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Despite the availability of a prophylactic vaccine, chronic hepatitis B (CHB) caused
by the hepatitis B virus (HBV) is a major health problem affecting an estimated
292 million people globally. Current therapeutic goals are to achieve functional cure
characterized by HBsAg seroclearance and the absence of HBV-DNA after treatment
cessation. However, at present, functional cure is thought to be complicated due
to the presence of covalently closed circular DNA (cccDNA) and integrated HBV-
DNA. Even if the episomal cccDNA is silenced or eliminated, it remains unclear how
important the high level of HBsAg that is expressed from integrated HBV DNA is for
the pathology. To identify therapies that could bring about high rates of functional cure,
in-depth knowledge of the virus’ biology is imperative to pinpoint mechanisms for novel
therapeutic targets. The viral proteins and the episomal cccDNA are considered integral
for the control and maintenance of the HBV life cycle and through direct interaction with
the host proteome they help create the most optimal environment for the virus whilst
avoiding immune detection. New HBV-host protein interactions are continuously being
identified. Unfortunately, a compendium of the most recent information is lacking and
an interactome is unavailable. This article provides a comprehensive review of the virus-
host relationship from viral entry to release, as well as an interactome of cccDNA, HBc,
and HBx.
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INTRODUCTION

Hepatitis B virus (HBV) is a member of the Hepadnaviridae family which is transmitted via
bodily fluids as well as by vertical transmission (Davis et al., 1989; Schweitzer et al., 2015). The
outcome of HBV infection is determined by multiple host and viral factors, and determines
whether the infection will be acute, chronic, or occult (Fanning et al., 2019). Despite the
availability of a prophylactic vaccine and potent antiviral treatments, chronic hepatitis B (CHB)
infection affects 292 million individuals worldwide (Lazarus et al., 2018). The current standard
of care is treatment with nucleos(t)ide analogs (NUCs) (i.e., lamivudine, adefovir, entecavir,
telbivudine, and tenofovir), that inhibit the HBV polymerase reverse transcription (Liang et al.,
2015). These therapies lead to suppression of viral replication, visible by a decrease in viral
load, the normalization of serum alanine transaminase and improvement of liver histology
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(Bitton Alaluf and Shlomai, 2016). However, even prolonged
treatment with NUCs rarely results (<10%) in functional cure of
CHB and most often leads to virological relapse after treatment
cessation (Liang et al., 2015; Kim, 2018).

Also pegylated interferon alpha (peg-IFNα) is approved for
use in CHB patients although it is not the preferred therapy
due to the occurrence of side effects. Furthermore, it is counter
indicated for some patients such as those with liver cirrhosis
(Saracco et al., 1994).

Untreated or off-treatment chronic patients are at risk to
develop life threatening conditions such as fibrosis, cirrhosis,
liver failure, and hepatocellular carcinoma (HCC). In 2015,
887,000 people died from HBV-related cirrhosis and liver cancer
alone (WHO, 2017). The ultimate therapeutic goal in CHB
is preventing these life-limiting outcomes and to achieve a
functional cure characterized by the loss of surface antigen
(HBsAg) and HBV-DNA in the blood off-treatment.

Hepatitis B virus functional cure will be achieved when the
high viral load, the antigen burden and inadequate host immune
responses are overcome and thus may need a broader therapeutic
approach involving multiple targets, both viral and host. With
regard to the latter, in-depth knowledge of the HBV life cycle
is indispensable for identifying mechanisms, that are targetable
with new therapeutics.

Part of the therapeutic approach may be to target the interface
between viral proteins and cellular targets. The HBV viral
proteins have pluripotent functions and our understanding of
how they interact with host proteins is continuously evolving.
The interactions of these viral factors with the host cell proteome
are complex and helps to shape the cellular environment for the
virus to replicate. In addition, cccDNA, the template of all viral
mRNAs, behaves as a minichromosome and attracts a multitude
of protein partners. However, all these reported interactions are
scattered in literature, and currently there is no overview bringing
together the interactome of HBV. This review aims to provide
such an overview, from entry to viral release, it summarizes the
known interactions between viral proteins and host proteins.
Because cccDNA, HBc, and HBx have been described in many
interactions, we focused the construction of an interactome
network around these three entities.

INTERACTIONS DURING THE EARLY
PHASES OF HBV INFECTION

The HBV particle consists of an incomplete 3.2 kb double-
stranded (ds)DNA genome [relaxed circular DNA (RC-DNA)]
packaged together with the viral polymerase in an icosahedral
capsid assembled by HBV core (HBc) proteins (Summers et al.,
1975). This nucleocapsid is enveloped by a lipid membrane
studded with three forms of HBV surface antigen protein
(collectively referred to as HBsAg) to compose the virus or Dane
particle [reviewed by Bruss (2004)].

The life cycle of HBV begins upon its interaction with
heparan sulfate proteoglycans (HSPGs) and subsequent binding
to the sodium taurocholate co-transporting polypeptide (NTCP)
receptor on the surface of the hepatocyte (Watashi et al., 2014;

Yan et al., 2014; Figure 1). The interaction between virus and
cell induces conformational changes of the membrane embedded
myristoylated N-terminal preS1-domain of the viral large surface
protein (L-HBsAg) leading to exposure of the receptor binding
site for the NTCP receptor, which enables binding of the
virus and entrance into the cell (Schulze et al., 2007, 2010;
Yan et al., 2012, 2013, 2014; Nkongolo et al., 2014; Watashi
et al., 2014). Recently, a crucial role in mediating HBV-NTCP
internalization of epidermal growth factor receptor (EGFR) was
published (Iwamoto et al., 2019). Besides the NTCP receptor,
squamous cell carcinoma antigen 1 (SCCA1) and ferritin light
chain (FTL) have also been identified as HBV co-receptors
(Figure 1). Triple complexes of preS1, FTL, and SCCA1 were
observed and overexpression assays with these proteins showed
increased infection rates both in vitro and in vivo (Hao et al.,
2012). The prevention of entry has been of interest as an antiviral
target to circumvent viral spread by blocking de novo infection.
In recent years molecules such as Myrcludex B (also known
as bulevirtide), ezetimibe, cyclosporin derivates (CsA), and
monoclonal antibodies against HBsAg epitopes were identified
to interfere with this process (Gripon et al., 2005; Lucifora et al.,
2013; Shimura et al., 2017).

The virus enters the cell by inducing endocytosis via caveolin-
mediated endocytosis or via clathrin-mediated pathways
(Macovei et al., 2010; Umetsu et al., 2018; Figure 1). In
differentiated HepaRG cells, HBV infection has shown to be
dependent on caveolin-mediated endocytosis. However, in
Umetsu et al. (2018), the formation of a complex between
the L-HBsAg, the clathrin heavy chain (CHC) and the clathrin
adaptor protein-2 (AP-2) was described, suggesting an alternative
endocytosis pathway (Figure 1). Indeed, inhibition of the
clathrin-mediated pathway by silibinin and chlorpromazine has
been reported to impair HBV uptake (Huang et al., 2012). Further
work will be needed to understand the relative importance of
these two pathways. After endocytosis, subsequent movement
of the virus through the endocytic pathway is regulated by Rab
proteins. These are guanosine triphosphatases (GTPases) that
occupy specific endocytic compartments and direct endocytic
vesicles to different cellular compartments. Silencing of Rab5 or
Rab7, in contrast with Rab9 and Rab11, resulted in the inhibition
of the early stages of HBV infection implying that the transport
of virus to late endosomes is important for a successful infection
(Macovei et al., 2013; Figure 1).

The precise location and timing of nucleocapsid release from
the envelope remains unclear, but this process is required prior
to nuclear entry. Transport of the nucleocapsid to the nucleus
is facilitated by the microtubule network and the dynein L11
motor proteins through a direct interaction with the capsid
(Osseman et al., 2018; Figure 1). In the nucleocapsid “uncoating”
process, phosphorylation of the C-terminus of HBc destabilizes
the capsid and allows the binding of importins α and β (Kann
et al., 1999; Barrasa et al., 2001; Nguyen et al., 2008). Although a
direct interaction has not been established, a number of kinases
including core associated kinase (CAK), SR protein-specific
kinase 1 (SRPK1) and SR protein-specific kinase 2 (SRPK2), have
been reported to be involved in this phosphorylation process
(Kau and Ting, 1998; Daub et al., 2002; Figure 1).
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FIGURE 1 | HBV life cycle from viral entry to release.

