses) and post-
exposure periods. We demonstrated that this in vitro system 
is a reliable model of the bronchial epithelium of human 
smokers.21 In a second analysis of these in vitro data, pre-
sented herein, we applied a broad systems biology approach, 
including a novel computational modeling method, to more 
extensively analyze the gene expression data, and generated 
additional microRNA (miRNA) profile to further under-
stand the exposure effect. For an enhanced tissue context-
specific interpretation of the gene expression changes, we 
complemented gene set enrichment analysis (GSEA)23 with 
a novel reverse causal reasoning (RCR)-based approach,24 
including several selected computable causal network models: 
(i) the cellular stress network model,25 (ii) the cell prolifera-
tion network model,26 and (iii) the inflammatory process net-
work model.27

The RCR method24 integrates large-scale transcriptom-
ics data into a biological context using information from dif-
ferentially expressed genes together with a priori knowledge of 
cause and effect relationships to identify high-level upstream 
controllers of the observed gene expression called hypotheses 
(HYPs) (for details, see Refs. 25–27). HYPs were mapped 
as functional nodes on specific cellular networks, thereby 
enabling the identification of molecular perturbations of spe-
cific cellular signal pathways within the networks in response 
to CS exposure.

Another side of this study was to generate from the same 
samples both gene expression and miRNA profiles in order 
to integrate them into our systems biology investigation of 
the effect of CS. A stringent approach was applied based on 
the high-confidence miRNA targets provided by TarBase.28 
Various small regulatory networks were then created where 
possible around the significantly expressed miRNAs to reveal 
details of the downregulation of nuclear factor NF-kB signal-
ing and the activation of cell cycle activation.

Materials and Methods
Cell culture. EpiAirway™ tissue cultures (AIR-100), 

purchased from MatTek Corporation, were produced from 
primary bronchial epithelial cells obtained from a 23-year-old 
male donor with no history of smoking. Tissue inserts were 
first cultured for 24 ± 2 hours at 37 °C after shipment prior 
to exposure. The different exposure conditions did not trigger 
a decrease in cell viability as assessed 24 hours after exposure 
using the soluble tetrazolium salt resazurin (Sigma) (data not 
shown).

CS exposure and experimental design. The reference 
cigarettes 3R4F were obtained from the University of Ken-
tucky (www.ca.uky.edu/refcig) and stored in their original 
packaging in a cooling chamber at 5 ± 3 °C with uncontrolled 
humidity conditions before conditioning. Conditioning of the 
sticks was performed at 22  ±  2  °C with 60  ±  5% humidity 
for 48 hours prior to the experiment. AIR-100 cultures were 
exposed in triplicate (three inserts per exposure condition) 
for 7, 14, 21, and 28 minutes at the ALI to either synthetic 
air (SA; 85% nitrogen and 15% oxygen; Praxair) or to 15% 
(vol/vol) mainstream CS from the 3R4F reference cigarette 
in the Vitrocell® system.29 For all conditions, 1 puff/minute, 
2 mL/minute of vacuum rate, 0.395 L/minute of dilution air-
flow, and 35 mL/puff were used. The smoking regimen was 
in basic conformity with the International Organization for 
Standardization (ISO 2000) smoking regimen using the VC 
10 smoking robot. After exposure, tissues were incubated in 
fresh culture medium for 0.5, 2, 4, 24, and 48 hours before 
further analysis. Table 1 summarizes the various end points, 
time points, and dose levels.

Array-based transcriptomics. RNA was extracted and 
hybridized to high-throughput GeneChip® Human Genome 
U133 Array Plates (Affymetrix). For miRNA analysis, total 
RNA was labeled using the miRCURY LNA™ miRNA Array 
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Power Labeling Kit (Exiqon). The Hy3-labeled samples and a 
Hy5-labeled reference RNA sample were hybridized to the 
fifth generation of miRCURY LNA Array version (Exiqon). 
Array data were submitted to ArrayExpress with the follow-
ing accession numbers: E-MTAB-874 for the mRNA dataset 
and E-MTAB-877 for the miRNA dataset.

Gene set enrichment analysis. To investigate the main 
biological effects regulated by CS in AIR-100 tissue cultures, 
GSEA was performed with entire contrasts computed for the 
treatment effect independently of the dose.23 For each post-
exposure time, the list of genes was sorted in descending order 
by the t-values associated with the βt coefficient estimated 
from the following linear model:

	 Expression ∼ β0 + βt*Treatment + βd *Dose  
	                           + βi*Treatment*Dose + ε

The coefficients of the model reflected the basal gene 
expression (β0, intercept), the whole CS effect (treatment: 
CS versus sham) independent of the dose (βt), the dose-effect 
(7, 14, 21, and 28 minutes) independent of the treatment (βd), 
and the interaction effect between the treatment and the 
dose (βi). The parameter ε corresponds to the residual error. 
Normalized enrichment scores (NESs) and the associated 
false discovery rate (FDR) were then computed for each gene 
set of the molecular signatures database (MSigDB) C2 col-
lection representative of canonical pathways, biological pro-
cesses, and chemical and genetic perturbations (http://www.
broadinstitute.org/gsea/msigdb/index.jsp). These were used as 
prior knowledge for the analysis. Gene sets with significant 
NESs (NESs with FDR #0.05) for at least one post-exposure 
time and similar functions were grouped together to represent 
specific biological processes perturbed by CS.

Reverse causal reasoning. RCR24 is a knowledge-driven 
approach used to identify high-level upstream controllers, 
HYPs, which could explain the observed differential gene 
expression profiles. A priori biological knowledge in the form 
of possible HYPs and experimental data in the form of signifi-
cantly regulated genes selected from each treatment-control 
pairwise contrast gene expression profile (different doses and 
post-exposure times) were used as inputs for RCR analysis. 
These pairwise comparisons were computed using limma30 

following a global linear model to produce a contrast for 
each treatment-control pair (CS for a given exposure time/
dose and post-exposure time were compared with the corre-
sponding sham condition). Genes that were significantly dif-
ferentially regulated by CS were selected by an absolute fold 
change $1.3, a significance level (FDR) #0.05, and an abun-
dance level $log2(100).

