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The conserved multisubunit Elongator 
complex was initially described as 

an RNA polymerase II (RNAP II) asso-
ciated transcription elongation factor 
but, since, has been shown to be involved 
in a variety of different cellular activi-
ties. Here, we summarize recent devel-
opments in the field and discuss the 
resulting implications for the proposed 
multi-functionality of Elongator.

Introduction

Elongator is a large macromolecular com-
plex (~900 kDa) that is built up by two 
copies of each of its six subunits (named 
Elongator proteins Elp1–6).1 The impor-
tance of each of the individual subunits for 
Elongator function is not only highlighted 
by the high degree of sequence conserva-
tion from yeast to human, but also by the 
fact that the deletion of any of the sub-
units leads to the loss of Elongator com-
plex integrity, its dysfunction and almost 
identical phenotypes in Saccharomyces 
cerevisiae, Caenorhabditis elegans, 
Arabidopsis thaliana and Drosophila mela-
nogaster.2-7 Since its discovery, the cellular 
functions of Elongator are controversially 
discussed,8,9 as it has been implicated in 
different cellular activities, including pro-
tein acetylation,10-12 exocytosis,13 sensitiv-
ity to DNA damaging agents,14 zygotic 
paternal DNA demethylation15 and tRNA 
modification16 (summarized in Fig. 1).

In humans, several studies have shown 
that patients suffering from certain neu-
rodegenerative diseases carry mutations or 
variants in one of the six human Elongator 
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genes.17-19 A complete mechanistic under-
standing of specific roles of Elongator in 
nerve cells is still missing, but it has been 
suggested that nerve cells are particular 
sensitive to translational defects because of 
their markedly higher rates of protein syn-
thesis compared with other cell types.5,12,20 
Contradictory reports present Elongator 
as a dual regulator of transcription and 
translation complicating the quest for a 
unique targeted treatment strategy for the 
benefit of the patients. Clarifying whether 
Elongator regulates a multitude of cellular 
activities through a global transcriptional 
or translational mechanism therefore has 
become a high priority.

Elongator—A Transcriptional 
Regulator?

The presence of a conserved histone ace-
tyl transferase (HAT) domain in Elp311 
and co-purification of Elongator with 
RNAP II21 initially led to the conclusion 
that Elongator might facilitate transcrip-
tion elongation by acetylating histone tails, 
a post-transcriptional chromatin mark gen-
erally associated with actively transcribed 
genes.22 Surprisingly, a genome wide 
study on transcription elongation factors 
could not find any association or enrich-
ment of Elongator at actively transcribed 
genomic regions.23 Later, Elongator was 
believed to interact with nascent mRNA 
during transcription elongation,24 but in a 
recent study, designed to identify the com-
plete human interactome of chromatin-
associated messenger ribonucleoproteins 
by proteomics, no Elongator subunits 
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involvement of Elongator in transcrip-
tion elongation by RNAP II have to be 
confirmed and challenged by future in 
vivo and in vitro studies.

Elongator—A Translation  
Regulator?

Elongator was shown to directly interact 
with eukaryotic tRNAs in vitro1,3 (but not 
with single stranded DNA or RNA) and is 
required for the formation of 5-methoxy-
carbonylmethyl (mcm5) and 5-car-
bamoylmethyl (ncm5) groups on uridine 
nucleosides present at the wobble posi-
tion of many tRNAs.3,30 During a screen 
for yeast factors conferring resistance to 
the Kluyveromyces lactis γ-toxin (zymo-
cin), all six Elongator genes were identi-
fied together with other factors known 
to affect the tRNA modification of the 
same tRNA residue.30 Consistent with 
the observation that Elongator mutant 
strains are resistant to zymocin, it was 
shown that mcm5 modified uridines in 
tRNAs represent the specific target sites 
for the toxin.2,31 Strikingly, Esberg and 
colleagues16 have shown that most cellu-
lar phenotypes, including those originally 
associated with the role of Elongator in 
transcription elongation, could be rescued 
by overexpressing two yeast tRNAs whose 
modifications are Elongator-dependent. 
This thereby provided the first body of 
evidence that the function of Elongator in 
tRNA modification might result in a wide 
variety of phenotypes through its global 
impact on translation (Fig. 1).

