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Abstract: Chlorophylls provide the basis for photosynthesis and thereby most life on Earth. Besides
their involvement in primary charge separation in the reaction center, they serve as light-harvesting
and light-sensing pigments, they also have additional functions, e.g., in inter-system electron transfer.
Chlorophylls also have a wealth of applications in basic science, medicine, as colorants and, possibly,
in optoelectronics. Considering that there has been more than 200 years of chlorophyll research, one
would think that all has been said on these pigments. However, the opposite is true: ongoing research
evidenced in this Special Issue brings together current work on chlorophylls and on their carotenoid
counterparts. These introductory notes give a very brief and in part personal account of the history of
chlorophyll research and applications, before concluding with a snapshot of this year’s publications.
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Chlorophyll (Chl) first came to me in a bottle containing approximately 1 kg of “Phäo-
phytin Sandoz”, handed over by Hans-Herloff Inhoffen [1], the big boss of organic chem-
istry at the Technical University of Braunschweig. Herbert Wolf, one of the sous-chefs,
had proposed using the Chl-macrocycle as a platform for studying the stereochemistry of
side-chains for a diploma and later doctoral degree. The “Phäophytin Sandoz”, a mixture
of (mainly) pheophytins a and b dating back from the time of Arthur Stoll [2] with Sandoz,
proved an invaluable supply for making chemical modifications of the basic skeleton of
chlorophyll a: after the first bottle ran out, it was replaced by another one and subsequently
by a third one. Additionally, the spectroscopic tools available in Braunschweig, particularly
circular dichroism and nuclear magnetic resonance, proved invaluable in analyzing the
structure, including the stereochemistry, of the dozens of derivatives “cooked” from this
material. As a postdoctoral researcher, I went to Joe Katz at Argonne National Laboratory.
His group was famous for using the stable isotopes, 2H and 13C, for studying chlorophyll
interactions in the test tube and in photosynthetic organisms [3]. I was lucky to have Jim
Norris as a challenging guide. When we discussed his ideas of a “special pair” of Chls
as the primary donor in photosynthesis, I remembered a selective deuteration from the
Braunschweig lab that was key to proving the proposal by using Jim’s advanced electron
double resonance tools [4].

This time as an apprentice solidified my passion in Chls and subsequently to open-
chain tetrapyrroles. It provided the basis for studying, over the next 45 years, several aspects
of this group of molecules under many guises. They provide the basis for photosynthesis
and thereby most life on Earth, in addition to several other functions. Besides their involve-
ment in primary charge separation in the reaction center, they serve as light-harvesting and
light-sensing pigments, they also have additional functions, e.g., in inter-system electron
transfer. Chls also have a wealth of applications [5,6]: in basic science, modified pigments
allow for functional analyses; in medicine, they serve as photosensitizers. Chl derivatives
are used as colorants for food and cosmetics, they are also candidates for optoelectronic
use. Much of the work performed in Braunschweig, Argonne, and later on in Munich refers
to photosynthesis, although this was rather detached from living organisms. The extent
of how detached it became is illustrated by two incidents. The first was when I handed
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my doctoral thesis to my parents. They were quite startled to see a such a tiny booklet
of approximately 150 DIN A5 pages as the result of three years of work. Moreover, they
confessed that they hardly understood anything besides the introductory sentences. The
second incident was when my young children accompanied me one day to the basement
at Argonne where all kinds of organisms were grown on stable isotope media. When I
was shaving a plate of two-week-old wheat, their eyes lit up: for the first time, there was
something familiar to them in the labs. Since then, I was a farmer of baby corn to them. It
soon became obvious to them, however, that things really became interesting for me once
the corn, the algae or the bacteria were crushed and their cells broken up.

It was satisfying to contribute during this time to the accumulated knowledge of
tetrapyrroles, with the help of many students and technicians, in addition to funding from
a variety of institutions of which the Deutsche Forschungsgemeinschaft was the most
prominent one, in cooperation with groups from many countries of whom many become
friends for life. The story of chlorophyll research goes back more than 200 years. The green
extract of green plants and algae, then termed chlorophyll (Greek: green of leaves) by
Pelletier and Caventou [7], later turned out to be a mixture of two non-fluorescent orange-
yellow pigments and two blue tetrapyrrole pigments that fluoresce brightly [8]. While
Stokes only gave incomplete details on how he came to this conclusion [9], it was verified
by Fremy [10] and subsequently by Tswett [11], who coined the term chromatography for
the novel separation developed with these pigments. The yellow pigments are carotenoids.
The term chlorophyll has been narrowed to the family of tetrapyrrole pigments [12] which
in plants are the blue Chl a and Chl b. The chemistry of these chlorophylls was studied
early on by Willstätter’s group [13] who realized their relation to heme. They also studied
chlorophyllase and its hydrolyzing action on Chls. While it was one of the first enzymes to
be isolated, its function in vivo remains enigmatic today [14]. The molecular structure of
Chls a and b was solved by the group of Hans Fischer in 1942 [15]. Their stereochemistry
was determined by Ian Fleming, by Burrell et al. and by Crabbé et al. (reviewed in
Brockmann, [16]). Total syntheses were achieved by the groups of Strell [17] and, more
rigorously, Woodward [18], but a general synthetic access of Chl-type pigments remains a
challenge [19,20].

