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Objectives: Coronavirus disease 2019 continues to spread rapidly 
with high mortality. We performed metabolomics profiling of critically 
ill coronavirus disease 2019 patients to understand better the under-
lying pathologic processes and pathways, and to identify potential 
diagnostic/prognostic biomarkers.
Design: Blood was collected at predetermined ICU days to measure 
the plasma concentrations of 162 metabolites using both direct injec-
tion-liquid chromatography-tandem mass spectrometry and proton 
nuclear magnetic resonance.

Setting: Tertiary-care ICU and academic laboratory.
Subjects: Patients admitted to the ICU suspected of being infected 
with severe acute respiratory syndrome coronavirus 2, using stan-
dardized hospital screening methodologies, had blood samples 
collected until either testing was confirmed negative on ICU day 3 
(coronavirus disease 2019 negative) or until ICU day 10 if the patient 
tested positive (coronavirus disease 2019 positive).
Interventions: None.
Measurements and Main Results: Age- and sex-matched healthy con-
trols and ICU patients that were either coronavirus disease 2019 posi-
tive or coronavirus disease 2019 negative were enrolled. Cohorts were 
well balanced with the exception that coronavirus disease 2019 posi-
tive patients suffered bilateral pneumonia more frequently than coro-
navirus disease 2019 negative patients. Mortality rate for coronavirus 
disease 2019 positive ICU patients was 40%. Feature selection identi-
fied the top-performing metabolites for identifying coronavirus disease 
2019 positive patients from healthy control subjects and was domi-
nated by increased kynurenine and decreased arginine, sarcosine, and 
lysophosphatidylcholines. Arginine/kynurenine ratio alone provided 
100% classification accuracy between coronavirus disease 2019 pos-
itive patients and healthy control subjects (p = 0.0002). When compar-
ing the metabolomes between coronavirus disease 2019 positive and 
coronavirus disease 2019 negative patients, kynurenine was the domi-
nant metabolite and the arginine/kynurenine ratio provided 98% classi-
fication accuracy (p = 0.005). Feature selection identified creatinine as 
the top metabolite for predicting coronavirus disease 2019-associated 
mortality on both ICU days 1 and 3, and both creatinine and creatinine/
arginine ratio accurately predicted coronavirus disease 2019-associ-
ated death with 100% accuracy (p = 0.01).
Conclusions: Metabolomics profiling with feature classification eas-
ily distinguished both healthy control subjects and coronavirus dis-
ease 2019 negative patients from coronavirus disease 2019 positive 
patients. Arginine/kynurenine ratio accurately identified coronavirus 
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disease 2019 status, whereas creatinine/arginine ratio accurately pre-
dicted coronavirus disease 2019-associated death. Administration of 
tryptophan (kynurenine precursor), arginine, sarcosine, and/or lysophos-
phatidylcholines may be considered as potential adjunctive therapies.
Key Words: biomarker; coronavirus disease 2019; diagnoses; 
intensive care unit; metabolomics; prognoses

Coronavirus disease 2019 (COVID19) is caused by the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
which continues to spread rapidly worldwide (1, 2).  

Diagnosis of COVID19 typically requires polymerase chain reac-
tion for SARS-CoV-2 genes or immunoassay for SARS-CoV-2 
antigens. COVID19 primarily affects lungs, but dysfunction of 
other organs, such as heart and kidneys, has also been reported 
(3–6). The severity of COVID19 may involve the excessive release 
of inflammatory mediators (7–9) together with microvascular 
thrombi formation secondary to endothelial injury/activation 
and glycocalyx degradation (10). Critically ill COVID19 patients 
are admitted to the ICU, where the mortality rate is reported 
to be 31–40% with standardized ICU care (11, 12). Although a 
number of protein mediators have been identified that predict 
COVID19-associated death (9, 12), a further characterization of 
COVID19-associated processes and pathways is essential for the 
identification of novel diagnostic/prognostic biomarkers and for 
improving COVID19 patient outcomes.

Metabolomics measures a person’s metabolite profile (chemi-
cals with an molecular weight < 1,500 Da), including amino acids, 
organic acids, biogenic amines, acylcarnitines, glycerophospho-
lipids, sphingolipids, sugars, and many other compounds (13). 
Metabolites fall downstream of genetic, transcriptomic, pro-
teomic, and environmental events, thus providing a cohesive 
measure of a subject’s recent phenotype. Two complementary 
analytical methods for metabolomics are proton nuclear magnetic 
resonance (1H NMR; μM range) spectroscopy and mass spectrom-
etry (MS; nM-pM range). Previous studies have demonstrated the 
diagnostic and prognostic potentials of metabolomics profiling in 
selecting patient populations (e.g., traumatic brain injury [14]).