Once the nucleocapsid arrives at the nuclear pore complex
(NPC), it can pass the complex as an intact particle (Pante and
Kann, 2002; Fay and Pante, 2015). Interestingly, HBV seems to
utilize a unique way of triaging immature from mature capsids at
the level of the NPC as only mature capsids disassemble. In this
process, importin β and Nup153 play a role via direct interaction
with the capsid (Schmitz et al., 2010; Figure 1). Once through
the NPC, the capsid is deposited in the nuclear basket where
only mature capsids can pass. In the nucleus, the final uncoating,
where capsid structures and viral DNA separate, takes place in an
importin α and β-dependent manner (Gallucci and Kann, 2017).

THE cccDNA MINICHROMOSOME

Once inside the nucleus, the RC-DNA is converted into cccDNA
(Summers et al., 1975; Tuttleman et al., 1986; Wu et al., 1990;
Lieberman, 2016). Early research using duck hepatitis B virus
(DHBV) showed that the cccDNA was in fact organized as a
minichromosome similar to host chromatin and SV40 (Newbold
et al., 1995). Further DHBV studies showed that in vitro between
1 and 56 copies cccDNA reside in the nuclei of infected cells
(Kock et al., 2010). These copy numbers were slightly lower
(1–17 copies/cell) in in vivo studies in ducks. Further it was
determined that the half-life of DHBV cccDNA is between 35
and 57 days (Addison et al., 2002; Zhang et al., 2003) although
shorter half-lives have described (Tuttleman et al., 1986; Wu
et al., 1990; Newbold et al., 1995). In vitro kinetic studies were
also done using HBV, cccDNA formation is an early life cycle

event (Tuttleman et al., 1986) and it was shown that the cccDNA
pool grows over the course of 3 days after which a stable pool is
reached (5–12 copies/cell) with a half-life of about 40 days (Ko
et al., 2014). Similar findings were done using woodchuck HBV
(Dandri et al., 2000). Patient samples of HBV infected individuals
showed that cccDNA copy numbers were much lower in vivo
ranging from 0.01 to 9 copies/cell but at the same time had a
much longer half-life of months to a year (Werle-Lapostolle et al.,
2004; Bourne et al., 2007; Boyd et al., 2016; Huang et al., 2021).
Interestingly, the size and half-life of the cccDNA pool in patients
has been suggested to depend on the antigen status (Lythgoe et al.,
2021) as much more cccDNA has been shown in HBeAg positive
patients while only 0.002 copies/cell were observed in patients
that showed HBsAg seroclearance (Werle-Lapostolle et al., 2004).

The cccDNA genome is transcribed to different viral RNAs
coding for HBx (0.7-kb RNA), three forms of HBsAg (2.4-kb
RNA encoding the large and 2.1-kb RNA encoding the middle
and small HBsAg), pre-core protein or HBeAg (3.5-kb RNA)
and the core and polymerase protein (pre-genomic RNA or
pgRNA, 3.5-kb). This pgRNA also becomes incorporated in
the nucleocapsid thereby providing the template for the viral
polymerase to produce RC-DNA.

Host Factors Involved in cccDNA
Formation
Little is known about the host factors involved in the formation
of the cccDNA. The L-HBsAg is not directly involved in
cccDNA formation, but is part of a negative feedback mechanism
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in which high levels of surface protein shut down nuclear
shuttling of mature nucleocapsids and direct the cell to produce
virions instead (Summers et al., 1990). HBc is suggested to
be present during the cccDNA formation process (Kock et al.,
2010; Schreiner and Nassal, 2017) which is further evidenced
by the fact that capsid modifiers inhibit cccDNA formation
(Berke et al., 2017).

Several host factors have been reported to interact with HBV
cccDNA during its formation and have quite diverse roles. The
Flap endonuclease 1 (FEN1), an endonuclease that plays a role
in DNA replication and repair, was shown to interact with RC-
DNA in the nucleus and additionally could promote cccDNA
formation in vitro (Kitamura et al., 2018; Figure 1). The discovery
of a protein partner involved in DNA damage repair is coherent
with the previous finding that this machinery is exploited by
viruses to their own benefit (Schreiner and Nassal, 2017). Ku80,
a component of non-homologous end joining DNA repair
pathway, was essential for synthesis of cccDNA from dsDNA,
but not from RC-DNA (Guo et al., 2012; Figure 1). In these
processes, HBx could be an adaptor to link cccDNA formation
with DNA damage response pathways, under the assumption
that HBx is already present in the cell when cccDNA is being
formed (Hodgson et al., 2012; Guo et al., 2014; Murphy et al.,
2016; Niu C. et al., 2017). The link with the host DNA damage
and repair machinery does not end with this interaction, the
tyrosyl-DNA-phosphodiesterase (TDP2) also plays a partial role
in cccDNA formation by releasing the viral transcriptase from the
RC-DNA (Koniger et al., 2014; Cui et al., 2015; Figure 1). The
host DNA polymerases K (POLK), H (POLH), and L (POLL) have
all been reported to have a positive impact on cccDNA formation,
however, the exact mechanism(s) is (are) not yet clear (Qi et al.,
2016; Figure 1). In addition to DNA polymerases, knockout
experiments showed the importance of cellular DNA ligase 1 and
2 in cccDNA formation (Long et al., 2017). Recently, it was shown
that the plus-strand and the minus-strand require different
cellular proteins. The plus-strand repair required proliferating
cell nuclear antigen (PCNA), replication factor C (RFC) complex,
DNA polymerase delta (POLδ), flap endonuclease 1 (FEN1), and
DNA ligase 1 (LIG1) while the repair of the minus-strand only
required FEN1 and LIG1 (Wei and Ploss, 2020). Also cellular
DNA topoisomerases are required for cccDNA formation and
amplification (Sheraz et al., 2019). Finally, pre-mRNA processing
factor 31 (PRPF31) was identified as a cccDNA-associating factor
involved in cccDNA formation (Kinoshita et al., 2017; Figure 1).

The Interactome of the cccDNA
Similar to a cellular chromosome, the cccDNA is bound to
histones to form a minichromosome. These host-derived histones
(H2A, H2B, H3, and H4) provide, together with the viral HBc,
the stable scaffold for the cccDNA to be supercoiled (Newbold
et al., 1995; Chong et al., 2017). That being said, the role
of HBc in both cccDNA formation and maintenance is still
under investigation. For example, despite their involvement in
several processes regarding cccDNA formation, maintenance and
transcription, capsid modifying compounds do not eliminate
the cccDNA pool (Berke et al., 2017) nor is HBc essential for
transcription (Zhang et al., 2014).

On the cccDNA of Duck hepatitis B virus (DHBV),
nucleosomes are non-randomly positioned, suggesting that,
like host cellular chromatin, positioning of the nucleosomes
and histone modifications of the cccDNA may regulate
cccDNA transcription (Bock et al., 1994; Pollicino et al.,
2006). Methylation, acetylation, phosphorylation or other
posttranslational modifications (PTMs) of these cccDNA-bound
histone tails can fine tune the gene expression by altering the
chromatin structure (Tropberger et al., 2015). This change in
structure can wind the chromatin more tightly to prevent access
of transcription factors and repress gene transcription. On the
other hand, histone modifications can also result in increased
DNA accessibility, transcription factor binding and therefore
promoting gene activation (Li et al., 2007; Voss and Hager,
2014). In addition, the minichromosome attracts several other
partners, many of which are transcription factors that further
determine whether the cccDNA is transcriptionally active or
inactive (Table 1).

As previously mentioned, HBx and HBc proteins are bound to
cccDNA. HBc has been described to modulate transcription from
the cccDNA. Zlotnick et al. showed that the presence of HBc on a
CpG island in the cccDNA can be linked to increased cccDNA
activity, while methylation of the CpG island correlated with
decreased cccDNA activity (Zlotnick et al., 2015). In addition, the
presence of HBc appears to have a role in the maintenance of the
structure of the cccDNA (Bock et al., 2001). Together these data
suggest that HBc contributes to the epigenetic regulation of the
cccDNA, which in turn contributes to its longevity.