Chl-type pigments means that there are more than just Chls a and b. Stokes already
mentioned a third chlorophyll present in brown algae, again without giving details [8].
Today, this is recognized as a mixture of several c-type chlorophylls [21]. Three more
chlorophylls (Chls d, e, f ) have been described in organisms capable of oxygenic photo-
synthesis [22–24], of which only the structures of Chl d [24,25] and Chl f [26] have been
determined. They are supplemented by small amounts of especially tailored derivatives:
the so-called prime pigments, isomers at C-132 of the parent compounds [27], the demeta-
lated pheophytins, and pigments carrying alcohols different from the ubiquitous isoprenoid,
phytol [27,28]. A much larger number of Chls, more precisely bacteriochlorophylls (BChls),
has been found in photosynthetic bacteria [29]. Altogether, more than 100 (B)Chls are
known in plants, algae and photosynthetic bacteria (Figure 1). A common feature of all
is a long-lived excited singlet state, S1, that in a monodisperse solution, results in bright
fluorescence, while intersystem crossing to the phototoxic T1 state is relatively low [30].
Their common structure is a cyclic tetrapyrrole with an additional isocyclic ring and, with
only a single rare exception [31], a central metal Mg2+-ion. While the c-type Chls are true
porphyrins, all others are chlorins reduced at ring D or bacteriochlorins reduced at rings B
and D. These reductions result in an increased absorption and a red-shift of the redmost
absorption band (QY-band) that extends photosynthesis into the near-infrared spectral
range down to 1050 nm.
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Figure 1. Structure of Chl a. Circles and colored bonds indicates modified sites in other Chls and
BChls. Chl b and Chl f have a 7- and 1-CHO group, respectively. BChls c, d and e are characterized
by lacking the 132-COOCH3, by a CHOH-CH3–group at C2 (both stereoisomers), they differ by
methylations at C20 and at the C8 and C12 substituents. In BChls a, b and g, the 7,8-double bond
replaces the single bond, they differ in the substituents at C3,7 and/or 8. The c-type Chls are
characterized by a 17,18-double bond, they differ by further modifications. Additional modifications
in certain (B)Chls are replacements of the phytol esterifying the 17–propionic acid by other alcohols,
mainly derived from farnesol or geranylgeraniol, exchange of the central Mg2+ by Zn2+ or inversion
of the stereochemistry at C132. For further readings, see Ref. [24].

Regarding the long history of chlorophyll research [15,22,32–35], one would think that
all has been said on these pigments. However, the opposite is true. Just by scanning through
the publications of recent years, SciFinder lists 43,314 references since 2016. Additionally,
while writing this preface, there have been publications, on an almost daily basis, on the
various aspects of (B)Chls that witness unabated interest in these fascinating pigments and
keep me reading on the various aspects of their structures, functions and uses. Moreover,
ongoing research evidenced in this Special Issue brings together current work on Chls and
on their carotenoid counterparts.

Let me illustrate this, before closing these notes, with a snapshot of publications
from this year that refer to the various aspects of Chl research and applications. There is,
firstly, the molecule itself. For better understanding the aromaticity of the parent chlorin
and bacteriochlorin structures, their π-systems were compared to porpholactones, oxa-
derivatives of chlorins and bacteriochlorins carrying a peripheral C=O group next to the
oxa-O [36]. Compared to the fully unsaturated porphyrins, the ring-current in Chls and
BChls bypasses the reduced peripheral positions. However, the π-density is partially
restored in these formal single-bonds by the participation of non-bonding electrons of both
oxygens. Another structural feature of most Chls is the isoprenoid alcohol esterified to
the C17-substituent. The spectroscopic influence of the alcohol is distinct but minor [37],
however, the alcohol is generally conserved among the different groups of photosynthetic
organisms. In green plants, it is generally phytol. Increasing amounts of the precursor,
geranylgeraniol, are found in Arabidopsis thaliana after growth in green light [38]. The
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optical spectra of (B)Chls have been studied from the beginning. However, even these are
open for surprises, as Leiger et al. [39] showed in their contribution to this Special Issue.
They showed by anti-Stokes fluorescence that the red-most absorption band (QY) has, at
ambient temperature, has a tail extending far into the near-infrared. They ascribe it to
the thermally activated vibronic coupling of the electronic transition. While the extreme
red-shifts extending photosynthetic activity to lower energies can be ascribed in several
cyanobacteria to chemically modified Chls d and f (see below), many organisms containing
only Chl a show similar or even larger red-shifts; a prominent example is Ostreobium [40,41].
It is conceivable that the intensity of the band studied by Leiger et al. [39] is increased in
these organisms by interactions with the protein. Chl cation radicals are formed in the
primary reaction of photosynthesis by electron transfer. Orzel et al. [42] have now shown
that in the presence of CuCl2, they can also be generated and participate in electron transfer
in the dark.