Metabolomics profiling of critically ill COVID19 patients over 
the first 10 days of their ICU stay was the overall aim of this explor-
atory study, thereby identifying potential metabolite candidates 
and/or combinations as diagnostic/prognostic biomarkers. Our 
specific objectives were: 1) to determine/compare the metabolomes 
between COVID19 positive (+) ICU patients and either healthy 
control subjects or COVID19 negative (–) ICU patients, 2) to 
determine specific metabolites that most accurately differentiated 
COVID19+ from either healthy control subjects or COVID19– 
ICU patients, and 3) to determine whether specific metabolites can 
predict COVID19 outcome shortly after ICU admission.

MATERIALS AND METHODS
This study was approved by the Western University, Human 
Research Ethics Board (HREB). Given the unprecedented pan-
demic situation and the restricted hospital access for substi-
tute decision makers, waived consent was approved for a short, 

defined period of time (Research Ethics Board [REB] ID# 1670; 
issued March 20, 2020). In keeping with the Society for Critical 
Care Medicine statement on “Waiver of Informed Consent in 
Emergency Situations” (15), the following criteria were considered 
relevant for HREB approval of waived consent: the subjects were 
admitted to the ICU with a life-threatening condition; the subjects 
had impaired decisional capacity; the research staff encountered 
significant obstacles and delays when attempting to contact the 
absent substitute decision makers; the study risk was minimal; the 
research knowledge gained on this new, lethal disease offered an 
eventual chance of benefit; and community consultation had been 
implemented. Given the pandemic circumstances and the waived 
consent model applied, no further attempts were made to contact 
the surviving patients and/or substitute decision makers. The last 
patient enrolled under waived consent was May 1, 2020.

Study Participants and Clinical Data
We enrolled consecutive patients who were admitted to our level 3 
academic ICUs at the London Health Sciences Centre (London, ON, 
Canada) and were suspected of having COVID19 based on standard 
hospital screening procedures (16). Blood sampling began on ICU 
admission for up to 3 days in COVID19– patients or up to 7 days 
in COVID19+ patients, with an additional blood draw occurring 
on day 10 for COVID19+ patients who have not been discharged. 
COVID19 status was confirmed as part of standard hospital testing 
by nasopharyngeal swab detection of two SARS-CoV-2 viral genes 
on polymerase chain reaction (17). Patient baseline characteristics 
were recorded at admission and included age, sex, comorbidities, 
medications, hematologic labs, creatinine, arterial-partial-pressure-
to-inspired-oxygen ratio, and chest x-ray findings. We calculated 
Multiple Organ Dysfunction Score (18) and Sequential Organ 
Failure Assessment score (19) for both COVID19+ and COVID19– 
patient groups to enable objective comparison of their illness sever-
ity. Both patient groups were characterized as having confirmed or 
suspected sepsis diagnosis using Sepsis 3.0 criteria (19). We also 
recorded clinical interventions received during the observation 
period including use of antibiotics, antiviral agents, systemic cor-
ticosteroids, vasoactive medications, VTE prophylaxis, antiplatelet 
or anticoagulation treatment, renal replacement therapy, high-flow 
oxygen therapy, and mechanical ventilation (invasive and non-
invasive). Final participant groups were constructed by age- and 
sex-matching COVID19+ patients with COVID19– patients and 
healthy controls without disease, acute illness, or prescription medi-
cations that were previously banked in the Translational Research 
Centre, London, ON, Canada (REB ID# 16986E; reissued March 10, 
2020; “Repository of control biological specimens from healthy vol-
unteers for future research purposes”; Directed by Dr. D. D. Fraser; 
https://translationalresearchcentre.com/) (20, 21).

Blood Draws
Standard operating procedures were used to ensure all samples 
were treated rapidly and equally. Blood was obtained from criti-
cally ill ICU patients via indwelling catheters in the morning 
and placed immediately on ice. If a venipuncture was required, 
research blood draws were coordinated with a clinically indi-
cated blood draw. In keeping with accepted research phlebotomy 
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protocols for adult patients, blood draws did not exceed maximal 
volumes (22). Once transferred to a negative pressure hood, blood 
was centrifuged and plasma was isolated, aliquoted at 250 μL, and 
frozen at –80°C. All samples remained frozen until use and freeze/
thaw cycles were avoided.