Modalities Acting on cccDNA
A role in viral rebound made cccDNA a target for new antiviral
drug development. Success of such tactics relies on complete
inhibition of cccDNA throughout the lifespan of the hepatocyte.
A first approach is to target the formation of cccDNA, although
it can be questioned how much benefit CHB patients will
have of such a therapy in the event the cccDNA does not
become reduced. Several molecules reported to act through this
mechanism have been described in literature. However, to date,
these molecules have either been stopped at pre-clinical stage
or did not progress far in clinical trials (Cai et al., 2012; Liu
et al., 2016). The only assets which encompass this capacity
and are still under clinical investigation are the entry inhibitor
bulevirtide and capsid assembly modulators. The latter are small
molecules that accelerate capsid formation but turned out to have
a dual mode of action in preventing cccDNA formation when
added in vitro at early stages of infection (Berke et al., 2017;
Vandenbossche et al., 2019). Secondly, a number of molecules
have been described that silence the cccDNA, either by inhibiting
cccDNA transcription [e.g., Tamibarotene (Nkongolo et al.,
2019)] or by diminishing HBV RNA levels post-transcription
(e.g., RNA destabilizers such as RG7834 (Mueller et al., 2019);
RNA interference). Tamibarotene never made it to clinical trials
for HBV, while RG7834 was stopped in Phase I. Transcriptional
control of cccDNA expression may also be achieved by interfering
with the function of HBx, HBc or an interaction partner. An
example is the interference between HBx and DNA damage-
binding protein 1 (DDB1). HBx was found to hijack DDB1
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TABLE 1 | List of known protein-cccDNA interactions associated with increased or decreased transcriptional regulation.

cccDNA minichromosome
partner

Process References

Associated with Enhanced Replication – Verified Interactions

HBx Required for replication and transcription. Belloni et al., 2009

HBc HBc binds to the CpG islands of HBV cccDNA. Guo et al., 2011

CBP HBx interacts and cooperates with CBP to modify chromatin dynamics and enhances CREB
activity.

Pollicino et al., 2006; Belloni
et al., 2009

P300 HBx increases amount of P300 recruited to promotors. Belloni et al., 2009

PCAF Recruited to the cccDNA after HBx binding to the minichromosome. Belloni et al., 2009

LSD1/KDM1A Recruited in an HBx-dependent manner, induces HBV replication and HBV transcription involves
the demethylation of histone 3 lysine 9 (H3K9).

Alarcon et al., 2016

CREB/CREB1 Essential for HBV replication. It binds to the cAMP response elements (CREs) located at the X and
preS2 promoters. Interaction with cccDNA dependent on CRTC1.

Tacke et al., 2005; Kim B.K.
et al., 2008; Tang et al., 2014)

STAT1 Binds to cccDNA, binding impaired upon IFN treatment. Belloni et al., 2012

STAT2 Binds to cccDNA, binding impaired upon IFN treatment. Belloni et al., 2012

STAT3 May bind to enhancer I (ENI) and increase function. Quarleri, 2014

Set1A/SETD1A Recruited via a HBx-dependent manner, stimulates an active cccDNA epigenetic state by
methylating histone 3 lysine 4 (H3K4) in viral HBV promoters.

Alarcon et al., 2016

CRTC1 Recruited to the preS2/S promotor for the activation of replication. Interaction with cccDNA
dependent on CREB/CREB1.

Tang et al., 2014

KLF15 Activates S and HBc promotors and enhances replication when overexpressed. Zhou et al., 2011

SIRT1 SIRT1 interacts with HBx and promotes the recruitment of HBx and other transcriptional factors to
the cccDNA (specifically to the precore promoter), promoting the activation of HBV transcription
(Deng et al., 2017). However, after IFNα treatment, SIRT1 is recruited to the cccDNA to repress
transcription.

Belloni et al., 2012

RFX1 Binds the enhancer region upon doxorubicin treatment to promote replication. Wang et al., 2018

RXRα RXRα recruitment to the cccDNA in parallel with P300 recruitment Zhang Y. et al., 2017

SP1 Several binding sites, depending on the site, the activity of SP1 is enhancing or inhibitory. Quasdorff and Protzer, 2010

TBP Binds the TATA box. Quasdorff and Protzer, 2010

NRF1 Binds to the HBx promotor and positively regulates HBx transcription Quasdorff and Protzer, 2010

C/EBP Binds enhancer II (EnhII) and the HBc promotor. Low concentrations have a positive effect on
replication while high concentrations evoke inhibition. Potentially also a repressor role.

Pei and Shih, 1990; Quasdorff
and Protzer, 2010

PPAR Increases transcription from several promotors. Quasdorff and Protzer, 2010

FXR/NR1H4 Can bind EnhII and HBc regions to have a stimulating effect on transcription. Quasdorff and Protzer, 2010

AP1 Binding to HBc promotor and shown to work in synergy with SIRT and HBx. Quasdorff and Protzer, 2010;
Ren et al., 2014

HNF1/HNF1A Binding sites on the preS promotor. HNF1/HNF1A synergistically works with Oct1 and
LRH-1/NR5A2 to enhance replication.

Zhou and Yen, 1991; Cai et al.,
2003

LRH-1 (NR5A2)/hB1F Transactivator of the EnhII and HBc regions. Synergy with HNF1/HNF1A. Cai et al., 2003; Quasdorff and
Protzer, 2010

HNF3 Several binding sites identified, binding seems to be associated with a stimulating effect. Cai et al., 2003; Quasdorff and
Protzer, 2010

HNF4/HNF4A Stimulation of transcription from several promotors. Cai et al., 2003; Quasdorff and
Protzer, 2010

HLF Stimulatory effect on the HBc regulatory region. Ishida et al., 2000

FTF Stimulatory effect on EnhII. Ishida et al., 2000

Parvulin 14 Recruited to cccDNA in the presence of HBx to promote transcriptional activation. Saeed et al., 2018

Parvulin 17 Recruited to cccDNA in the presence of HBx to promote transcriptional activation. Saeed et al., 2018

Activation-induced cytidine
deaminase (AID)

Interaction enhances cccDNA transcription. Qiao et al., 2016

P19 Interaction enhances cccDNA transcription. Qiao et al., 2016

Associated with enhanced Replication – Potential Interactions

CRTC2 Enhances HBV transcription and replication by inducing PGC1α expression. Tian et al., 2014

PGC1α Induction of HBV transcription, potentially via FOXO1. Quasdorff and Protzer, 2010;
Tian et al., 2014

NF1 Three binding sites on HBV genome. Ori et al., 1994; Quasdorff and
Protzer, 2010

(Continued)
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TABLE 1 | (Continued)

cccDNA
minichromosome
partner

Process References

Oct1 Oct-1 and HNF-1 sites are necessary for liver-specific transcription of the preS1 promoter. Zhou and Yen, 1991

EFC Binding site identified in central HBc promotor. Quarleri, 2014

Associated with supressed Replication – Verified Interactions

HDAC1 Correlated with decline in replication. Belloni et al., 2009; Levrero et al., 2009

Actively recruited to the cccDNA under IFNα-treatment to repress transcription. Belloni et al., 2012

YY1 Part of the transcriptional repressor complex PRC2. Actively recruited to the cccDNA under IFNα

treatment to repress transcription.
Belloni et al., 2012

SETDB1 Repressing histone deacetylase. Riviere et al., 2015; Alarcon et al., 2016

EZH2 Repression of cccDNA. Salerno et al., 2020

HP1/CBX1 HP1/CBX1 proteins are recruited to the cccDNA through interaction with H3K9me3 and contribute
to transcriptional repression.

