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The concept of “codon optimisation” involves adjusting the coding sequence of a target protein to account for 
the inherent codon preferences of a host species and maximise protein expression in that species. However, 
there is still a lack of consensus on the most effective approach to achieve optimal results. Existing methods 
typically depend on heuristic combinations of different variables, leaving the user with the final choice of the 
sequence hit. In this study, we propose a new statistical-physics model for codon optimisation. This model, 
called the Nearest-Neighbour interaction (NN) model, links the probability of any given codon sequence to the 
“interactions” between neighbouring codons. We used the model to design codon sequences for different proteins 
of interest, and we compared our sequences with the predictions of some commercial tools. In order to assess 
the importance of the pair interactions, we additionally compared the NN model with a simpler method (Ind) 
that disregards interactions. It was observed that the NN method yielded similar Codon Adaptation Index (CAI) 
values to those obtained by other commercial algorithms, despite the fact that CAI was not explicitly considered 
in the algorithm. By utilising both the NN and Ind methods to optimise the reporter protein luciferase, and 
then analysing the translation performance in human cell lines and in a mouse model, we found that the NN 
approach yielded the highest protein expression in vivo. Consequently, we propose that the NN model may prove 
advantageous in biotechnological applications, such as heterologous protein expression or mRNA-based therapies.
1. Introduction

The process of transcribing genetic information, encoded within the 
4-letter code of DNA, into the elaborate 20-letter alphabet that con-

stitutes proteins is orchestrated by “codons” i.e., sequences of three 
neighbouring nucleotides that encode an amino acid. There are 64 dif-

ferent codons but only 20 amino acids, causing degeneracy of the genetic 
code, since the same amino acid corresponds to different codons. This 
degeneracy results in many possible ways of encoding the same pro-

tein. Nonetheless, not all potential codons of an amino acid possess an 
equal likelihood of occurring in nature, as certain synonymous codons 
are more frequently employed to represent a specific amino acid in a 
particular organism than others. This trend is referred as codon usage 
bias [1]. Furthermore, the utilisation of sequential codon pairs is not 
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random [2] and exhibits unique patterns specific to each species. This 
phenomenon is referred to as codon-pair usage bias [3] and cannot be 
related simply to individual codon bias.

Species-dependent codon bias is an important factor to consider in 
the framework of biotechnological applications where in vivo maximisa-

tion of protein expression is desired, as is the case, for instance, of mRNA 
vaccine design. However, no clear and reliable recipe is known to reach 
this goal, since the connection between gene translation and protein 
expression in vivo is not straightforward [4]. Rather, it is mediated by 
complex processes [5] that include cell-type dependent expression pref-

erences [6,7] and potentially other mechanisms at the organism level 
(e.g. immune response).

A reasonable starting point when designing a coding sequence for 
heterologous expression is to assume that the use of codons which 
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are more frequently observed in the host organism, rather than those 
rarely observed, would increase the translation efficiency and the level 
of protein expression. However, a hyper-optimisation of codon usage 
has shown to be detrimental for the desired protein expression [8] or 
function [9]. Remarkably, several suboptimal codons or pairs are often 
necessary for proper protein function [10–12]. This counterintuitive fact 
may be related to the appearance of translational errors when only the 
most frequent codons for each amino acid are used, something that is 
believed to be related to the imbalanced utilisation and consequent un-

availability of a subset of tRNAs [13]. Conversely, the use of suboptimal 
codons at crucial positions could induce a slowdown in translation, pre-

venting the misfolding of the nascent protein [14,4,15]. Codon usage 
might also be controlled by the need to avoid an excess of stability of the 
secondary structure at the 5’-end, which would hinder the attachment 
of the ribosomes [16,17]. These considerations suggest that a conserva-

tive strategy for codon optimisation should rely on choosing patterns of 
codon usage that reproduce that of the host organism.

Regarding codon optimisation tools, many publicly available ones 
primarily are based on the utilisation of the most common codon for 
a specific amino acid [18–21], even if they often give the possibility 
to generate alternative sequences based on the natural codon frequen-

cies in preselected, and often user-specified, databases [20–22]. Thus, 
several steps of optimisation are usually needed to refine the raw pre-

dictions of these tools, such as mutations on the target sites of com-

mon restriction enzymes, elimination of repeating sequences, and tuning 
of extreme GC content regions. More advanced optimisation tools are 
available at the web pages of commercial suppliers specialised in gene 
synthesis. However, in such cases, the internal algorithm is generally 
undisclosed in its details, and there is limited flexibility for fine-tuning 
the sequence.

Recently, new algorithms have been developed and made publicly 
available. Some of them focus on multi-objective (Pareto) optimisation, 
following the path of several reports [23–25] and apply Mixed Inte-

ger Linear Programming approaches [26], as well as more traditional 
Dynamic Programming [27], to optimise different objective functions 
related to the quality of the codon design (CAI, CPB, CPS, RCB, RCPB, 
among others (see the precise definitions in Methods 5.4). These ap-

proaches extend the focus beyond the single codon frequencies, ac-

counted for in CAI, to include codon context, i.e., the frequencies of 
codon pairs; however, they leave the user with the decision on what 
weight to give to each quality indicator. Other proposals tackle the prob-

lem using Neural Networks [28], that may be very efficient, but, as a 
black-box, do not allow to understand the relevance of different features 
and its relation to the different biological facets of the codon selection 
problem.