Direct Injection-LC-Mass Spectrometry/Mass 
Spectrometry
A targeted quantitative metabolomics approach was used to ana-
lyze the samples using a combination of direct injection (DI) MS 
with a reverse-phase LC-MS/MS custom assay. This custom assay, 
in combination with an ABSciex 4000 QTrap (Applied Biosystems, 
Foster City, CA/MDS Sciex, Foster City, CA) mass spectrometer, 
can be used for the targeted identification and quantification of up 
to 150 different endogenous metabolites including amino acids, 
acylcarnitines, biogenic amines and derivatives, uremic toxins, 
glycerophospholipids, sphingolipids, and sugars (23, 24). The 
method combines the derivatization and extraction of analytes, 
and the selective mass-spectrometric detection using multiple 
reaction monitoring pairs. Isotope-labeled internal standards and 
other internal standards were used for metabolite quantification. 
The custom assay contained a 96-deep-well plate with a filter plate 
attached with sealing tape, and reagents and solvents used to pre-
pare the plate assay. The first 14 wells were used for one blank, three 
zero samples, seven standards, and three quality control samples. 
For all metabolites except organic acid, samples were thawed 
on ice and subsequently vortexed and centrifuged at 13,000× g; 
10 µL of each sample was then loaded onto the center of the fil-
ter on the upper 96-well plate and dried in a stream of nitrogen. 
Subsequently, phenyl-isothiocyanate was added for derivatization. 
After incubation, the filter spots were dried again using an evapora-
tor. Extraction of the metabolites was then achieved by adding 300 
µL of extraction solvent. The extracts were obtained by centrifuga-
tion into the lower 96-deep-well plate, followed by a dilution step 
with the MS running solvent (0.2% formic acid in water, 0.2% for-
mic acid in acetonitrile for biogenic amines and amino acids, and 
0.02% formic acid in methanol for all other classes of metabolites).

For organic acid analysis, 150 µL of ice-cold methanol and 10 µL 
of isotope-labeled internal standard mixture were added to 50 µL 
of serum sample for overnight protein precipitation at –20°C, fol-
lowed by centrifugation at 13,000× g for 20 minutes. A total of 50 µL 
of supernatant was loaded into the center of wells of a 96-deep-well 
plate, followed by the addition of 3-nitrophenylhydrazine reagent. 
After incubation for 2 hours, butylated hydroxytoluene stabilizer 
(2 mg/mL) and water were added before LC-MS injection.

Mass spectrometric analysis was performed on an ABSciex 
4000 Qtrap tandem MS instrument (Applied Biosystems/MDS 
Analytical Technologies, Foster City, CA) equipped with an 
Agilent 1260 series UHPLC system (Agilent Technologies, Palo 
Alto, CA). The samples were delivered to the mass spectrometer 
by an LC method followed by a DI method. Data analysis was 
done using Analyst 1.6.2 (Foster City, CA).

Proton Nuclear Magnetic Resonance
Plasma samples contain a significant concentration of large-molecu-
lar-weight proteins and lipoproteins, which affects the identification 

of the small-molecular-weight metabolites by NMR spectroscopy. 
A deproteinization step, involving ultrafiltration as previously 
described (25), was therefore introduced in the protocol to remove 
plasma proteins. Prior to filtration, 3-kDa cutoff centrifugal filter 
units (Amicon Microcon YM-3, Burlington, MA) were rinsed five 
times each with 0.5 mL of H2O and centrifuged (9,400× g for 10 min)  
to remove residual glycerol bound to the filter membranes.  
Aliquots of each plasma sample were then transferred into the 
centrifuge filter devices and spun (9,400× g for 20 min) to remove 
macromolecules (primarily protein and lipoproteins) from the 
sample. The filtrates were checked visually for any evidence that the 
membrane was compromised, and for these samples, the filtration 
process was repeated with a different filter and the filtrate inspected 
again. The subsequent filtrates were collected and the volumes were 
recorded. If the total volume of the sample was under 250 µL, an 
appropriate amount from a 150-mM KH2PO4 buffer (pH 7) was 
added until the total volume of the sample was 173.5 µL. Any sam-
ple that had to have buffer added to bring the solution volume to  
173.5 μL was annotated with the dilution factor and metabo-
lite concentrations were corrected in the subsequent analy-
sis. Subsequently, 46.5 µL of a standard buffer solution (54% 
D2O:46% 1.75-mM KH2PO4 pH 7.0 v/v containing sodium tri-
methylsilylpropanesulfonate (DSS) [5.84-mM 2,2-dimethyl-2- 
silcepentane-5-sulphonate, 5.84-mM 2-chloropyrimidine-5 car-
boxylate, and 0.1% NaN3 in H2O]) was added to the sample.