Riviere et al., 2015

Spindlin 1/SPIN1 Inhibition of transcription from the cccDNA via epigenetic modulation. Ducroux et al., 2014

APOBEC3G May contribute to cccDNA editing. Antiviral effect through DNA and RNA packaging. Nguyen et al., 2007; Luo et al., 2016

SP1 Several binding sites, depending on the site the activity of SP1 is enhancing or inhibitory. Quasdorff and Protzer, 2010

TR4 Repressing function by inhibition of HNF4A mediated transactivation. Binds the HBc promotor. Quasdorff and Protzer, 2010

HNF1/HNF1A Binding site identified on EnhII. Binding associated with a decline in replication by induction of
NF-κB/NFKB1.

Cai et al., 2003; Dai X. et al., 2014;
Lin et al., 2017

HNF6 Inhibits gene expression and replication. Hao et al., 2015

COUP-TF/NH2F1 Overexpression of COUP-TF/NH2F1 led to a decrease in replication via binding on NRRE in the
enhancer and HBc regions.

Yu and Mertz, 2003

PRMT5 PRMT5-mediated histone H4 dimethyl Arg3 (H4R3me2) repressed cccDNA transcription.
PRMT5-H4R3me2 interacted with HBc and the Brg1-based hSWI/SNF chromatin remodeler, which
accounted for the reduced binding of RNA polymerase II to cccDNA.

Zhang W. et al., 2017

E4BP4/NFIL3 Associated with suppression of EnhII. Ishida et al., 2000

NREBP Inhibits core promotor activity by binding the NRE. Binding is inhibited by HBx. Lee et al., 2019

ZHX2 Restriction factor that regulates HBV promoter activities and cccDNA modifications. Xu et al., 2018

Associated with supressed Replication – Potential Interactions

Prox1 Interacts with LRH-1/NR5A2 and downregulates LRH-1/NR5A2 mediated activation. Quasdorff and Protzer, 2010

APOBEC3A Upregulation by IFNα and lymphotoxin-β receptor resulted in cytidine deamination, Lucifora et al., 2014

apurinic/apyrimidinic site formation and finally cccDNA degradation.

APOBEC3B Upregulation by IFNα and lymphotoxin-β receptor resulted in cytidine deamination, Lucifora et al., 2014

apurinic/apyrimidinic site formation and finally cccDNA degradation.

SIRT 3 Mediates cccDNA transcription. Repression lifted by HBx. Ren et al., 2018

Verified interactions are those protein-protein interactions that were identified using proteomics methods such as pull downs or yeast-2-hybrid. Potential interactions are
those which have been shown using methods that strongly suggest an interaction (e.g., co-localization) but were not verified using pull-down methods.

which in turn recruits the ubiquitylation machinery to send
Structural Maintenance of Chromosomes protein 5/6(SMC5/6),
a transcriptional repressor of cccDNA, to the proteasome for
degradation. Two molecules, pevonedistat, a NEDD8-activating
enzyme inhibitor, and nitazoxanide, a thiazolide anti-infective
agent, have been shown to restore SMC5/6 levels and suppress
viral transcription (Decorsiere et al., 2016; Sekiba et al., 2019a,b).
Recently, epigenetic modifiers that specifically target viral factors
involved in the regulation of cccDNA expression have been
described and are currently being evaluated. Several selective
inhibitors (e.g., C646) for histone acetyltransferase like CBP and
P300 have been used to study the inhibitory effect on HBV
transcription (Tropberger et al., 2015). The prodrug GS-5801
has also been shown to inhibit transcription from cccDNA by
blocking the activity of lysine demethylase 5 (KDM5) (Gilmore
et al., 2017). Although these observations show that silencing of
HBV transcription is possible, the main throwback of most of

these targets is the lack of desired selectivity for cccDNA and their
potential to impact cellular processes.

Complete elimination of cccDNA by compromising the
stability or the half-life of the molecule is often dubbed the “Holy
Grail” of HBV research. Many molecules have been described
that phenotypically reduce the quantity or transcription level of
cccDNA. Recently, a small molecule, ccc_R08, with an unknown
mode of action was shown to decrease the pool of cccDNA
together with a decrease in viral transcripts and viral antigens
in primary human hepatocytes (PHH) and in an HBV minicircle
mouse model (Wang et al., 2019). In most instances, information
on the exact mechanism of such molecules is lacking implying
a need to conduct target deconvolution studies to identify
the respective interaction partner or process. We created a
cccDNA network map, not only to visualize the currently known
cccDNA interacting proteins but also to be put alongside such
exercises (Figure 2).
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FIGURE 2 | Gene association network showing the relationship between HBx, HBc, and HBV cccDNA interacting proteins. In the network, proteins which only
interact with HBx are indicated in green, proteins which only interact with cccDNA are shown in pink, and proteins that only interact with HBc are shown in red.
Proteins that were shown to interact with more than two of the founding nodes (cccDNA, HBc, and HBx) are depicted in orange. proteins that were extrapolated to
connect to one or more interacting proteins are shown in blue.

THE HBx INTERACTOME

The interactome of HBx extends beyond its interaction
with the cccDNA and associated proteins. Besides nuclear
interaction partners, HBx also interacts with various proteins
in the cytoplasm, the endoplasmic reticulum (ER) and the
mitochondria (Henkler et al., 2001; Huh and Siddiqui, 2002;
Belloni et al., 2009; Li et al., 2017; Figure 1). This may explain
why this small viral protein (17-kDa) is not only involved in HBV
replication, but is also shown to contribute to the development of
HCC and interfere with cell cycle regulation, glucose metabolism,
oxidative stress, calcium signaling, apoptosis and DNA repair
(Luber et al., 1993; Waris et al., 2001; Bouchard et al., 2006;
Benhenda et al., 2009; Table 2). The pivotal nature of HBx is
demonstrated by Table 2 in which more than 250 HBx interaction
partners are summarized. However, it does need to be mentioned
that some of these interactions may be very weak or very brief and
their relevance may be limited.

Besides the transcriptional modulation of cccDNA, HBx has
also been described to modulate gene expression of multiple
proteins involved in signaling pathways such as the AKT
serine/threonine kinase 1 (AKT1), Ras-Raf-mitogen-activated
protein (MAP) kinase, MAPK8/pSMAD3L, (TβRI)/pSMAD3C,
nuclear factor-kappa B (NF-kB) pathways and potential
restriction factors such as STIM1, zinc finger E-box binding
homeobox 2 (ZEB2), and proteasome activator subunit 4
(PSME4) (Benn et al., 1996; Klein and Schneider, 1997;
Waris et al., 2001; Yoo et al., 2008; Zhang et al., 2012; Liu
et al., 2014; Lu et al., 2015; Rawat and Bouchard, 2015;
Wu et al., 2016; Yu et al., 2016; Cheng et al., 2018; Zheng
et al., 2019; Minor et al., 2020; Table 2). Interestingly, HBx
expression itself is also influenced by cellular proteins,
for example, NRF1 has shown to bind the HBx promotor
to activate it in contrast to ATF2, which showed the
opposite effect (Choi et al., 1997; Tokusumi et al., 2004;
Quasdorff and Protzer, 2010).
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TABLE 2 | HBx interacting proteins listed together with the cellular processes or pathways in which they are involved.

Interaction partner Cellular Process References

RPB5 Transcriptional machinery Cheong et al., 1995

TFIIB Transcriptional machinery Lin et al., 1997

TBP Transcriptional machinery Qadri et al., 1995

TFIIH Transcriptional machinery Qadri et al., 2011

CBP Coactivator Cougot et al., 2007

P300 Coactivator Cougot et al., 2007

PCAF Coactivator Chan et al., 2013

ATF/CREB Transcription factor Maguire et al., 1991

ATF3 Transcription factor Barnabas and Andrisani, 2000

ICERIIgamma Transcription factor Barnabas et al., 1997;
Barnabas and Andrisani, 2000

gadd153/Chop10 Transcription factor Barnabas et al., 1997

c/EBPA Transcription factor Choi et al., 1999

NF-IL-6 Transcription factor Barnabas et al., 1997

ETS/ERG# Transcription factor Qin et al., 2013

EGR/EGRF1 Transcription factor Yoo and Lee, 2004

SMAD4 Transcription factor Shi et al., 2016

Oct1 Transcription factor Antunovic et al., 1993

RXR Transcription factor Kong et al., 2000

P53 Transcription factor. Induces destabilization of HBx. Belloni et al., 2009; Xian et al.,
2010; Iyer and Groopman, 2011

PRMT1 Relieves PRMT1 suppression from viral replication. Benhenda et al., 2013

Spindlin1 Interaction with HBx relieves repression by Spindlin1. Knockdown induced an increase in HBV
transcription and H3H4 trimethylation on the cccDNA.