Correlating function and spectroscopy to individual chlorophylls in native protein
structures such as photosystem I remains a challenge. By polarized single-molecule spec-
troscopy, the individual Chls of the 96 present in the structure have been related to pigments
absorbing at the blue and red edge of the spectrum [43]. In particular, the latter are relevant
in localizing excitation energy near the reaction center. In this case, the red-shift is due to
the still poorly understood interactions with the environment. In other cases, it relates to
chemically modified pigments compared to the ubiquitous Chl a. Chls d and f carry periph-
eral formyl- instead of methyl-substituents at rings C and A, respectively (Figure 1) [24,44].
Such red-shifted Chls are relevant for cyanobacteria extending the hitherto-thought ener-
getic limits of oxygenic photosynthesis [45]. In one such species, Synechococcus thermalis
PCC 7335, their locations in photosystem I were identified by cryo electron microscopy:
one Chl d is part of the primary donor and two Chl f are part of the core antenna [46].
A huge Bchl-complex largely devoid of protein is the chlorosome of green bacteria. Its
structure is largely determined by BChl–BChl interactions between members of the BChl
c, d and e family [47–49]. The group of Jürgen Köhler has used linear dichroism of single
light-harvesting complexes from purple photosynthetic bacteria to obtain information on
the pigment arrangement and its excitonic coupling [50]. In their contribution to this issue,
Günther et al. [51] concluded that the powerful method reaches a limit with complexes of
the size of the chlorosome of Chlorobaculum tepidum

The long lifetimes of excited singlet states (S1) of Chls are crucial to their function in
photosynthesis. They also pose problems to photosynthetic organisms, however, because
they increase the chance for intersystem crossing to the triplet state (T1) that subsequently
generate singlet oxygen. Even though this process is minimized in the Mg-complexes [30],
Chls are highly phototoxic under conditions of over-excitation of the photosynthetic appa-
ratus when the productive use of the excitation energy is limited. A large fraction of the
photosynthetic apparatus is therefore devoted to photoprotection [52], with carotenoids
serving several lines of defense. The publication of Demming-Adams et al. in this Spe-
cial Issue is devoted to a particularly effective carotenoid, zeaxanthin [42]. The role of
carotenoids is, however, multi-faceted. As reviewed by Lokstein et al. in this issue [49], they
often participate in light-harvesting, transferring their excitation with good to excellent
quantum yields to Chls. Additionally, Makhneva et al. [53] presented an example from
purple bacteria where the protective function against one ROS, e.g., singlet oxygen, seems
negligible.

Phototoxicity also becomes relevant if (B)Chls are detached from their native protein
complexes or during biosynthesis and biodegradation. The protection of phototrophic
organisms during the metabolism of chlorophylls is ascertained by a variety of mecha-
nisms. During biosynthesis, several control mechanisms have been recognized [54]: (i) the
complete macrocyclic porphyrin system is only generated in the very last and tightly con-
trolled step, all precursors are non-fluorescent and thereby non-phototoxic; (ii) the very late
precursor is incorporated, in oxygenic organisms, in a light-activated reductase; (iii) once
formed, Chls are bound to proteins which also contain carotenoids as protective pigments.
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During biodegradation, the macrocycle is broken down after demetalation and dephytyla-
tion to non-phototoxic open-chain tetrapyrroles, the phyllobilins, on which all subsequent
modification and degradation steps are performed [55]. Phototoxicity is also a potential
problem in photosymbiotic partnerships, particularly for organisms harboring stolen and
still active chloroplasts for several months (kleptoplasty) [56,57]. Last but not least, the
phototoxicity of (B)Chls is a problem for herbivores including humans. Higher animals
degrade Chl and its derivatives in their intestine [58] and have a low intestinal uptake [59].
This is combined with (at least) one excretory system; Szafraniec and Fiedor et al. [60] have
now studied its specificity towards a variety of chlorophyll derivatives. Lower animals
have developed a different strategy: they modify the structures by cyclization between the
C-18 propionic side chain and C-132 of the isocyclic ring, thereby generating C-131 enols
that are no longer phototoxic [61]. A massive reduction in excited-state lifetime has been
known for peripheral metal complexes containing this structural element [62] and recently
demonstrated as a characteristic feature of cyclo-enols [63].