The plasma sample (250 µL) was then transferred to a 3-mm 
SampleJet NMR tube for subsequent spectral analysis. All 1H-
NMR spectra were collected on a 700-MHz Avance III (Bruker, 
Billerica, MA) spectrometer equipped with a 5-mm hydrogen, 
carbon, nitrogen Z-gradient pulsed-field gradient cryoprobe. 1H-
NMR spectra were acquired at 25°C using the first transient of the 
Nuclear Overhauser Effect Spectroscopy (NOESY) presaturation 
pulse sequence (NOESY1DPR), chosen for its high degree of quan-
titative accuracy (26). All free induction decays were zero-filled to 
250 K data points. The singlet produced by the DSS methyl groups 
was used as an internal standard for chemical shift referencing 
(set to 0 ppm). For quantification, all 1H-NMR spectra were pro-
cessed and analyzed using an in-house version of the magnetic 
resonance for metabolomics (MAGMET)-automated analysis 
software package using a custom metabolite library. MAGMET 
allows for qualitative and quantitative analyses of an NMR spec-
trum by automatically fitting spectral signatures from an internal 
database to the spectrum. Each spectrum was further inspected by 
an NMR spectroscopist to minimize compound misidentification 
and misquantification. Typically, all of visible peaks were assigned. 
Most of the visible peaks were annotated with a compound name. 
It has been previously shown that this fitting procedure provides 
absolute concentration accuracy of 90% or better (27).

Population Statistics
Medians (interquartile ranges [IQRs]) and frequency (%) were used 
to report ICU patient baseline characteristics for continuous and cat-
egorical variables, respectively; continuous variables were compared 
using Mann-Whitney U tests (or Kruskal-Wallis tests, as appropri-
ate), and categorical variables were compared using Fisher exact 
chi-square, with p values of less than 0.05 considered statistically 
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significant. Receiver operating characteristic (ROC) curves were 
conducted to determine sensitivity and specificity of individual 
metabolite ratios for predicting a binary outcome. Area-under-the-
curve (AUC) was calculated as an aggregate measure of metabolite 
ratio performance across all possible classification thresholds. All 
analyses were conducted using SPSS version 26 (IBM, Armonk, NY).

Machine Learning
COVID19 analyte data were visualized with a nonlinear dimen-
sionality reduction on the full data matrix using the t-distributed 
stochastic nearest neighbor embedding (t-SNE) algorithm (28). 
t-SNE assumes that the “optimal” representation of the data lies 
on a manifold with complex geometry, but with low dimension, 
embedded in the full-dimensional space of the raw data. For fea-
ture selection, the raw data for each subject were ingested within 
each feature, across subjects. A random forest classifier was 
trained on the variables to predict COVID19 status or COVID19 
outcome (“scikit-learn” module for Python 3.8.5 Open Source).  
A random forest is a set of decision trees, and consequently, we 
were able to interrogate this collection of trees to identify the fea-
tures that have the highest predictive value. Feature selection was 
not performed in preprocessing. During training, the random forest 
classifier performed an implicit feature selection; the top features 
are those that appear highest ranked in the most trees. To reduce 
overfitting, the number of trees and maximum depth of each tree 
was limited (29); thus, COVID19 status was determined using a 
six-fold cross validation with a random forest of 10 trees, whereas 
patient outcome was determined using a three-fold cross valida-
tion with a random forest of 10 trees and a maximum depth of 
6. To remain conservative and to limit the risk of overfitting fur-
ther, no hyperparameters were tuned or optimized by design and 
intent. Furthermore, to validate the results and ensure no overfitting 
occurred, a simple linear support vector machine classifier was used 
to compare the predication accuracies with excellent concordance.

RESULTS
We investigated 10 COVID19+ patients (median years of age = 61.0,  
IQR = 54.8–67.0), 10 age- and sex-matched COVID19– patients 
(median years of age = 58.0, IQR = 52.5–63.0), and 10 age- 
and sex-matched healthy controls (median years of age = 57.5,  
IQR = 52.8–62.8; p = 0.686). Baseline demographic characteris-
tics, comorbidities, laboratory values, and chest x-ray findings are 
reported in Table  1. The COVID19– patients had significantly 
higher unilateral pneumonia, whereas COVD19+ patients were 
more likely to have bilateral pneumonia. Sepsis was “confirmed” 
by infectious pathogen identification in only 20% of COVID19– 
patients, whereas sepsis was “suspected” in the remaining 80% (19). 
A mortality rate of 40% was determined for COVID19+ patients.