Ducroux et al., 2014

PP1 HBx interferes with the inactivation of CREB/CREB1 by PP1. Cougot et al., 2012

JMJD5 Interaction with HBx facilitates HBV replication through the hydroxylase activity of JMJD5. Kouwaki et al., 2016

DDB1 Recruited resulting in SMC5/6 degradation. Decorsiere et al., 2016

SMC5/6 Recruited to the ubiquitin machinery to be degraded to enhance transcription. Decorsiere et al., 2016

hepatocystin May be an antiviral pathway, hepatocystin seems to accelerate HBx degradation. Shin et al., 2013

Clathrin heavy chain Unknown Shin et al., 2013

HSPA5 Unknown Shin et al., 2013

HSPA9 Unknown Shin et al., 2013

CALD1 Unknown Shin et al., 2013

HSPA8 Unknown Shin et al., 2013

XRCC6 Unknown Shin et al., 2013

PDIA4 Unknown Shin et al., 2013

PRKCSH Unknown Shin et al., 2013

HSPA6 Unknown Shin et al., 2013

DDX17 Unknown Shin et al., 2013

HSPA1L Unknown Shin et al., 2013

HSPA1A Unknown Shin et al., 2013

SIRT1 SIRT1 interacts with HBx thereby enabling HBx-induced transcriptional activity cccDNA. Srisuttee et al., 2012;
Deng et al., 2017

Set1A/SETD1A# Recruited by HBx to cccDNA to increase transcription. Alarcon et al., 2016

LSD1# Bound to viral promotors. Alarcon et al., 2016

CRTC1 Interaction associated with increased transcription. Tang et al., 2014

CPAP/CENPJ Promotes HBx-mediated cell proliferation and migration in a SUMO-dependent manner. Yang et al., 2013

CREB/CREB1 Upregulated via HBx-CREB/CREB1 interaction. Yang et al., 2013

CRM1/XPO1 Potential activation of CRM1/XPO1 and role in HBx-mediated carcinogenesis. Forgues et al., 2001

NFκB# Relocalization via NES motif. Forgues et al., 2001

VISA/MAVs Disruption of VISA/MAVs and downstream interacting proteins thereby impairing IFN signaling. Wang X. et al., 2010

MDA5 Impairment of IFN signaling. Wang X. et al., 2010

GRP78 Role in HCC via suppression of eIF2α phosphorylation, inhibited expression of ATF4/CHOP/Bcl-2, and
reduced cleavage of PARP.

Li et al., 2017

(Continued)
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TABLE 2 | (Continued)

Interaction partner Cellular Process References

AKT1 Cell proliferation, abrogation of apoptosis and tumorigenic transformation of cells. Khattar et al., 2012

Bcl-2 Management of calcium levels to benefit viral replication. Geng et al., 2012

BCL2L1 Management of calcium levels to benefit viral replication. Geng et al., 2012

HDAC1 Repression insulin-like growth factor binding protein-3. HBx also induces HDAC1. Pollicino et al., 2006; Yoo et al.,
2008; Shon et al., 2009

SP1# HBx induces deacetylation of SP1. Pollicino et al., 2006; Yoo et al.,
2008; Shon et al., 2009

HIF1a HBx aids the MTA1/HDAC complex in stabilizing HIF1a. Yoo et al., 2008

USP-15 USP-15 mediated deubiquitylation protects HBx from proteasomal degradation. Su et al., 2017

PARP1 DNA damage and repair, carcinogenesis. Na et al., 2016

Cardiolipin (lipid) Mitochondrial membrane permeabilization. You et al., 2019

Prdx1 Peroxiredoxin interfaces with HBV-RNA to promote RNA decay, potentially HBx rescues this event. Deng et al., 2018, 2019

Parvulin 14/PIN4 Interaction with HBx in nucleus, cytoplasm and mitochondria to enhance HBx stability, translocation to
the nucleus and mitochondria to increase HBV replication.

Saeed et al., 2018

Parvulin 17 Interaction with HBx in nucleus, cytoplasm and mitochondria to enhance HBx stability, translocation to
the nucleus and mitochondria to increase HBV replication.

Saeed et al., 2018

14-3-3ζ Interaction found in HCC cells, involvement of AKT pathway. Tang et al., 2018

c-myc Oncogenesis Lee et al., 2016

Orail protein Calcium metabolism Yao et al., 2018

HMGB1 Autophagy Fu et al., 2018

FXR/NR1H4 Transactivation FXR/NR1H4, oncogenesis Niu Y. et al., 2017

PP2Ac/PP2CA Cell cycle and apoptosis Gong et al., 2016

SMYD3 Involved in AP1 activation Hayashi et al., 2016

P62 Glucose metabolism Liu B. et al., 2015

TLR4 Tumorigenesis Wang et al., 2015

BST-2@ HBV restriction factor Lv et al., 2015

MBD2 Involved in epigenetics of histones, potentially in HCC. Liu X.Y. et al., 2015

TRUSS/TRPC4AP May be linked to pathological sequelae of HBV. Jamal et al., 2015

MKI67 Cell proliferation Zhang et al., 2015

ENPEP Cell proliferation Zhang et al., 2015

MIF Cell proliferation Zhang et al., 2015

PYY Cell proliferation Zhang et al., 2015

NOLC1 Cell proliferation Zhang et al., 2015

CDC42 Cell adhesion Zhang et al., 2015

IQGAP1 Cell adhesion Zhang et al., 2015

LMO7 Cell adhesion Zhang et al., 2015

ACTN4 Cell adhesion Zhang et al., 2015

CTNNA2 Cell adhesion Zhang et al., 2015

MYH2 Cell adhesion Zhang et al., 2015

FILAMIN Cell adhesion Zhang et al., 2015

ITGB1 Cell adhesion Zhang et al., 2015

TLN1 Cell adhesion Zhang et al., 2015

NRXN1 Cell adhesion Zhang et al., 2015

CDH2 Cell migration Zhang et al., 2015

NOTCH4 Angiogenesis Zhang et al., 2015

CTNNB1 Angiogenesis Zhang et al., 2015

ANXA2 Angiogenesis Zhang et al., 2015

ATP5B Angiogenesis/cell adhesion Zhang et al., 2015

PSMC4 Protein degradation Zhang et al., 2015

PSMB3 Protein degradation Zhang et al., 2015

VDAC1 Anion transport Zhang et al., 2015

VDAC2 Anion transport Zhang et al., 2015

SLC25A3 Transport Zhang et al., 2015

S100A9 Viral reproduction Zhang et al., 2015

(Continued)
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TABLE 2 | (Continued)