The most widespread application of Chls are assays in plant biology. Often, the
pigments are extracted and then spectrophotometrically analyzed [64,65]. Alternatively,
the absorption or emission of (B)Chls is used for monitoring on time scales ranging from
nanoseconds to years and spatial scales ranging from single molecules to the whole Earth
or even outer space. Several reviews published in 2021 summarized current develop-
ments [66–72]. While these applications used the pigments as biological reporters, a current
publication investigates the use of Chl a as an x-Ray dosimeter [73].

Moreover, there are much wider applications, probably the most advanced being their
use as photosensitizers in medicine [74–77]. Their phototoxicity has generated interest
in their use to tackle unwanted cells, from harmful microorganisms to tumors. Suvorov
et al. reviewed the photodynamic therapy directed against microbes [74]. The capacity of
porphyrins for generating singlet-oxygen has been used for almost 50 years in tumor ther-
apy [75]. Phototoxicity is enhanced in chlorins and all the more in bacteriochlorins [78–80]
due to increased absorption and a shift to longer wavelengths penetrating deeper into
tissue. Moreover, when using Pd-derivatives of BChl, it became clear that additional re-
active oxygen species are involved and indirect modes of attack are relevant. They are
currently implemented in the treatment of pre-clinical prostate tumors [79]. Other medical
applications are being developed in ophthalmology, a current example being cornea cross-
linking [80]. Particularly elegant is it their use in theranostics, in which phototoxic therapy
is combined with diagnostic mapping, using either the same molecule for both purposes,
or conjugates. A current publication on the latter uses a combination of a photosensitizing
bacteriochlorin with naphthylimide fluorophores [81]. A general problem of using Chls in
many such applications is their low stability and poor solubility. One of the solutions to
overcome this is by solubilizing the pigments in detergent micelles. In their contribution
to this issue, Janik-Zabrotowicz et al. [82] described the stabilization of Chl over extended
times against light and oxygen by solubilizing it in polyoxyl 35 Castor oil (Chremophore
EL) that forms exceptionally small micelles. It contains the pigment in monomeric form,
thereby avoiding unwanted effects due to aggregation. Another common way is the intro-
duction of polar side-chains that is facilitated by the functional peripheral substituents of
(B)Chls. Again, only a current example shall be mentioned that uses polyethylene-glycol
for this purpose [83].

The bright color of Chls in a range not covered by other natural dyes has led to many
applications as colorants [6]. The additive E140 is regarded as chlorophyll, although it
contains mainly oxidation products that retain the central Mg2+ ion and the lipophylic
esterifying phytol (personal observation, unpublished). E140, E140i and E140ii have the
central Mg2+ replaced by Cu2+, thereby reducing its phototoxicity. In recent work, Perez-
galvez et al. [58] studied the composition of E140i, i.e., a lipophilic [Cu]–Chl preparation,
and its degradation in the intestine. Last but not least, there is also work for stabilizing Chl
(or at least derivatives retaining its color) for use in paints [84]. Vegetables and green algae
are a source of a mixture of Chl a and Chl b. Cyanobacteria are a versatile source for pure
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Chl a and its derivatives. Depending on the growth conditions [85], they also yield the
blue, water-soluble phycocyanin carrying open-chain tetrapyyrole chromophores. In my
group, we kept batches rich in Chl a and batches rich in phycocyanin as ready and easily
stored supplies for these pigments for subsequent derivatization.

Much less developed are applications in the very realm of Chls, i.e., photovoltaics.
While simple devices coined, e.g., synthetic leaf based on Chls are more than 50 years
old, these pigments have thus far turned out too short-lived for applications, with the
possible exception of chlorosome-like Chl aggregates [86]. The largest impact from natural
photosynthesis is conceptual: the combination of reaction centers for charge separation with
light-harvesting complexes that are adaptable to the quality and quantity of absorbed light
is key to natural photosynthesis. Prototypes of photovoltaic devices applying this concept
via dye-sensitized cells and, possibly, nano-particles relying on absorption enhancement
by nanoparticles, reference some of the current reviews which conclude this personal
snapshot [87–89].

Funding: The author thanks the Univeristy of Munich (Ludwig-Maximilians-Universität) and, in
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