We measured a total of 183 plasma metabolites using both 
DI-LC-MS/MS and 1H NMR. In the event of metabolite repeats 
measured with both techniques (21 metabolites), the 1H NMR 
metabolite repeat measurements were deleted from the combined 
metabolite database, yielding a final number of 162 metabolites 
analyzed.

Figure 1A shows a t-SNE plot illustrating that the ICU day 1 
COVID19+ patient metabolome was distinct and easily separable 

from age- and sex-matched healthy control subjects. In fact, clas-
sification accuracy was 100% when comparing the two metabo-
lomes. We then identified the top eight metabolites underlying 
these differences between the cohorts, which are shown in Figure 
1B with their associated % importance. In the COVID19+ cohort, 
relative to the healthy control subjects, kynurenine increased 5.1-
fold whereas arginine decreased 0.5-fold, sarcosine decreased 
0.6-fold, and lysophosphatidylcholines (LysoPCs) all decreased 
0.3-fold on average. The least number of metabolites that were 
required to maintain a 100% classification accuracy between the 
cohorts was then determined, with only arginine (cutoff ≤ 52.8 μM)  
and kynurenine (cutoff ≥ 3.1 μM) required. The excellent predic-
tive ability of an arginine/kynurenine ratio for discriminating a 
COVID19 patient from a healthy control subject (cutoff ≤ 15.7) is 
shown with ROC analysis in Figure 1C (AUC = 1.00; p = 0.0002).

A comparison of COVID19+ and COVID19– patient cohorts 
revealed distinct metabolomes. Feature classification again iden-
tified kynurenine as one of the leading metabolites underlying 
the differences between the COVID19+ and COVID19– cohorts  
(Fig. 2A). We then determined that an arginine/kynurenine ratio 
again showed an excellent discriminative ability to determine 
COVID19 status on ICU day 1 (cutoff ≤ 11.6) via ROC analyses 
(AUC = 0.98; p = 0.005; Fig. 2B). Figure 2C shows an arginine/
kynurenine ratio time plot for the COVID19+ and COVID19– 
patients over 10 ICU days. The cohorts’ ratios were significantly 
different on ICU days 1 and 3 (p = 0.005).

Figure 3A shows a t-SNE plot for COVID19+ patients that 
either survived or died, and demonstrates that the outcomes 
were distinct and separable. To optimize outcome prediction in 
COVID19+ patients, the number of metabolites was narrowed 
using feature selection (Fig. 3B). Creatinine was the leading 
metabolite and could predict death with 100% accuracy on both 
ICU days 1 (cutoff > 126 μmol/L) and 3 (cutoff > 174 μmol/L). To 
improve the variation in patient creatinine values, we then tested 
the ability of a creatinine/arginine ratio to predict death; the cor-
responding time plot is shown in Figure 3C. Death could be pre-
dicted with 100% accuracy on both ICU days 1 (cutoff ≥ 3.4) and 
3 (cutoff ≥ 3.7), as the creatinine/arginine ratios were significantly 
different between the COVID19 patients that lived or died at both 
time points (p = 0.01). The creatinine/arginine ratios normalized 
by ICU day 10, regardless of eventual outcome. There were no 
deaths during the 10 ICU days.

DISCUSSION
In this study, we measured 162 metabolites in plasma obtained 
from ICU patients, both COVID19+ and COVID19–, as well as 
age- and sex-matched healthy control subjects. Given the num-
ber of metabolites measured, we analyzed the data with the state-
of-the-art machine learning. Our exploratory data indicate the 
presence of a unique COVID19 plasma metabolome dominated 
by changes in kynurenine, arginine, sarcosine, and LysoPCs. 
Additionally, we identify that either creatinine alone or a creati-
nine/arginine ratio predicted ICU mortality with 100% accuracy. 
Despite the exploratory nature of our study, the data gener-
ated suggest that these three metabolites (kynurenine, arginine, 
and creatinine) could be considered for further investigation as 
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TABLE 1. Subject Demographics and Clinical Data