An HYP corresponds to a simple causal network con-
stituted by an upstream node (subject term or controller) 
connected to downstream nodes (measured quantities, eg, 
expression of target genes) by a causal edge. Each edge rep-
resents the causal relationship between the controller and 
the target gene derived from an evidence line extracted from 
the literature (eg, transcriptional activation of x increases the 
expression of y, but decreases the expression of w), and each 
causal statement is coded in the biological expression language 
(BEL) (http://www.openbel.org) (for details, see Ref. 24).

The notion of causal relationship directionality is impor-
tant in RCR. Indeed, HYPs can be evaluated as potential 
explanations for the observed differences in measurement 
sets by calculating the concordance statistic, which mea-
sures the consistency of the directions between the observed 
state changes (corresponding to the pairwise differentially 
expressed genes) and the expected direction. A P-value was 
computed for each concordance statistic. RCR analysis of 
our data was performed on the Gene Technology Platform  
(Selventa), currently holding more than 2,000 HYPs.24

Network models. The following causal biological 
network models were applied: cellular stress,25 cell prolif-
eration,26,31 and inflammatory process networks.27 Only sub-
networks related to lung epithelial cells were considered for 
the latter model (ie, epithelial barrier defense and epithelial 
cell proinflammatory signaling); immune-cell-specific sub-
networks (eg, neutrophil response) were excluded. Network 
models and their underlying subnetworks consisted of edges 
and nodes coded in BEL. Nodes are biological entities such as 
protein abundance, mRNA expression, and protein activity or 
can represent biological processes such as response to oxida-
tive stress (ROS). Some nodes are also called HYPs when they  
can be predicted to increase or decrease by the RCR based 
on the transcriptomics input to the network. All causal 
connections or edges were based on manually curated 

Table 1. Exposure conditions and biological endpoints. √ shows that all doses and post-exposure time points were measured for the endpoint.

Test Substance SHAM Cigarette smoke (15%)

Exposure time (min) 7 14 21 28 7 14 21 28

Post-exposure time (hours) 0.5,2,4,24,48

Viability (test at post exposure time) 4,24 4,24,48 4,24 4,24,48 4,24 4,24,48 4,24 4,24,48

Gene expression (all post-exposure time) √ √ √ √ √ √ √ √

miRNAs (all post-exposure time) √ √ √ √ √ √ √ √

Reverse phase protein array (test at post-exposure time) 0.5,2,24,48

Immunostaining/histology (test at post-exposure time) 24 24,48 24 24,48 24 24,48 24 24,48
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literature (for details of network model building, see Refs. 
25–27).

HYP clustering. To group HYPs that behave similarly 
with regard to the concordance statistic across doses and 
post-exposure times, the affinity propagation (AP) cluster-
ing algorithm in the form of an R implementation was used 
(APcluster32,33). Briefly, following RCR, HYPs belonging to 
one of the subnetworks investigated with at least one significant 
concordance (P , 0.05) across the 14 and 28 minutes exposure 
time and all post-exposure time contrasts were selected for the 
clustering process. The Pearson correlation coefficient of the 
minus log-transformed concordance P-values was computed 
as a measure of similarity for each pair of HYPs. A pair-
wise correlation matrix was then taken as input by APclus-
ter using default parameters to generate the clustering. As a  
result, HYPs were grouped into communities and further lev-
eraged for biological interpretation of data.

Strategy for the integrated mRNA–miRNA analysis. 
Integrated mRNA–miRNA analyses are usually more sensi-
tive than specific. They produce many candidate miRNA gene 
interactions, a significant fraction of which are false positive 
because of high signal-to-noise ratios in the statistical analy-
ses. Here, we adopted a different approach by prioritizing 
specificity over sensitivity. This enabled our results to be inter-
preted on the basis of causations rather than correlations or 
statistical associations, which was in line with the approach 
taken for the analysis of mRNA expression data. We there-
fore made the following choices: (i) we used a less-detailed 
linear model to determine mRNA and miRNA differential 
expression (see below); (ii) differential expressions of signifi-
cant miRNAs were compared with the corresponding val-
ues of their family members (ie, miRNAs from alternative 
strand, co-transcribed miRNAs, and paralogous miRNAs) 
to provide additional confidence in the obtained results; (iii) 
we used preferential mRNA–miRNA relationships supported  
by the most reliable experimental methods, as described in the 
TarBase repository 28; and (iv) we restricted the final interpre-
tation to the 24 and 48 hours post-exposure time points, in 
which the effects of differential miRNA regulation could be 
reasonably expected to be detected in the differential expres-
sion of their mRNA targets (at least two hours were necessary 
to observe a significant decrease in target transcripts in the 
most favorable case).34

Calculation of differential expression for integrated 
mRNA–miRNA analysis. Exiqon-based miRNA raw 
expression data were preprocessed as described in our previ-
ous study.21 Because the miRNA data yielded a weaker sig-
nal than mRNA data, we replaced the linear model described 
above by a more robust two-step approach, which we applied 
to both miRNA and mRNA normalized expression data. 
First, CS-induced differential expression values were calcu-
lated by subtracting the mean of the post-exposure time- and 
dose-matched control group from the expression value of each 
sample. Second, for each post-exposure time  point (0.5, 2, 

4, 24, and 48  hours), the obtained CS-induced differential 
expression matrix was applied to the following linear model:

	 CS-induced differential expression ∼ βg*Treatment  
	                + βdg*Treatment*Normalized_Dose + ε

The variables in the model are Treatment ∈ {0,1}, which 
corresponds to sham and treated samples, respectively, and 
Normalized_Dose  ∈  {‑1, ‑1/3, 1/3, 1}, which results from 
centering and normalizing the dose values {7, 14, 21, 28}. In 
this model, βg captures the global CS-induced effect valid for 
all four doses, while βdg captures the systematic dose-specific 
deviations around the global CS-induced effect βg. The coef-
ficients of the linear model are statistically significant when 
the corresponding FDR values are smaller than 0.05, as cal-
culated using moderated t-statistics and multiple-testing 
corrections.21

Small network assembly for integrated mRNA–
miRNA analysis. We assembled small regulatory networks 
around the significantly differentially expressed miRNAs 
where possible. We used TarBase as the source of high- 
confidence miRNA targets,28 and took advantage of the 
recently established property that mRNA–miRNA interac-
tions are weakly dependent upon the tissue context.35 mRNA 
differential expression values were assigned to the gene nodes 
in the networks. This choice was supported by two obser-
vations. First, even if miRNAs operate functionally at the 
protein level, their effects at the mRNA levels are highly rep-
resentative.36 Second, the identification of mRNA and protein 
differential expression as a consequence of miRNA changes 
is expected to be more relevant at the 24 and 48 hours post-
exposure time  points considered in our integrated mRNA–
miRNA analysis than at the earlier time points (see above).