Interaction partner Cellular Process References

SLC25A5 Viral reproduction Zhang et al., 2015

SLC25A10 Metabolic process Zhang et al., 2015

SLC20A1 Signal transduction Zhang et al., 2015

SLC3A2 Immune system process Zhang et al., 2015

RAP1B Signal transduction Zhang et al., 2015

RAB10 Signal transduction Zhang et al., 2015

RAB11B Signal transduction Zhang et al., 2015

RAB5A Signal transduction Zhang et al., 2015

FIS1 Programmed cell death Zhang et al., 2015

KIF1B Programmed cell death Zhang et al., 2015

DAP3 Induction of apoptosis Zhang et al., 2015

VIM Apoptosis Zhang et al., 2015

JUP Cell migration Zhang et al., 2015

RPS7 Viral reproduction Zhang et al., 2015

RPS10 Viral reproduction Zhang et al., 2015

RPS16 Viral reproduction Zhang et al., 2015

RPS20 Viral reproduction Zhang et al., 2015

RPL30 Viral reproduction Zhang et al., 2015

RPL38 Viral reproduction Zhang et al., 2015

BANF1 Viral reproduction Zhang et al., 2015

AP1B1 Viral reproduction Zhang et al., 2015

BSG Immune system process Zhang et al., 2015

ACTR1A Cell cycle Zhang et al., 2015

SRSF1 mRNA processing Zhang et al., 2015

DDB1 Wnt receptor signaling pathway Zhang et al., 2015

ATP5C1 Oxidative phosphorylation Zhang et al., 2015

PCMT1 Protein methylation Zhang et al., 2015

PPIA Viral reproduction Zhang et al., 2015

HIST2H2BE Nucleosome assembly Zhang et al., 2015

PCBP1 Metabolic process Zhang et al., 2015

GAPDH Glycolysis Zhang et al., 2015

HSP90AB1 Regulation of signaling pathway Zhang et al., 2015

COXIII@ Mitochondrial function Li et al., 2015; Zou et al., 2015

ECSIT Involved in IL-1β induction of NF-κB activation. Chen et al., 2015

Skp2 Cell cycle deregulation and transformation. Kalra and Kumar, 2006

PSMA7/XAPC7 Proteasome Huang et al., 1996

PSMC1 Proteasome Zhang et al., 2000

PSMA1 Proteasome Hu et al., 1999

PLSCR1 Unknown Yuan et al., 2015

GRN Unknown Yuan et al., 2015

SPRY1 Unknown Yuan et al., 2015

NKD2 Unknown Yuan et al., 2015

SYVN1 Unknown Yuan et al., 2015

NOTCH3 Unknown Yuan et al., 2015

LAMC3 Unknown Yuan et al., 2015

SERTAD1 Unknown Yuan et al., 2015

GAA Unknown Yuan et al., 2015

USP37 Cell cycle progression Saxena and Kumar, 2014

E4F1 P53-dependent growth arrest Dai Y. et al., 2014

Pregnane X receptor Potentially involved in carcinogenesis Niu et al., 2013

apoA-I HBV secretion Zhang et al., 2013

hBubR1/BUB1 Genomic stability Chae et al., 2013

c-FLIPL Apoptosis Kim and Seong, 2003

c-FLIPS Apoptosis Kim and Seong, 2003

(Continued)

Frontiers in Microbiology | www.frontiersin.org 10 September 2021 | Volume 12 | Article 724877

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-12-724877 September 11, 2021 Time: 16:3 # 11

Van Damme et al. The HBV Interactome

TABLE 2 | (Continued)

Interaction partner Cellular Process References

AIF Apoptosis Liu et al., 2012

AMID Apoptosis Liu et al., 2012

AIB1 NFκB signaling Hong et al., 2012

eEF1A1 Actin bundling Lin et al., 2012

VCP NFκB signaling Jiao et al., 2011

RPS3a NFκB signaling Lim et al., 2011

Gli1 Hedgehog signaling Kim et al., 2011

Phosphor-p65 NFκB signaling Shukla et al., 2011

IPS-1 RIGI signaling Kumar et al., 2011

C/EBPα Insulin signaling Kim K. et al., 2010

PTTG1@ Tumorigenesis Molina-Jimenez et al., 2010

Cul1@ Tumorigenesis Molina-Jimenez et al., 2010

TNFR1@ NFκB signaling Kim J.Y. et al., 2010

Cortactin Cytoskeletal Feng et al., 2010

Yes1 Cell growth and survival, apoptosis, cell-cell adhesion, cytoskeleton remodeling, and differentiation. Feng et al., 2010

CRK-D2 Regulates cell adhesion, spreading and migration. Feng et al., 2010

c-Src Signal transduction Feng et al., 2010

Y124 Unknown Feng et al., 2010

RasGAP GTPase, unknown Feng et al., 2010

Abl Cell growth and survival, cytoskeleton remodeling in response to extracellular stimuli, cell motility and
adhesion, receptor endocytosis, autophagy, DNA damage response and apoptosis.

Feng et al., 2010

ITSN-D1/ITSN1 Unknown Feng et al., 2010

Abl2 Cell growth and survival, cytoskeleton remodeling in response to extracellular stimuli, cell motility and
adhesion and receptor endocytosis.

Feng et al., 2010

OSF/OSTF1 Cell adhesion Feng et al., 2010

Tec Cytoskeletal, adaptive immunity Feng et al., 2010

PIG2/GAMT Carcinogenesis Feng et al., 2010

ARH6 DNA damage Feng et al., 2010

EFS Cell adhesion Feng et al., 2010

RHG4 Unknown Feng et al., 2010

VINE-D1 Cytoskeletal Feng et al., 2010

VINE-D3 Cytoskeletal Feng et al., 2010

HSP72/ASPA1A Chaperone Wang et al., 2008

C/EBPbeta Phase II detoxifying pathways. Cho et al., 2009

DNMT3A Epigenetic modifications Zheng et al., 2009

Bax Apoptosis Kim H.J. et al., 2008

VBP1 NFκB signaling Kim S.Y. et al., 2008

betaPIX Rec1 signaling Tan et al., 2008

HBXIP Centrosome and spindle formation. Wen et al., 2008

Pin1 Carcinogenesis Pang et al., 2007

AR Gene expression Zheng et al., 2007

PP2Calpha Carcinogenesis Kim et al., 2006

cyclin E/A Cell cycle regulation Mukherji et al., 2007

vinexin-beta Cytoskeletal organization Tan et al., 2006

MIF Apoptosis Zhang et al., 2006

Jab1/cops5 AP1 signaling Tanaka et al., 2006

GNbeta5 Unknown Lwa and Chen, 2005

p120E4F Mitosis and cell cycle Rui et al., 2006

Hepsin Apoptosis Zhang et al., 2005

Hsp60 Apoptosis Tanaka et al., 2004

PPARgamma Apoptosis Choi et al., 2004

ASC-2 Carcinogenesis Kong et al., 2003

E2F1 Carcinogenesis Choi et al., 2002

(Continued)
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TABLE 2 | (Continued)

Interaction partner Cellular Process References

NF-AT1/NFATC2 Calcium metabolism Carretero et al., 2002

Tbp1 Transcription Barak et al., 2001

NF-IL6 IL6 signaling Ohno et al., 1999

Jak1 JAK/STAT signaling Lee and Yun, 1998

XAP-1/UVDDB/DDB1 DNA damage repair, carcinogenesis. Becker et al., 1998

RPB5 Transcription Lin et al., 1997

HVDAC3/HDAC3@ HBx colocalized with HVDAC3/HDAC3 at the mitochondria. Rahmani et al., 2000

AP2α# HBx modulates SPHK1 via AP2α. Lu et al., 2015

SetDB1# HBx relieves SETDB1-mediated H3K9me3 induced silencing of cccDNA. Riviere et al., 2015

HP1/CBX1# HBx relieves HP1/CBX1 induced silencing of cccDNA. Riviere et al., 2015

Id-1# Id-1 destabilizes HBx by facilitating the interaction between ubiquitinated HBx and the proteasome. Ling et al., 2008

HDM2/MDM2# Promotes NEDDylation of HBx thereby enhancing its stability. Liu et al., 2017

WDR5 Facilitates recruitment of HBx to promotor regions. Gao et al., 2020

CBFβ Blocks HBx function in promoting replication. Xu et al., 2019

inhibitors of
differentiation 1 (Id1)

Interaction accelerates degradation of these proteins. Xia et al., 2020

inhibitors of
differentiation (Id3)

Interaction accelerates degradation of these proteins. Xia et al., 2020

PRPF31 Potential enhancement of cccDNA transcription through this interaction. Kinoshita et al., 2017

# Unknown if this pertains a real protein-protein interaction; @ potential interaction, evidenced by co-localization.

THE HBc INTERACTOME

HBc is mostly known as the building block of the HBV capsid
(Summers et al., 1975) but in recent years it has been shown
that its function is not limited to this and also plays a role
in cccDNA stability, transcription and epigenetic regulation
(Newbold et al., 1995; Bock et al., 2001; Zlotnick et al., 2015;
Chong et al., 2017), evasion of antiviral mechanisms (Lucifora
et al., 2014), reverse transcription (Tan et al., 2015), cellular
trafficking (Schmitz et al., 2010; Yang et al., 2014), genomic
replication (Lott et al., 2000), and viral egress (Bardens et al.,
2011). The field is also discovering more and more that HBc
expression is extensively regulated by core promotor regulation,
core mRNA modulation and post-translational modifications
which highlights its importance in the life cycle (Buckwold et al.,
1997; Sohn et al., 2006; Kohno et al., 2014; Qian et al., 2015;
He et al., 2016; Bartusch et al., 2017; Lubyova et al., 2017;
Heger-Stevic et al., 2018; Makokha et al., 2019).