Variable
Healthy Control 

Subjects COVID19– Patients COVID19+ Patients p

n 10 10 10 1.000

Age, yr 57.5 (52.8–62.8) 58.0 (52.5–63.0) 61.0 (54.8–67.0) 0.686

Sex 7 Female:3 Male 7 Female:3 Male 7 Female:3 Male 1.000

Multiple Organ Dysfunction Score  6.0 (3.8–8.0) 4.0 (2.5–7.3) 0.251

Sequential Organ Failure Assessment score  7.5 (4.8–11.0) 4.5 (2.8–9.3) 0.160

Comorbidities
  Hypertension  8 (80) 6 (60) 0.628
  Diabetes  4 (40) 3 (30) 1.000
  Chronic kidney disease  1 (10) 2 (20) 1.000
  Cancer  1 (10) 2 (20) 1.000

  Chronic obstructive pulmonary disease  1 (10) 0 (0) 1.000

Baseline medications
  Antiplatelet agents  6 (60) 2 (20) 0.170
  Anticoagulants  1 (10) 0 (0) 1.000

Baseline labs
  WBC  15.3 (11.1–23.0) 8.5 (6.3–16.1) 0.064
  Neutrophils  12.2 (8.1–15.2) 7.7 (5.7–13.3) 0.197
  Lymphocytes  1.6 (0.5–2.3) 0.7 (0.6–1.0) 0.141
  Platelets  184 (159–245) 206 (109–294) 0.623
  Hemoglobin  130 (104–142) 122 (102–136) 0.364

  Creatinine  80 (54–147) 107 (55–288) 0.571

Chest x-ray findings
  Bilateral pneumonia  1 (10) 9 (90) 0.001*
  Unilateral pneumonia  5 (50) 0 (0) 0.033*
  Interstitial infiltrates  1 (10) 1 (10) 1.000
  Normal  3 (30) 0 (0) 0.211
  Arterial-partial-pressure-to-inspired-oxygen ratio  172 (132–304) 124 (69–202) 0.153

Sepsis diagnosis

  Suspected  8 (80) 0 (0) 0.001*
  Confirmed  2 (20) 10 (100) 0.001*

Interventions during study
  Antibiotics  10 (100) 10 (100) 1.000
  Antivirals  0 (0) 3 (30) 0.211
  Steroids  3 (30) 2 (20) 1.000
  Vasoactive medications  6 (60) 7 (70) 1.000
  VTE prophylaxis  10 (100) 10 (100) 1.000
  New antiplatelets  0 (0) 1 (10) 1.000
  New anticoagulation  2 (20) 1 (10) 1.000
  Renal replacement therapy  1 (10) 2 (20) 1.000
  High-flow nasal cannula  2 (20) 5 (50) 0.350
  Noninvasive MV  8 (80) 6 (60) 0.628

  Invasive MV  8 (80) 7 (70) 1.000

Patient outcome

  Venous thromboembolism/ischemic stroke  2 (20) 1 (10) 1.000

  Survived  10 (100) 6 (60) 0.087

MV = mechanical ventilation.
Continuous data are presented as medians (interquartile ranges) and categorical data are presented as n (%). VTE prophylaxis represents the number of patients receiving venous 
thromboembolism prophylaxis with regular- or low-molecular heparin; new antiplatelets represents the number of patients who were started on aspirin or clopidogrel during ICU 
stay; new anticoagulation represents the number of patients who were started on therapeutic anticoagulation with regular- or low-molecular heparin, or novel oral anticoagulants
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potential diagnostic and prognostic biomarkers for COVID19 and 
that they may be useful for patient stratification in clinical inter-
ventional trials.

Our COVID19+ ICU patients were similar to those reported in 
earlier cohorts (3–6) with respect to demographics, comorbidities, 
and clinical presentation. In contrast to COVID19– ICU patients, 

our COVID19+ ICU patients had a higher frequency of bilateral 
pneumonia. Previous work by our study group in these same 
patients has determined a unique inflammatory profile character-
ized by elevated tumor necrosis factor and serine proteases (9),  
and a thrombotic profile associated with endothelial activation and 
glycocalyx degradation (10). By employing targeted proteomics, 

Figure 1. A, Subjects plotted in two dimensions following dimensionality 
reduction in their respective metabolites by stochastic neighbor embedding. 
Green dots represent healthy control subjects, whereas orange dots 
represent age- and sex-matched coronavirus disease 2019 positive 
(COVID19+) ICU patients (ICU day 1 plasma). The dimensionality reduction 
shows that based on the plasma metabolites, the two cohorts are distinct 
and easily separable. The axes are dimensionless. B, Feature classification, 
demonstrating the top eight plasma metabolites that classify COVID19+ 
status versus healthy control subjects with their % association. C, Receiver 
operating characteristic analysis of healthy control subjects versus COVID19+ 
patients, using an arginine/kynurenine ratio, demonstrates an area-under-
the-curve (AUC) of 1.00 (p = 0.0002). The cutoff value is 15.6. The diagonal 
broken blue line represents chance (AUC 0.50).