Results and Discussion
To investigate dose-effects over different post-exposure times, 
the organotypic bronchial epithelial tissue cultures were 
exposed for 7, 14, 21, or 28 minutes to 15% (vol/vol dilution 
with air) mainstream CS (corresponding to different doses) 
with five post-exposure times (0.5, 2, 4, 24, and 48  hours) 
for each of the doses (Table 1). The systems biology approach 
applied for the mechanistic investigation of CS effects was 
based on mRNA and miRNA expression data, and on com-
putational data analysis and interpretation using an integrated 
mRNA–miRNA analysis. This included small network assem-
bly and the two complementary approaches for gene expres-
sion: (i) GSEA and (ii) RCR networks and AP-clustering.

GSEA. To identify the main general biological processes 
perturbed in AIR-100 tissue culture after CS exposure from 
the data set of differentially expressed genes, GSEA was 
performed with entire contrasts (computed for the treatment 
effect, independent of the dose) using a collection of gene sets 
representative of canonical pathways (from the MSigDB col-
lection).23,37 Briefly, this commonly used approach enabled the 
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identification of a significant enrichment of coordinated co-
regulated genes representative of biological processes (within 
full gene expression profiles). Focusing on the CS effect, inde-
pendent of the exposure dose, enabled us to elucidate processes  
that were regulated over post-exposure times, as shown in Figure 1.  
This revealed a significant enrichment of genes involved in the 
oxidative stress response, which was rapidly induced at early 
post-exposure times (2 and 4 hours). Part of the stress response 
was repressed at later post-exposure time  points (24 and 
48 hours), whereas a sustained enrichment of genes involved 
in processes characteristic of detoxification (eg, metabolism 
of xenobiotics – metabolism by cytochrome P450) and anti-
oxidant systems (eg, glutathione metabolism) was seen. Genes 
involved in the machinery for mRNA processing and transla-
tion were rapidly upregulated and coordinately induced after 
CS exposure. Interestingly, gene sets associated with pro-
cesses leading to mRNA translation and newly synthesized 
proteins were sequentially enriched over post-exposure times 
(eg, mRNA capping, elongation, splicing, translation, and 
protein export). At later post-exposure times, GSEA revealed 
a consistent enrichment of genes encoding proteins of the 
mitochondrial electron respiratory chain (at 24 and 48 hours) 
as well as of energy metabolism (eg, amino acids, pyruvate, 
and lipids). Strikingly, gene sets representative of interferon 
and NF-κB signaling pathways were significantly enriched 
in the downregulated gene profiles associated with early  
(2 and 4 hours) and late (24 and 48 hours) post-exposure times. 
The analysis also captured a late, yet coordinated, induction of 
genes involved in cell proliferation at 24 hours post-exposure. 
This observation could be linked to the induction of energy 
metabolism highlighted after 24 and 48 hours post-exposure.

RCR analysis. To follow up on the GSEA results and 
obtain a more granular, tissue-specific mechanistic under-
standing of the molecular effect of CS in a dose- and time-
dependent manner, we applied a recently developed method 
that uses computable network models in combination with the 
RCR approach.24 This method is based on tissue-specific bio-
logical causal network models built to represent different bio-
logical processes, such as cell proliferation,26 cellular stress,25 
and inflammatory processes,27 in the context of the lung. RCR 
integrates large-scale transcriptomic data into biological mean-
ing by identifying higher level upstream controllers of specific 
gene expression. These HYPs can be mapped as functional 
nodes on specific cellular networks, enabling comparisons of 
molecular perturbations with signaling pathways and other 
response mechanisms across diverse doses and post-exposure 
time points both qualitatively and quantitatively.38,39

RCR analysis was performed using differential gene 
expression (CS exposure vs. sham exposure) derived from 
AIR-100 tissue cultures exposed to whole smoke for 
14 minutes (low dose) or 28 minutes (high dose) followed by 
five post-exposure times (0.5, 2, 4, 24, and 48 hours). The 7- 
and 21-minute exposure times were not considered for RCR 
because they were found to have insufficient differentially  

expressed genes to perform RCR (Supplementary Table 1A). 
By applying a distinct significance criterion (ie, concor-
dance ,0.05), 671 HYPs were identified that showed signifi-
cant changes in at least one exposure condition (Supplementary 
Table 1B). Of these, 244 (37%) could be mapped to one or 
several of the following three different network models: 126 
were related to the cellular stress response network model, 
54 to inflammatory process subnetworks related to the lung 
epithelium (ie, epithelial barrier defense and epithelial cell 
proinflammatory signaling), and 130 to the cell proliferation 
network model (Supplementary Table 1C).

To gain insights into the time- and dose-dependent acti-
vation or repression of HYPs and potential co-regulations, 
a clustering approach (APcluster) was applied to the minus 
log-transformed P-value concordance associated with the 
244 identified HYPs across 10 different exposure conditions. 
Seventeen different communities of similarly regulated HYPs 
were identified. Figure 2 shows the clustering with the assign-
ment of the single HYPs to the three different network models 
(cellular stress, cell proliferation, and inflammatory processes). 
There was no clear correlation of distinct communities with 
a single network, suggesting that different cellular processes 
show, at least in part, similar time- and dose-dependent regu-
lations by CS exposure. The interconnection of the different 
networks is also obvious from the fact that certain HYPs, 
such as the transcriptional activity of the activating protein 
(AP)-1 complex (“taof(AP-1 complex Hs)”), belong to all 
three networks.

Two major effects are notable. First, an overall dose- 
and time-dependent response was detected. At the low dose 
(14 minutes of exposure), no significant HYPs were detected 
at 0.5  hours post-exposure and only three were detected at 
48  hours post-exposure, whereas a stronger response was 
observed at 2, 4, and 24  hours post-exposure. Thus, at the 
low dose, an almost complete recovery of the cellular system 
occurred within 48 hours post-exposure. By contrast, at the 
high dose (28 minutes of exposure), a much stronger response 
was already observed 0.5  hours post-exposure (76  signifi-
cant HYPs), and a sustained perturbation of the system was 
reflected by a large number of significant HYPs at 2, 4, 24, 
and even 48  hours post-exposure. A qualitatively similar 
response was observed at 2 and 4 hours post-exposure for both 
doses with a clear trend toward a stronger response with the 
high dose. Second, cluster analysis revealed a strong similarity 
between 24 hours post-exposure at the low dose and 48 hours 
post-exposure at the high dose. This suggests that similar cel-
lular processes are active at both doses and that the differences 
in dose response mainly reflect the kinetics of the cellular 
response.