The biochemical details of the con-
tribution of Elongator (together with 
other factors) to tRNA modification are 
still unresolved, although it was recently 
shown that so-called radical S-Adenosyl 
Methionione (SAM) domains, of which 
one is present in the N-terminus of Elp3,32 
are able to mediate the transfer of methyl 
groups to RNAs.33 Strikingly, muta-
tions affecting the conserved active site 
residues in the HAT domain of Elp3, for-
merly exclusively associated with histone 
acetylation, result in the loss of tRNA 
modification activity of Elongator.3 The 
formation of the rather complicated ncm5/
mcm5 modification, which occurs, for a 
few tRNAs, on the same wobble uridine 
in the wobble base position that is also 

could directly link Elongator-dependent 
protein acetylation to the reported neuro-
nal phenotypes of patients with Elongator 
mutations.

In summary, although the obser-
vation that Elongator is involved in 
a whole variety of cellular activities 
could indeed be explained by its abil-
ity to impact on the transcription of a 
set of genes that are involved in those 
cellular activities, there is accumulat-
ing evidence in the literature that the 
initial concepts suggesting a direct 

could be detected, either.25 Furthermore, 
the sub-cellular localization of Elongator 
subunits seems to be mainly cytoplasmic. 
This localization apparently contradicts its 
assigned role in transcriptional elongation, 
although it was shown that some subunits 
in certain organisms could localize to the 
nucleus.10,12,26-29 Although Elp3 was indeed 
reported to acetylate histones in vitro,11,27 
it was recently implicated in the acetyla-
tion of Bruchpilot, an integral component 
of the presynaptic density at the periph-
ery of neuronal cells.10 This modification 

Figure 1. elongator complex assembly and its proposed cellular functions. The upper panel 
shows a schematic representation of the elongator subcomplex arrangement. The central hexa-
meric elp456 subcomplex is shown in cartoon representation (elp4 in green; elp5 in blue; elp6 in 
brown) and is flanked by two copies of the elp123 subcomplex. Predicted domains in elp123 are 
marked individually [wD40 domains, tetratricopeptide repeats (TPR); histone acetyl transferase 
(HAT); radical S-adenosyl-methionine (rSAM); iron-sulfur cluster (feS)]. The lower panel highlights 
tRNA modification (translational control) and histone acetylation (transcriptional control) as 
elongator’s proposed cellular functions. Additional functions, which were shown to be indirectly 
affected by elongator role in tRNA modifications are DNA damage response,44 telomeric gene 
silencing,44 exocytosis,16 cell cycle regulation,35 transcriptional activation16 and chromatin remod-
eling.16 functions that could indirectly result from translational/transcriptional activities of elonga-
tor or because the proteins involved are additional direct targets of elongator such as α-tubulin/
Bruchpilot acetylation12 or paternal genome demethylation15 are listed separately.
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The latter would, however, be inconsis-
tent with the similar phenotypes observed 
upon inactivation of different Elp sub-
units. Detailed co-localization studies 
of all six Elongator proteins in different 
organisms should help clarify if alternative 
compositions exist, are specific to certain 
organisms, and are localized in different 
sub-cellular compartments.

Structural analyses of subunits Elp1, 
Elp2, Elp3 and the fully assembled 
Elongator complex will allow a better 
molecular understanding of this large 
complex in the future. On one hand, 
low and medium resolution analyses of 
the fully assembled Elongator will help 
understand inter-subunit communication 
and the influence of associated factors 
and substrate recognition for the overall 
architecture of Elongator. On the other 
hand, high resolution structural informa-
tion will allow a detailed description of the 
chemical reactions catalyzed by Elongator 
during tRNA modification, interaction 
with partners involved in this process and, 
potentially, other modifying activities of 
the Elongator complex. Further investiga-
tions of the tRNA recognition mechanism 
by Elongator might also lead to a struc-
tural explanation of how the anti-codon 
loop is recognized and why only uridines 
in the wobble position of the tRNA are 
subject to this specific modification reac-
tion, whereas uridines in other positions 
remain unmodified. In summary, novel 
structural insights will continue to com-
plement known and ongoing functional 
studies on Elongator and will contrib-
ute to understand the true nature of this 
highly conserved cellular machine.
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