Figure 2. A, Feature classification demonstrating the top eight plasma 
metabolites that classify coronavirus disease 2019 positive (COVID19+) 
status versus healthy control subjects with their % association. B, Receiver 
operating characteristic analysis of COVID19+ versus coronavirus disease 
2019 negative (COVID19–) ICU patients, using the arginine/kynurenine 
ratio, demonstrates an area-under-the-curve (AUC) of 0.98 (p = 0.005). The 
diagonal broken blue line represents chance (AUC = 0.50). C, A time plot, 
demonstrating the Arginine/Kynurenine ratio for both COVID19+ (orange 
dots) and COVID19– (blue dots) patients over 10 ICU days. The two cohorts 
are significantly different on ICU days 1 and 3 (***p = 0.005). Healthy control 
range values are represented by green shading.
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we also identified six novel protein immune biomarkers that accu-
rately predict COVID19 associated death (12). Taken together 
with the data from this study, COVID19 represents a severe ill-
ness with a unique pathophysiological signature, as well as a high 

mortality rate. Indeed, in our cohort of COVID19 patients, ICU 
death was 40% with standardized ICU care.

Our study has identified a unique metabolome in COVID19+ 
ICU patients that is hypothesis-generating for future diagnostic/
prognostic studies. Not only have we provided a rank order listing 
of metabolites important for COVID19 status, we also identified 
metabolites that accurately determined COVID19 ICU outcome. 
The former represents diverse metabolites that influence immune 
function and survival, whereas the latter represents compromised 
renal function early in ICU care. Importantly, the metabolites 
required for COVID19 diagnosis (arginine/kynurenine ratio) 
and outcome (either creatinine alone or creatinine/arginine ratio) 
can be easily measured using only MS or immunoassay, making 
their use as COVID19 biomarkers affordable and easily avail-
able. Point-of-care analyses for these metabolites could be rapidly 
developed, such as a lateral flow immunochromatographic assay. 
Furthermore, our study raises the possibility that dietary supple-
mentation of tryptophan, arginine, sarcosine, and LysoPCs as 
adjunctive therapies may aid COVID19 outcome.

COVID19 status relied heavily on increased plasma kynurenine. 
The essential amino acid tryptophan is metabolized to elevate the 
energy-producing cofactor nicotinamide adenosine dinucleotide, 
with kynurenine as the first stable intermediate to be formed (30).  
Increased degradation of tryptophan, with a consequential 
increase in kynurenine, occurs during an immune response and 
is driven by the release of interferon-gamma from the activated 
T-cells. COVID19 caused intense T-cell activation (31, 32) with 
an approximate 11-fold increase in plasma interferon-gamma in 
critically ill COVID19 patients when compared with healthy con-
trol subjects (9).

Although plasma kynurenine effectively discriminated 
COVID19+ patients from healthy control subjects, determination 
of COVID19 status in ICU patients required further specificity that 
was optimally provided by an arginine/kynurenine ratio. Arginine, 
an amino acid precursor for nitric oxide, was significantly depressed 
in COVID19+ patients. Arginine depletion is likely secondary to 
the intense requirement for nitric oxide signaling and antiviral 
activity (33), as well as consumption by the enzyme arginase 1 
that represents a macrophage immunoregulatory mechanism (34).  
As arginine is essential for tissue repair (35), its depletion could 
potentially delay and/or compromise ICU recovery.

Sarcosine, an amino acid that helped discriminate COVID19+ 
patients from healthy control subjects, was also significantly 
depressed. Although not superior to the arginine/kynuren-
ine ratio for diagnosing COVID19 status, sarcosine sequestra-
tion may have a critical role in COVID19 pathology. Sarcosine 
enhances the activity of antigen presenting cells (36) and activates 
autophagy (37), or the body’s removal of damaged cells and their 
immunostimulatory debris. As a protective catabolic process 
during COVID19, autophagy is critical to the antiviral response 
by direct elimination of virus, the presentation of viral antigens, 
and the inhibition of excessive inflammation (38). Sarcosine lev-
els decrease with age (37), and the elderly are most susceptible to 
COVID19 morbidity and mortality.