Cellular stress response. Most HYPs related to the cellular 
stress network showed a transient activation with recovery after 
24 hours post-exposure for the low dose and after 48 hours post-
exposure for the high dose (Fig. 3A). Detailed investigations of 
subnetworks and related HYPs revealed a strong activation of 
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the oxidative stress response that was also identified by GSEA 
analysis. This activation could be deduced from the prediction 
of HYPs that are directly related to corresponding biological 
processes, such as “ROS” and “oxidized low-density lipopro-
tein”, and HYPs that are related to substances known to induce 
oxidative stress, such as “acrolein”, “hypochlorous acid”, and 

“ozone”. Interestingly, the HYP for acrolein, a CS constituent, 
was downregulated at 24 hours post-exposure for the low dose 
and at 48 hours post-exposure for the high dose, indicating a 
recovery from oxidative stress in the system.

Direct analysis of the oxidative stress subnetwork model 
through mapping the identified HYPs to the respective nodes 

GENE SET NAME

HARRIS_HYPOXIA

ELVIDGE_HYPOXIA_DN

ELVIDGE_HIF1A_TARGETS_UP

ELVIDGE_HIF1A_AND_HIF2A_TARGETS_UP

GENTILE_UV_RESPONSE_CLUSTER_D5

SESTO_RESPONSE_TO_UV_C0

CHUANG_OXIDATIVE_STRESS_RESPONSE_UP

CONCANNON_APOPTOSIS_BY_EPOXOMICIN_UP

DAZARD_RESPONSE_TO_UV_SCC_DN

GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_BLACK_UP

GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_BLUE_UP

GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_MAGENTA_UP

GARGALOVIC_RESPONSE_TO_OXIDIZED_PHOSPHOLIPIDS_TURQUOISE_UP

REACTOME_PHASE_1_FUNCTIONALIZATION_OF_COMPOUNDS

REACTOME_BIOLOGICAL_OXIDATIONS

REACTOME_PHASE_II_CONJUGATION

KEGG_DRUG_METABOLISM_CYTOCHROME_P450

KEGG_GLUTATHIONE_METABOLISM

REACTOME_TRANSLATION

REACTOME_GTP_HYDROLYSIS_AND_JOINING_OF_THE_60S_RIBOSOMAL_SUBUNIT

REACTOME_FORMATION_OF_A_POOL_OF_FREE_40S_SUBUNITS

REACTOME_PROCESSING_OF_CAPPED_INTRON_CONTAINING_PRE_MRNA
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Figure 1. GSEA revealed specific patterns of biological processes modulated over post-exposure times in AIR-100 tissue culture exposed to whole CS. 
Gene sets with significant NESs for at least one post-exposure time (2, 4, 24, or 48 hours) and known biological functions were grouped together. A heat 
map was generated to highlight NES patterns over post-exposure time. Red color indicates the enrichment of gene sets at the top of the ranked gene list 
(upregulated genes), and green color indicates enrichment of gene sets at the bottom of the ranked gene list (downregulated genes). The color scale is 
proportional to NES values. Values in bold correspond to NES with associated FDR #0.05.
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in the network (Fig.  3B and Supplementary Fig.  1A for a 
higher resolution view) elucidated potential cellular pathways 
involved in the oxidative stress response. For instance, nuclear 
factor (erythroid-derived 2)-like 2 (NFE2L2) is the central 
transcription factor that mediates the oxidative stress response 
both in vitro and in vivo when induced by CS.13,40,41 As shown 

in Figure 3A, NFE2L2 abundance (“NFE2L2”) and activity 
(“taof(NFE2L2)”) HYPs were predicted to be activated in 
the NFE2L2_signaling subnetwork, whereas HYPs for  
“KEAP1” and “Bach1”, which are proteins known to counteract 
NFE2L2 activity,7,42 were predicted to be inhibited (for details, 
see specific NFE2L2_signaling subnetwork, Supplementary 
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Figure 2. AP clusters using the minus log-transformed P-value of concordance from 244 HYPs with at least one significant concordance (P , 0.05) 
across the two different exposure conditions (14 and 28 minutes) and the five different post-exposure time points (0.5, 2, 4, 24, and 48 hours). All of 
these HYPs (indicated by a green box) belong to at least one of the three networks (cellular stress, cell proliferation, and inflammatory processes). In all, 
17 different communities of similarly regulated HYPs are shown. Color code: yellow, HYPs with predicted increase in abundance or activity; blue, HYPs 
with predicted decrease in abundance or activity; light yellow/blue, 0.05#P,0.1; yellow/blue, 0.001#P,0.05; dark yellow/blue, P , 0.001; and gray, no 
significant changes. For more details, see Supplementary Table 1B. 
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Figure 3. (A) Selection of predicted HYPs within the cellular stress network. ROS, reactive oxygen species; taof(X), transcriptional activity of X; and 
kaof(X), kinase activity of X. For detailed information, see Supplementary Table 1B. (B) High magnification of a schematic representation of perturbations 
observed in part of the oxidative stress subnetwork. On the upper part of each significant HYP, an eight-folder cassette (shown in light green) depicts 
the color code for significance of concordance for all post-exposure kinetics (0.5, 2, 4, 24, and 48 hours) after 14 minutes of exposure (top five squares) 
and after 28 minutes of exposure (bottom five squares). Circle head arrow, inhibition; arrow edge, activation; and gray line, co-regulation. For a high-
resolution image of the subnetwork, see Supplementary Figure 1. Color code: yellow, HYPs with predicted increase in abundance or activity; blue, HYPs 
with predicted decrease in abundance or activity; light yellow/blue, 0.05#P,0.1; yellow/blue, 0.001#P,0.05; dark yellow/blue, P , 0.001; and gray, no 
significant changes.
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Fig. 1B). Additionally, activity of AP-1, another transcription 
factor known to be activated by oxidative stress,41,43 was identified 
by the activation of related HYPs such as “taof(Jun)”, “taof(AP-1 
complex Hs)”, and several mitogen-activated protein kinases 
(MAPKs), eg, such as extracellular signal-regulated kinase 
(ERK)1 (“kaof(MAPK3)”) and ERK2 (“kaof(MAPK1)”), 
which are upstream of AP-1  in cellular signal transduction 
cascades induced by oxidative stress. These results are in accor-
dance with the activation of pro-proliferative ERK1/2 signal-
ing, and pro-apoptotic MAP kinase p38 and c-Jun N-terminal 
kinase previously detected by phospho-specific Western blot-
ting in CS condensate-treated submerged bronchial epithelial  
cells.44