Initially, the impact on the capsid made HBc an appealing
drug-target (Berke et al., 2017). However, given that there is also
an interplay with cccDNA and HBx these molecules may have
more far-reaching consequences. As more protein interactions
between HBc and the host are elucidated, we also compiled the
interactome of the core protein and linked it to the HBx and
cccDNA interactomes (Figure 2).

A cccDNA AND HBx GENE
ASSOCIATION NETWORK: EXPANDING
THE POTENTIAL cccDNA AND HBx
INTERACTOME

Tables 1–3 summarize what is currently known in the literature
(manual curation) about cccDNA, HBx protein, and HBc

protein-DNA and protein-protein interactions, respectively.
However, to utilize this information to predict and potentially
identify new protein interactions, network pathway analysis
was performed (Ingenuity Pathway Analysis, IPA, Qiagen).
IPA enables gene network generation from the Ingenuity
Knowledge Base, a data repository of biological interactions and
functional annotations.

To generate gene association networks, the HBx, HBc, and
HBV cccDNA interacting proteins were individually analyzed
to create three separate network schemes. The database was
filtered and core analysis performed to only query the following:
(1) Species = Human, (2) Molecules per networks = 35,
Networks per analysis = 10, (3) Node Types = All, (4) Data
Source = All, (5) Confidence = Experimentally Observed,
(6) Species = Human, (7) Tissues and Cell Types = Liver,
Hepatocytes, Hepatoma Cell Lines not otherwise specified, HuH7
cell line, Hep3B cell line, HepG2 cell line and “Other” Hepatoma
cell lines, and (8) Mutation = All.

If proteins selected as network “seeds” were not apparently
connected or networks had less than 35 gene products, IPA
added proteins from the IPA Knowledge data base to maximize
the connectivity of the “seed” molecules within the filter
limits. We also filtered out those proteins that were only
interacting with either cccDNA, HBx, or HBc and had no
extrapolated nodes. This kept the networks to a manageable size
and reduced redundancy while deriving as much as possible
biological context from the analysis. When adding molecules
from the knowledge database, IPA uses a connectivity metric
(edge-weighted spring layout) that prioritizes molecules that
have the greatest overlap with the existing network. This
means that the organization of the network in clusters is
not based on proteins sharing similar pathways but is based
on the number of described interactions in between those
proteins. Upon completion of the IPA network generating
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TABLE 3 | HBc interacting proteins listed together with the cellular processes or pathways in which they are involved.

Protein interaction partner Process References

Filamin B Interaction promotes replication. Li et al., 2018

Nucleophosmin Promotion of capsid assembly. Jeong et al., 2014

APOBEC3B Potential editing of DNA during reverse transcription. Chen et al., 2018

SRSF10 Acts as a restriction factor that regulates HBV RNAs levels. Chabrolles et al., 2020

p70 ribosomal S6 kinase S6K1 HBc modulates phosphorylation levels of S6K1. Wang et al., 2021

PRMT5 Methylation of the cccDNA. Zhang Y. et al., 2017

Importin β Capsid assembly. Chen et al., 2016

NIRF Inhibition of infection. Qian et al., 2015

Hsp90 Catalyzes the formation of the capsid by binding HBc dimers. Shim et al., 2011

hypermethylated in cancer 2 HIC2 Unknown Lin et al., 2006

eukaryotic translation elongation factor 2 EEF2 Unknown Lin et al., 2006

acetyl-coenzyme A synthetase 3 Unknown Lin et al., 2006

DNA polymerase gamma POLG Unknown Lin et al., 2006

putative translation initiation factor SUI Unknown Lin et al., 2006

chemokine C-C motif receptor 5 Unknown Lin et al., 2006

mitochondrial ribosomal protein L41 MRPL41 Unknown Lin et al., 2006

kyot binding protein genes Unknown Lin et al., 2006

RanBPM Unknown Lin et al., 2006

HBeAg-binding protein 3 HBEBP3 Unknown Lin et al., 2006

programmed cell death 2 PDCD2 Unknown Lin et al., 2006

SP1 Inhibition of anti-viral mechanism of Mitochondrial antiviral signaling protein MAVS. Li et al., 2021

coactivator cAMP response element CRE aspecific interaction enhances the binding of the cAMP response element-binding
protein CREB to CRE.

Xiang et al., 2015

C12 protein Unknown Lu et al., 2005

SRPK2 Mediate HBV core protein phosphorylation, unknow role in viral infection. Daub et al., 2002

SRPK1 Mediate HBV core protein phosphorylation, unknow role in viral infection. Daub et al., 2002

NXF1 Involved in cellular trafficking of HBc Yang et al., 2014

TREX transcription/export complex Involved in cellular trafficking of HBc Yang et al., 2014

BAF200C Evasion of host anti-viral mechanisms. Li et al., 2019

BAF200 Evasion of host anti-viral mechanisms. Li et al., 2019

Hsp70 Promotes capsid formation. Seo et al., 2018

MxA Immobilizes HBc in perinuclear compartiment, possible interference with capsid
formation.

Li et al., 2012

Hdj1 Accelerated degradation of the viral core and HBx proteins Shon et al., 2009

hTid1 Accelerated degradation of the viral core and HBx proteins Shon et al., 2009

Skeletal muscle and kidney enriched inositol
phosphatase SKIP

Interaction induces HBV gene suppression. Hung et al., 2009

Atg12 Modulation of authophagy. Doring et al., 2018

Np95/ICBP90-like RING finger protein NIRF Potentially involved in maturation of the virus. Qian et al., 2012

PTPN3 Supression of HBV gene expression. Hsu et al., 2007

APOBEC3G APOBEC3G is potentially incorporated in the virion through this interaction. Zhao et al., 2010

PTPN3 May be bound within the capsid, function unknown. Genera et al., 2021

PML Link between DNA damage response and HBV replication. HBc co-localizes in
PML-NBs.

Chung and Tsai, 2009

HDAC1 Link between DNA damage response and HBV replication. HBc co-localizes in
PML-NBs.

Chung and Tsai, 2009

GIPC1 Unknown. Razanskas and
Sasnauskas, 2010

Activation-induced cytidine deaminase AID HBc is the link between AID and cccDNA. Qiao et al., 2016

Gamma-2 adaptin Endosomal function and viral egress. Rost et al., 2006

Nedd4 Virus production. Rost et al., 2006

ABP-276/278 Affects viral replication via unknown mechanism. Huang et al., 2000

B23 Unknown Ludgate et al., 2011

I2PP2A Unknown Ludgate et al., 2011

(Continued)
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TABLE 3 | (Continued)

Protein interaction partner Process References

APOBEC3B APOBEC3B A3B displays dual inhibitory effects on HBV core-associated DNA
synthesis.

Zhang et al., 2008

Receptor of activated protein kinase C 1 RACK1 Interference in normal TNF-a-regulated apoptosis. Jia et al., 2015

nucleophosmin B23 Unknown Lee et al., 2009

CDK2 Role in disassembly of the nucleocapsid. Liu et al., 2021

E2F1 HBc reduced the DNA-binding ability of E2F1 to the binding site of the p53 promoter
and respectively represses expression of p53.

Kwon and Rho, 2003

SIRT7 cccDNA expression modulation, HBc functions as a bridge between cccDNA and
SIRT7.

Yu et al., 2021

HBs Interaction prevents nuclear translocation to HBc. Zajakina et al., 2014

algorithm, two networks were produced showing both “direct”
and “indirect” relationships for either HBx, HBc, or HBV
cccDNA interacting proteins. These were then merged and
exported to Cytoscape 3.7.1 using an edge weighted spring layout
to create the final network illustration showing the relationship
between HBx, HBc, and HBV cccDNA interactingproteins
(Figure 2).