Depressed plasma LysoPCs also helped discriminate COVID19+ 
patients from healthy control subjects. The partial hydrolysis of 

Figure 3. A, Coronavirus disease 2019 positive (COVID19+) ICU 
patients plotted in two dimensions following dimensionality reduction of 
their respective metabolites by stochastic neighbor embedding. Blue dots 
represent COVID19+ ICU patients that survived their ICU stay, whereas 
orange dots represent COVID19+ ICU patients that died (ICU day 1 plasma). 
The dimensionality reduction shows that based on the plasma metabolites, 
the two cohorts are distinct and easily separable. The axes are dimensionless. 
B, Feature classification, demonstrating the top eight plasma metabolites 
that classify COVID19+ ICU patient outcome as alive or dead with their % 
association. Plasma creatinine was the leading outcome predictor metabolite. 
C, A time plot, demonstrating the creatinine/arginine ratio for COVID19+ 
ICU patients over 10 ICU days that either survived (blue dots)  
or died (orange dots). The two cohorts are significantly different on ICU days 
1 and 3 (**p = 0.01). Healthy control range values are represented by green 
shading.
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phosphatidylcholines by phospholipase A2 produces LysoPCs, which 
are subsequently implicated in endothelial activation (39) and phago-
cytosis of cellular debris (40). Decreased plasma LysoPCs has been 
observed in sepsis (41), where LysoPCs may aid pathogen elimina-
tion, and therapeutic replacement has been suggested to improve 
sepsis outcome (42).

Acute renal dysfunction is strongly associated with high mor-
tality in ICU patients (43). Plasma creatinine, a marker of renal 
dysfunction, was an excellent discriminator for COVID19 patients 
that either lived or died. In our COVID19+ cohort, two patients 
had chronic kidney disease and two patients required renal 
replacement therapy. The angiotensin-converting enzyme 2 recep-
tor that is essential for SARS-CoV-2 uptake is highly expressed 
on tubule epithelial cells (44). Acute kidney injury is reported to 
occur in up to 37% of COVID19 patients (45) and is secondary to 
acute tubular injury from direct viral infection (46).

Our data suggest that COVID19 diagnosis (arginine/kynurenine 
ratio) and outcome (creatinine alone or creatinine/arginine ratio) 
can be determined with point-of-care measurements of kynuren-
ine, arginine, and creatinine, and that this rapid and affordable bio-
marker approach may be complimentary to the more expensive and 
time-consuming diagnostic tools currently employed (e.g., poly-
merase chain reaction and antigen immunoassay). Furthermore, 
our study raises the possibility that dietary supplementation of tryp-
tophan (kynurenine precursor), arginine, sarcosine, and LysoPCs 
may aid COVID19 outcome as adjunctive therapies.

Despite the novelty of the metabolite biomarkers discovered, 
our study has several limitations. First, we only studied critically 
ill patients and we cannot determine the full metabolome changes 
associated with ICU admissions. Second, although our COVD19 
study population was limited, we still identified strong associations 
between the individual metabolites and outcomes and we fulfilled 
an urgent need for exploratory data to focus future hypothesis-
driven studies on larger cohorts. Third, we report only mortality 
as our primary clinical outcome. Future studies with larger sample 
sizes can explore whether reported changes in specific metabolites 
correlate with additional clinical outcomes such as functional sta-
tus in survivors. Finally, our analyses employed a cross-validation 
methodology in which the classifier was trained multiple times, 
each time on a different subset of the data, with the remainder of 
the data withheld for use only in testing. The reported accuracy is 
the mean accuracy of all such trials. This is a standard, accepted, 
technique in the machine learning literature, but should be vali-
dated on a larger testing set that is used only once. Overfitting was 
minimized by using a very small number of trees with a limited 
depth (29), and the results verified by training a simple linear vec-
tor machine and by identifying concordance between the results.

CONCLUSIONS
In summary, we report a unique metabolome in COVID19+ ICU 
patients, with identification of three metabolites that appear to 
be accurate diagnostic/prognostic biomarkers for future stud-
ies. Given the rapid spread of COVID19 and the critical need for 
rapid and affordable diagnostics, our data may be invaluable for 
future testing. In addition, our exploratory data may be useful for 
guiding resource mobilization and/or goals of care discussion, but 

only after validation in larger COVID19+ cohorts. Furthermore, 
patient stratification is critically important for future COVID19 
interventional trials.
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