Other cellular stress responses were identified from 
the prediction of related HYPs by RCR. Increased activ-
ity of HYPs related to protein damage, such as “response to 
heat”, which covers the induction of specific heat shock genes; 
“response to endoplasmic reticulum stress”, including activa-
tion of related transcription factors activating transcription 
factor (“ATF6”) and X-box binding protein 1 (“taof(XBP1)”); 
and “response to osmotic stress”, which could be observed as 
early as 2–4 hours after exposure.

Another cellular stress response known to be induced by 
CS and also identified by GSEA analysis is related to xenobiotic 
metabolism.45 The prediction of HYPs for “taof(AHR)”, “2,3,7, 
8-tetrachlorodibenzodioxin”, or “benzopyrene” pointed to the 
activation of the aryl hydrocarbon receptor, the key transcrip-
tion factor that mediates the induction of phase I enzymes, 
such as Cyp1A1.46 A more detailed description of the evalua-
tion of xenobiotic metabolism subnetwork has been provided 
elsewhere.47 In general, the cellular stress response followed 
a dose-dependent, transient kinetic response with a stronger 
and more persistent activation at the high dose; however, on a 
qualitative level, the responses for both doses were very similar 
in terms of perturbed biological processes (eg, activating the 
NFE2L2 pathway to combat oxidative stress, Fig. 3A). Over-
all, the results indicate a comprehensive, highly regulated cel-
lular stress response to CS exposure, which involves different 
cellular defense pathways.

Inflammatory processes. In human lung tissue, epithe-
lial cells mediate an initial inflammatory response by actively 
secreting specific cytokines that recruit and activate inflam-
matory cells, such as neutrophils or macrophages,48 or by the 
release of damage-associated molecular pattern molecules from 
necrotic cells.49,50 The analysis of significant HYPs that are 
part of the three subnetworks related to inflammatory response 
in epithelial tissue revealed distinct perturbations of the main 
intracellular signal mediator pathways (Fig. 4). In accordance 
with the GSEA results, inhibition of the interferon (IFN)
γ- and NF-κB-mediated inflammatory responses was visible 
as the downregulation of related HYPs such as “IFNG” and 
“taof(RELA)” (Fig.  4). The observed transient inhibition of 
the NF-κB/IFNγ response has previously been described in 
response to aqueous extracts of CS,51 oxidants in general,52 and 

acrolein,53 which is a major α,β-unsaturated, highly reactive  
aldehyde present in CS; this, therefore, links the process of 
NF-κB inhibition to the oxidative stress response.

We also observed inhibition of the activity of the tran-
scription factors CCAAT/enhancer-binding protein beta 
(“taof(CEBPB)”) and signal transducer and activator of transcri
ption 3 (“taof(STAT3)”), which are known to be involved in the 
inflammatory response. Interestingly, a clear dose-dependent 
proinflammatory response related to increased cytokine 
abundance was also predicted (eg, interleukin (IL), “IL1A”, 
“IL1B”, “IL6”, “IL13”, and “IL24”). Again, this response was 
mostly reversed at 48 hours post-exposure for the low dose but 
remained elevated over time for the high dose with respect to 
several cytokines such as IL2, IL6, and IL13. Allahverdian 
et  al previously reported that IL13  secretion by airway epi-
thelial cells enhanced epithelial repair via heparin binding 
EGF-like growth factor (HB-EGF),54 and potential NF-κB-
independent inflammatory pathways have been suggested to 
operate through the transcription factors AP-155 and/or early 
growth response protein-1 (EGR-1)56; the activity of both of 
these transcription factors was predicted in our networks.

Proliferation-related response. In mapping significant 
HYPs to the proliferation network, we observed a distinct 
perturbation of the core proliferation subnetwork (ie, cell 
cycle subnetwork; Fig. 5A and Supplementary Fig. 1C for a 
higher resolution view). In particular, a coordinated down-
regulation of HYPs related to cell cycle inhibitors and activa-
tion of HYPs for cell cycle inducers was predicted by RCR at 
24 hours post-exposure time for the low dose (Fig. 5B). This 
response fully recovered at 48  hours post-exposure. HYPs 
describing proteins and/or biological processes that are down-
regulated in proliferating cells such as “taof(p53)”, “RB1”, 
“taof(E2F4)”, and “CDKN1A” were clustered in community 
17, whereas those describing increased protein abundance or 
upregulated transcriptional activation involved in cell prolifer-
ation, eg, “E2F1”, “E2F2”, “E2F3”, “CDK4”, “CCND1”, and 
“taof(Myc)”, were mainly clustered in community 11 (Figs. 2 
and 5B, and Supplementary Table 1C).

Because CS is known to induce growth factor-related cel-
lular pathways,57 we examined a specific subnetwork of the cell 
proliferation network related to growth factor response more 
closely (Fig. 6 and Supplementary Fig. 1D for a higher resolu-
tion view). Nodes related to the EGF receptor (EGFR) family  
(eg, “NRG1”, “EGFR:ERBB3”, and “ERBB3”), and related 
ligands for EGFR activation (eg, “EGF” and “AREG”) were 
markedly upregulated. Moreover, EGFR ligands (HBEGF, 
EREG, and AREG) were strongly and dose-dependently 
induced at the gene expression level by CS exposure 
(Supplementary Table  1D). Accordingly, HYPs related to  
downstream cellular pathways, such as RAS (“HRAS mutated 
at G12V”), phosphatidylinositol 3-kinase (“kaof(PI3K Family 
Hs)”), and MAPK (“kaof(MAPK3)” and “kaof(MAPK1)”), 
as well as downstream transcription factors (“taof(ELK1)” and 
“taof(EGR1)”) were also upregulated (Fig. 5B). Additionally, 
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we observed HYPs for increased hepatocyte growth fac-
tor (“HGF”) abundance and increased activity of the related 
receptor (“kaof(MET)”), pointing to an alternative pathway 
that may lead to lung cell proliferation. Indeed, Sakamaki 
et al.58 previously reported increased Hgf and Met expression 
preceding the regenerative proliferation of lung epithelial cells 
in mice after pneumonectomy.