In the network, proteins that interact with HBc are depicted
in red, those interacting with cccDNA in pink and those
interacting with HBx in green. We also highlighted those
proteins that were described to interact with 2 or more of our
founding (HBc, HBx, and cccDNA) nodes (Figure 2). Nineteen
proteins are identified (P300, TBP, PIN4, CBP, SPIN1, CEBPB,
SP1, CRTC1, RXRA, NR1H4, KDM1A, HSPA1A, APOBEC3G,
APOBEC 3B, CREB1, PRMT5, HDAC1, E2F1, and SIRT1) as
interacting proteins of HBx, HBc, and cccDNA. These are
interesting because these components may be a driving force in
cccDNA transcription and maintenance. Moreover, these may be
interesting proteins for further functional research as they seem
to play a connecting role in the viral life cycle (Figure 2). Most
of these proteins, 12 out of 19, are regulators of transcription,
for example, TBP and CRTC1 are both involved in transcription
initiation; CREB1 and E2F1 are enhancers of transcription;
P300, CBP, SPIN1, SP1, PRMT5, HDAC1, and SETD1B are
all epigenetic modifiers that can influence the chromatin to a
specific transcriptionally accessible, active state. Finally, PIN4 was
described as a chromatin remodeler. Any of these proteins could
be a potentially interesting target to influence transcriptional
status of cccDNA. Notable is that all these transcription-related
proteins have interactions with HBc, hereby confirming a role for
HBc beyond capsid assembly. Also interesting is the occurrence
of two APOBEC proteins as partners for HBx, HBc and cccDNA.
APOBEC proteins play a role in anti-viral immunity (Stavrou and
Ross, 2015) and is a means of the cell to counteract the effect of
infection (Lucifora et al., 2014).

Through the IPA approach, the network was expanded from
just those proteins with known interactions with HBx, HBc,
or cccDNA to an additional 210 proteins (indicated in light
blue) which may play a role in protein-protein or protein-
cccDNA interactions. While the interactions itself are verified
in literature, their involvement in the HBV pathology and viral
replication cycle is not confirmed yet. Hence, these proteins
provide an interesting starting point for further research. Analysis

of the network shows that via these interacting proteins, HBV
also taps into host pathways such as cell cycle, cell signaling,
DNA repair, transcription regulation and apoptosis. This is
not surprising as many of these processes have been described
in relation to HBV already. However, this is the first time
description of proteins which may be involved in these processes
and how they relate to the cccDNA minichromosome, HBc or
HBx. An additional interesting observation is that many heat
shock proteins (HSP) (Hsp70, Hsp90, Hsp27, HSPD1, HSPA1A,
HSPA1B, HSPA8, HSPA9, HSPA1L, HSP90AB1, HSPA5, and
HSPA6) were observed as interacting proteins in this network.
Literature has already described that viruses rely on host HSPs
for viral protein folding and induce overexpression of HSPs in
the infected cells (Bolhassani and Agi, 2019). Moreover, several
HSPs were associated with some viral particles (Fust et al., 2005;
Bolhassani and Agi, 2019). In HBV, downregulation of Hsp70
and Hsp90 by small interfering RNA significantly inhibited HBV
production. Furthermore, also a significant reduction of HBV
secretion could be observed in HepG2.2.15 cells treated with
an Hsp90 inhibitor (Liu et al., 2009; Bolhassani and Agi, 2019).
Further research will be required to confirm the additional
protein partners identified in this network analysis.

INTERACTIONS DURING THE LATE
PHASES OF HBV INFECTION

In HBV infection, besides the budding of virions, there is
also the shedding of an excess amount of subviral particles
(Figure 1). These particles are non-infectious 22 nm spheres
or filaments of variable length consisting solely of the HBsAg
envelope protein, which may be expressed from either cccDNA
or HBV DNA that is integrated into the human genome
(Heermann et al., 1984; Figure 1). Budding of infectious virus
and shedding of subviral particles happen via distinct pathways
(Selzer and Zlotnick, 2015).

Although redundant in viral assembly, the M-protein and
its interaction with calnexin has been shown to be involved
in the secretion of subviral particles (Werr and Prange,
1998). In the cytoplasm, HBsAg interacts with cyclophilin A
(CypA) and stimulates the extracellular secretion of CypA
(Tian et al., 2010; Figure 1). Interestingly, it seems that the
presence of CypA reciprocally stimulates HBsAg secretion, as
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inhibitors against CypA reduce the amount of secreted HBsAg
(Phillips et al., 2015).

To construct new virions, the pgRNA is packaged together
with the viral polymerase in the nucleocapsid, which is formed
in the cytoplasm by assembly of 120 HBc dimers (Lambert
et al., 2007). Although not well understood, the interaction
between HBc dimers and cellular protein nucleophosmin (B23)
was shown to promote this assembly (Jeong et al., 2014;
Figure 1). This nucleocapsid is surrounded by a cellular lipid
layer embedded with three viral S glycoproteins, which originate
from the endoplasmic reticulum (Bruss, 2007). Virion assembly
depends solely on the L-protein, whereas the S-protein is required
but not sufficient, and the M-protein is redundant (Bruss,
2004). To aid in building this unusual composition, Hsp70, and
mammalian BiP were described as interaction partners of the
L-protein in vitro and in vivo (Loffler-Mary et al., 1997; Lambert
and Prange, 2003; Wang Y.P. et al., 2010; Figure 1). In the
assembly of the mature virion, the S-protein needs to interact
with the nucleocapsid (Loffler-Mary et al., 2000).

Once the mature virion is formed, it is ready to bud on the
surface of the cells. The whole orchestration of this process is not
clear at all, let alone accurately described in terms of interacting
proteins. HBV makes use of the ESCRT, a machinery essential
for the sorting of cellular cargo proteins in multivesicular bodies
(Bardens et al., 2011). In this process, aryl hydrocarbon receptor
interacting protein (AIP1)/ALIX and vacuolar protein sorting
4 homolog B (VPS4B) were found to colocalize with HBV
particles (Kian Chua et al., 2006; Watanabe et al., 2007; Figure 1).
Also, expression of dominant negative mutants of ESCRT-III
complex-forming charged multivesicular body protein (CHMP)
proteins (CHMP3, 4B, and 4C), as well as vacuolar protein
sorting 4 homolog A (VPS4A) or VPS4B mutants, and knockout
of γ2-adaptin blocked HBV assembly and egress (Hartmann-
Stuhler and Prange, 2001; Rost et al., 2006; Lambert et al.,
2007; Figure 1). However, the manipulation of these proteins
did not alter the secretion of subviral particles. Also involved in
viral egress is Neural precursor cell Expressed, Developmentally
Down-regulated 4 (NEDD) E3 ubiquitin protein ligase, which
appears to control virus production by binding to the late
assembly domain-like PPAY motif of HBV capsids (Rost et al.,
2006; Garcia et al., 2013). It is also known that at some point,
autophagy is involved in HBV production as the S-protein
was shown to interact with the autophagy factor LC3 and

manipulations to the pathway result in changes in HBV secretion
(Li et al., 2011).

CONCLUDING REMARKS

The interactome we build of the cccDNA, HBc and HBx protein
in this review emphasizes the vast amount of knowledge there is
about the interactions between HBV proteins and in particular
HBx, HBc and the cccDNA. To our knowledge, this is the
first time the information has been brought together in a
comprehensive overview. Bringing this information together, it
shows that there are still clear gaps in knowledge. For example,
the network shows that several proteins were only described in
a single publication as an interacting protein of cccDNA, HBc,
or HBx. Further characterization of this kind of interactions and
potentially understanding the reason behind these interactions
will greatly benefit the understanding of HBV-related processes.
In addition, through analysis of the known interacting proteins,
we predicted 210 proteins which potentially interact with either
cccDNA, HBx, HBc, or with multiple key modalities of HBV.

Experimental verification of these proteins can lead to the
discovery of novel mechanisms and expansion of known protein
interaction networks.

Being able to position cccDNA, HBc and HBx in the greater
whole of the cellular environment is paramount to better
understand how HBV hijacks the cellular environment.
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