A pathway related to fibroblast growth factors (“FGF2”, 
“FGF6”, and “FGF7”) was also identified, pointing to the 
involvement of these growth factors in the regeneration of AIR-
100 tissue.59 Additionally, HYPs for mediators of cell migra-
tion and tissue differentiation were strongly upregulated (eg, 
“gtpof(RHOC)”, “IHH”, and “taof(GLI2)”). For the high dose,  
a similar response was observed at 24  hours post-exposure. 
In contrast to the low dose, perturbation of the proliferation 
network persisted for at least 48 hours.

CS effect on the regulation of mucus synthesis in 
organotypic bronchial tissue cultures. Mucins are major 
constituents of airway mucus and, therefore, essential for the 
defense against and clearance of inhaled irritants and toxi-
cants. Excessive mucin overproduction is a distinguishing 
feature and a risk factor of chronic obstructive pulmonary 
disease.60,61 Mucins have been reported to be expressed in 
airway epithelial cell cultures,62,63 and CS enhances mucin 
secretion both in vitro64,65 and in rat airways. Therefore, we 
investigated the expression of mucin genes in CS-exposed 
bronchial epithelial tissue cultures. Six membrane-bound 

(MUC1, MUC4, MUC13, MUC15, MUC16, and MUC20) 
and two gel-forming mucins (MUC5AC and MUC5B) were 
differentially regulated in CS-exposed AIR-100 tissue cul-
tures (Supplementary Table 1D). Most of these were down-
regulated in CS-exposed tissues compared with sham. For 
instance, MUC5B mRNA, specifically expressed in goblet 
cells,63 was only downregulated at 24 hours post-exposure with 
the longer exposure time, thus corresponding to the observed 
initial decrease in the proportion of mature goblet cells (data 
not shown). MUC5AC mRNA, previously shown to be 
upregulated upon CS exposure both in vitro and in vivo,65–69 
was increased at the later post-exposure time in both 14 and 
28 minutes CS-exposed tissue cultures. Interestingly, we also 
observed the upregulation of the gene expression of different 
positive regulators of MUC5AC,70 such as SPDEF and the  
EGFR ligands AREG, EREG, and HBEGF (Supplementary 
Table 1D). CS-enhanced MUC5AC expression was shown to 
be mediated by EGFR signaling and required ERK1/2 and 
p38 activation in rats,65,66,69 which agrees with the predicted 
ERK1/2 activation (Fig. 3A) in the present study.

CS-induced miRNA differential expression. We iden-
tified 11 miRNAs that were differentially expressed following 
CS exposure (more details are given in Supplementary 
Fig.  2). Except for hsa-miR-675, all miRNAs were down-
regulated, which is in agreement with in vivo findings71 and 
as discussed in our previous article.21 Regarding the sensitiv-
ity of our approach, the linear model used for the integrated  
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Figure 4. Selection of predicted HYPs within the inflammatory process subnetworks. Color code: yellow, HYPs with predicted increase in abundance 
or activity; blue, HYPs with predicted decrease in abundance or activity; light yellow/blue, 0.05#P,0.1; yellow/blue, 0.001#P,0.05; dark yellow/
blue, P , 0.001; and gray, no significant changes. taof(X), transcriptional activity of X and kaof(X), kinase activity of X. For detailed information, see 
Supplementary Table 1B.
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Figure 5. (A) High magnification of a schematic representation of perturbations observed in part of the cell cycle subnetwork. On the upper part of each 
significant HYP, an eight-folder cassette (shown in light green) depicts the color code for significance of concordance for all post-exposure kinetics (0.5, 2, 
4, 24, and 48 hours) after 14 minutes of exposure (top five squares) and after 28 minutes of exposure (bottom five squares). Circle head arrow, inhibition; 
arrow edge, activation; and gray line, co-regulation. For high-resolution image of the subnetwork, see Supplementary Figure 1. (B) Selection of predicted 
HYPs within the cell proliferation network. taof(X), transcriptional activity of X; kaof(X), kinase activity of X; gtpof(X), GTP-bound activity of X; and 
catof(X), catalytic activity of X. For detailed information, see Supplementary Table 1B. Color code: yellow, HYPs with predicted increase in abundance 
or activity; blue, HYPs with predicted decrease in abundance or activity; light yellow/blue, 0.05#P,0.1; yellow/blue, 0.001#P,0.05; dark yellow/blue, 
P , 0.001; and gray, no significant changes.
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Figure 6. High magnification of a schematic representation of perturbations observed in part of the growth factor response subnetwork. On the  
upper part of each significant HYP, an eight-folder cassette (shown in light green) depicts the color code for significance of concordance for all post-
exposure kinetics (0.5, 2, 4, 24, and 48 hours) after 14 minutes of exposure (top five squares) and after 28 minutes of exposure (bottom five squares).  
Color code: yellow, HYPs with predicted increase in abundance or activity; blue, HYPs with predicted decrease in abundance or activity; light yellow/
blue, 0.05#P,0.1; yellow/blue, 0.001#P,0.05; dark yellow/blue, P , 0.001; and gray, no significant changes. Circle head arrow, inhibition; arrow edge, 
activation; and gray line, co-regulation. For high-resolution images of the subnetwork, see Supplementary Figure 1.

mRNA–miRNA analysis is not appropriate to capture the 
dose-dependent modulation of the response to CS expo-
sure, as it is done in the mRNA-only part of the analy-
sis using a more precise model. This does not mean that 
this effect is absent at the single miRNA level, but rather 

that the three replicates per condition are not sufficient 
to stabilize the signal variance because of the inherently 
higher variability of the miRNA versus mRNA data. It is 
also worth mentioning that the dose-dependent modula-
tion of the response to CS exposure was not observed at 
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the single gene, but at the gene-group level, eg, HYPs or  
gene sets.

Construction of small regulatory networks. Two 
small regulatory networks containing 7 of the 11 differen-
tially expressed miRNAs were assembled. Where possible, 
experimentally high-confidence causal relationships were 
used to construct the regulatory networks following the same 
approach adopted during the assembly of the network models 
used in RCR analysis. Therefore, downstream miRNA targets 
were extracted from TarBase,28 whereas upstream transcrip-
tion miRNA factors were found in TransmiR.72 In both cases, 
a relevant structure with negative feedback loops was obtained, 
confirming the importance of the identified miRNAs in the 
regulatory mechanisms involved after CS exposure. These 
findings based on miRNA analysis from the same RNA 
samples used for gene expression analysis provide important 
complementary details about the regulatory mechanisms of 
biological processes, also identified as being perturbed by the 
mRNA-based evaluation.

The inhibition of NF-κB found in our previous analy-
sis with GSEA or RCR approaches was further supported by 
the expression of hsa-miR-146a and has-miR-146b, which are 
connected to NF-κB in an auto-regulatory feedback loop.73 
The small network model (Fig. 7A) depicts NF-κB as a tran-
scription factor for both hsa-miR-146a and b, which both 
repress IL1 receptor-associated kinase (IRAK1), itself an 
activator of NF-κB. As shown in Figure 7A, the differential 
expression of hsa-miR-146a/b is negative at 24 and 48 hours 
post-exposure, which matches the significant downregulation 
of the NF-κB transcript. The positive differential expression 
of IRAK1 at the same time points is consistent with a weaker 
effect of hsa-miR-146a/b (de-repression). The connection 
closing the loop between IRAK1 and NF-κB is not satisfied  
(at the transcript level), indicating that the feedback mecha-
nisms bringing NF-κB expression back to unperturbed levels 
may not yet be fully effective and that longer post-exposure 
times may be needed for complete reversibility of the NF-κB 
response. It should also be noted that when testing the signed 
relationships in a negative feedback loop against experimental 
values, one edge will necessarily be unsatisfied. This does not 
invalidate the network but rather indicates which mechanisms 
are dominant at the time point of the measurement. Taken 
together, these findings demonstrate the importance of hsa-
miR-146a/b in regulating inflammatory mechanisms.74

Transient activation of the cell cycle was identified by 
RCR analysis of the proliferation network perturbation. In line 
with this observation, a second small network model depicting 
a possible feedback loop involving the downregulated E2F1-
inhibiting miRNA hsa-miR-107/hsa-miR-449a/b/c (Fig. 7B 
and the heat map in Supplementary Fig. 2A) was generated. 
A similar negative feedback mechanism involving upregulated 
miR449a/b and CDC20B induced by E2F1 expression, and 
finally limiting E2F1 levels and excessive E2F1-driven proli
feration was previously proposed by Lize et al.75 The apparently  

hsa-miR-146a/b and inflammationA

B hsa-miR-107/449a/b/c and cell cycle

Effect of CS exposure

**** *

*

*

* * *

**

* * * * * * *

* **

****

***

* *

NFkB

IRAK1

hsa-miR-146a hsa-miR-146b

E2F1 Cell cycle

CDC20B

hsa-miR-449a

CCDC25

CDK2

0.5 2 4 24 48 hours −0.6 −0.4 −0.2 0 0.2 0.4 0.6

CDK4 CDK6

hsa-miR-449b hsa-miR-449c

hsa-miR-107

Figure 7. Small regulatory networks containing the differentially 
expressed miRNAs hsa-miR-146a/b (panel A) and hsa-miR-107/hsa-
miR-449a/b/c (panel B). Each node contains a heat map displaying 
the differential expressions (coefficient βg of the linear model) and their 
statistical significance (FDR ,0.05, indicated by an asterisk (*)) for the 
five post-exposure times (0.5, 2, 4, 24, 48 hours). The signed edges are 
indicated in the same way as in the other figures: --| represents activation 
and --● inhibition. The early time points 0.5, 2, and 4 hours were still 
included to show the complete response although they were not used to 
select relevant miRNAs.

concomitant transcription of CDC20B, hsa-miR-449a/b/c, 
and the minor strand hsa-miR-449b-3p (not shown on the 
network because it is a dead end) is clearly visible in the sig-
nificant negative differential expression observed at 24- and 
48-hour time points (Fig. 7B). This response is fully consistent 
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with the positive differential expression of CDK2/4/6 and 
CCDC25, all positively acting on E2F1 to promote the cell 
cycle. These observations include hsa-miR-107, which was 
also shown to intervene in the cell cycle regulation via the 
direct repression of CDK6.76–78 Examination of the full feed-
back loop contained in the small network revealed that the 
edge E2F1→CDC20B is not satisfied at the late time points 
because E2F1 is predicted to be positively activated using 
RCR (see Fig. 5B). This shows that the origin of the nega-
tive differential expression of the CDC20B transcript (later 
followed by its intronic miRNAs, hsa-miR-449a/b/c and hsa-
miR-449b-3p) is not a late response but an early event, tak-
ing place in the first two hours following CS exposure. Our 
RCR results show that E2F1 activity was not responsive in the 
early response; thus, additional investigations are necessary to 
explain the early behavior of CDC20B expression.

Alternative evaluation of the miRNA–mRNA relation
ship. For three remaining miRNAs (hsa-miR-342–3p/375/ 
675–5p) that could not be integrated into high-confidence 
regulatory networks because of a lack of evidence of causal 
relationships, we used a correlative approach to evaluate their 
relationship with observed mRNA changes and their poten-
tial role in exposure-related biological responses.

For hsa-miR-375, TarBase provided a large quantity 
(.100) of moderately reliable targets obtained in a micro
array experiment. We used a global approach to show that 
the downregulation of hsa-miR-375  induced a statistically 
significant anti-correlation effect on its (direct and indirect) 
downstream targets,72 as expected for miRNAs that are 
expression repressors. This result (shown in the histograms of 
Supplementary Fig. 2B) indicated that the repressive effect of 
hsa-miR-375 is present at 24 hours post-exposure (two-sided 
Kolmogorov–Smirnov test P-value =  6.87 ×  10−6) and dis
appears at 48 hours (P-value = 0.488). However, the overlap 
of the distributions of the true targets (red curves in Supple-
mentary Fig. 2B) and random genes (black curves) was too 
large (∼85%) to enable reliable enrichment calculations to 
be performed, which would have helped in the assigning of 
functional categories to the subset of anti-correlated target 
genes.

For hsa-miR-342–3p/675–5p, we relied on isolated liter-
ature statements to try to link their differential expression to 
their target genes. For instance, hsa miR-342–3p was shown 
to target DNA methyltransferase 1 (DNMT1) and, thereby, 
inhibits cell proliferation in colorectal cancer cells.79 The dif-
ferential expression values of DNMT1 were consistent with a 
potential de-repression by the miRNA (βg . 0 with FDR val-
ues ,0.05 for both 24 and 48 hours post-exposure). Because 
it was the only positively differentially expressed miRNA, 
hsa-miR-675–5p is an interesting case (also because βdg  
was the only statistically significant case). Moreover, it was 
recently shown to target the tumor suppressor runt-related 
transcription factor 1 (RUNX1).80 The observed differential 
expression values of RUNX1 in the present study agrees with 

this relationship (βg , 0 with FDR values ,0.05 for 24 hours 
post-exposure; the signal vanishes at 48 hours). The negative 
differential expression values of this tumor suppressor are con-
sistent with the activation of the cell cycle observed at the late 
24 and 48 hours time points, which was already supported by 
other miRNAs such as the miR-449 family and miR-107 fam-
ily. Thus, differential expression of miRNAs can still be linked 
to identifiable effects on their downstream target mRNAs using 
a less-specific correlative approach when causal relationships are 
not available.

Summary and Conclusion
In line with the new paradigm shift in the toxicological 
assessment strategy advising the use of advanced tools and 
technologies,3,81 and with the need to find alternatives to ani-
mal testing,82 the effect of acute CS exposure was investigated 
in the present study using (i) a relevant human organotypic 
bronchial epithelial model that has been previously shown to 
closely mimic the biological response in the bronchial epithe-
lium of smokers21; (ii) a whole smoke in vitro exposure system 
(Vitrocell system); (iii) a systems toxicology approach based 
on classical toxicological parameters and the capture of com-
plementary molecular endpoints such as mRNA and miRNA 
expression, after various exposure times/doses and at differ-
ent post-exposure times; and (iv) a computational analysis 
approach combining complementary methods for transcrip-
tomics data interpretation (GSEA23 and RCR24) and an inte-
grated mRNA/miRNA evaluation.

During recent years, we have developed a network-based 
approach to mechanistically evaluate the biological impact of 
various exposures in experimental models.1 This approach is 
based on building different biological causal network models 
relevant to biological processes, such as cell proliferation,26 
cellular stress,25 and inflammatory processes,27 in the lung. 
By applying RCR to identify HYPs or upstream regulators, 
the vast transcriptomics data generated in this study were 
interpreted, and signaling perturbations across various doses 
and post-exposure time points were compared. Our systems 
biology approach provided an insight into the different cellu-
lar responses triggered over time after CS exposure and dem-
onstrated that they were dependent on the CS dose applied.

We believe that the toxicological method applied here 
in the assessment of CS exposure effect is the first step to a 
more advanced approach that will allow: (i) the quantifica-
tion of the biological effect by measuring specific network 
perturbation amplitudes and the overall biological impact of 
an exposure using recently developed algorithms,38,39 (ii) the 
mechanistic representation of critical toxicological effects that 
span over different layers of biological organization (from the 
initiating molecular events toward the adverse outcome), and  
(iii) the integration of information derived from proteomics 
and miRNA analysis into the networks.

Another consideration that should be investigated in the 
future is the assessment of chronic exposure effect and the 
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use of tissue inserts derived from different donors. These two 
challenging aspects are necessary to better understand the 
long-term effect of CS exposure and the possibility to leverage 
these observations to a population level.

To conclude, the combination of an in vitro model, lever-
aging human organotypic bronchial epithelial tissue culture, 
and an in vitro ALI exposure model allows for the biochemical 
analysis of distinct, well-regulated, dose- and time-dependent 
perturbations to cellular stress responses, inflammatory pro-
cesses, and cell proliferation. This model and the used system 
biology approaches have the potential to unravel the underly-
ing molecular mechanisms activated following CS exposure 
and can be viewed as a paradigm for a systems toxicology 
approach in “21st Century Toxicology”.2–4
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Supplementary Data
Supplementary Figure 1. High-resolution pdf version of 

the subnetworks presented in Figures 3B, 5A, and 6.
Supplementary Figure  2. Integrated mRNA–miRNA 

analyses. Panel A displays the miRNA differential expression 
results obtained from the linear model used in the integrated 
miRNA–mRNA analysis. The heat map on the left-hand side 
shows the coefficient βg. Statistically, significant values are 
indicated by an asterisk. The differentially expressed miRNAs 
(with black labels) are complemented by their family members 
(with gray labels) as discussed in the Materials and Methods. 
A coherent signal within a miRNA family supports the inclu-
sion of all its members (hsa-miR-449a/b/c beside the minor 
strand hsa miR-449b-3p), whereas the absence of a shared sig-
nal suggested a probable false positive that was discarded (hsa-
miR-30e-3p). The colors in the side bars help in distinguishing 
the families. The heat map on the right-hand side displays the 
values for coefficient βdg, for which the inclusion of the full 

miRNA families was unnecessary (except for miR-449). Panel 
B displays two histograms containing the Pearson correlations 
for the CS-induced differential expression values between hsa-
miR-375 and its TarBase targets (red) or all expressed genes 
(black, labeled as background) (see Materials and Methods).

Supplementary Table  1. (A) Number of significantly 
differentially regulated genes for each given exposure time 
(dose) and post-exposure time  point. Significantly differ-
entially regulated genes were selected by an absolute fold 
change $1.3, a significance level (FDR) #0.05, and an abun-
dance level $log2(100). (B) A list of HYPs predicted to be 
significant in at least one of the exposure conditions. Con-
cordance values and network membership are shown. P, pres-
ent and A, absent. (C) Additional information for Figure  2 
(APcluster): names of particular HYPs are shown. Color code 
for Supplementary Table 1B and C: yellow, HYPs with pre-
dicted increase in abundance or activity; blue, HYPs with 
predicted decrease in abundance or activity; light yellow/ 
blue, 0.05P0.1; yellow/blue, 0.001P0.05; dark yellow/
blue, P    0.001; and gray, no significant changes. catof(X), 
catalytic activity of X; gtpof(X), GTP-bound activity of (X); 
kaof(X), kinase activity of X; paof(X), phosphatase activity 
of X; taof(X), transcriptional activity of X; P, present; and A, 
absent. (D) Differential gene expression (CS exposure vs. sham 
exposure) of selected genes. Green highlight, downregulated 
genes; red highlight, upregulated genes; and FC, fold change.
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