Here, we propose to tackle codon design using a different angle, 
which does not aim at finding the optimum result of any objective func-

tion. Instead, we implement a probabilistic approach, inspired by simple 
models of statistical physics, where the probability of any codon se-

quence for a given protein is expressed as a Boltzmann probability. Thus, 
it depends fundamentally on two ingredients: 1) an “energy function”, 
accounting for single site codon preferences and “interactions” between 
neighbouring codon, and 2) a “temperature”, that increases the prob-

ability of accepting solutions that departs from the one that minimises 
the energy functions. In our approach, codon and codon-pair biases are 
introduced in an integrated framework and the parameters describing 
the interaction between neighbouring codons are learnt upon maximis-

ing the probability of the whole codon sequence database. This allows, 
in principle, to account for finer details and correlations that could be 
disregarded in the usual approach, as it just focuses on precalculated 
codon and pair frequencies.

In the following sections of the paper, a brief introduction of the 
model and its principles is given, followed by the results obtained upon 
designing several codon sequences for different proteins. We assessed 
the model’s effectiveness using both in silico and experimental tests. 
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Firstly, through in silico analysis, we compared the predicted codon se-
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quences to those generated by a simplified version of the model in which 
pair interactions are omitted, thereby elucidating the significance of 
such interactions. We also compared our sequences with the codon op-

timisations proposed by some commercial tools and analysed the role 
of the temperature parameter in reproducing different scenarios. Sec-

ondly, we focused on the firefly luciferase protein, and redesigned its 
codon sequence under different temperature conditions and using the 
NN and Ind models, and the resulting sequences were tested experi-

mentally. Thus, we tested luciferase optimisations both in vitro, on HeLa 
and HepG2 cell lines, and in vivo, on a mouse model, with the aim of 
establishing a criterion relating the design protocol and the protein ex-

pression. An overall scheme for the workflow, from model definition to 
testing on luciferase, is presented in Fig. 1

2. Results

2.1. Definition of the method

We build our model on a few basic assumptions:

1. The observed codon sequences 𝑆(𝑃 ) for a given protein 𝑃 and 
species  are random events, associated with a probability of the 
form 𝑝(𝑆(𝑃 )|𝑃 , ) ∝ 𝑒−𝛽(𝑆(𝑃 )|) at 𝛽 = 1 (see Eq. (2) in Methods). 
That is, we introduce a Boltzmann probability associated to an en-

ergy function (𝑆(𝑃 )|), with species-dependent parameters; in 
the following, since we will always work with one species at a time, 
we drop the indication of the species .

2. In principle, the energy function above implies interactions be-

tween codons at arbitrary positions along the sequence; how-

ever, we will limit ourselves to interactions between neighbour-

ing codons (𝑖, 𝑖 + 1). These interactions need not be regarded as 
true, physical interactions, like, e.g., Watson-Crick couplings. In-

stead, they could be indirect interactions, such as mediated by each 
codon’s contact with the ribosome; we do not enter into a micro-

scopic justification of the form and origin of such energy function, 
but simply assume its existence.

3. The variable 𝛽 = 1∕𝑇 plays the role of an inverse temperature, and 
its value modulates the number of codon sequences that are ac-

ceptable to represent the protein 𝑃 : at 𝛽 = 0, all possible codon 
sequences 𝑆(𝑃 ) of protein 𝑃 have the same probability; on the 
other hand, 𝑇 = 0 will select only the codon sequence of minimum 
energy, while the probability of all other sequences will be zero. 
By construction, 𝑇 = 1 will correspond to the distribution of the 
natural sequences, and will represent our “learning temperature”, 
at which the model parameters are adjusted to reproduce the ob-

served sequence probabilities, as explained in Section 5.2.3.

The possibility to design codon sequences at different temperatures, 
using Monte Carlo simulations, allows us to study the interplay between 
the temperature parameter and the characteristics of the resulting de-

signed sequences.

2.2. In silico tests of the Ind and NN models

2.2.1. Codon usage

We first compared the codon and nucleotide usage as predicted by 
the full model with nearest-neighbour interactions (“NN”) and the in-

dividual codons model (“Ind”), as described in Sections 5.2.1, 5.2.2, to 
see how the introduction of interactions between neighbours affects the 
results. Fig. 2 shows the frequency of codon usage (normalised so that 
the sum over codons of the same amino acid is 1).

We noticed that, at 𝛽 = 1, the Ind model does not accurately re-

produce the codon usage for all amino acids (with notable deviations 
for C, H, K, L, T, and V), implying that a model in which neighbour-

ing codons have independent probabilities, cannot reproduce natural 

sequences, even when the probability of each codon is learned from the 
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Fig. 1. Scheme of the construction of the models. Workflow of the Nearest-Neighbour interaction (NN) model compared to the Individual codons (Ind) model. 
Reference nucleotide coding sequences (CDS) from the human genome were extracted and matched to their corresponding amino acid sequences. For the Individual 
model (left panel), the frequency of each codon was used to fit its energy, with 𝛽 = 1, from Eq. (10). For the NN model (right panel), the likelihood of the natural 
codon sequence database was maximised at 𝛽 = 1 to determine the model parameters. For the case of luciferase as a model protein, codon sequences are generated 
with the Ind and NN models at different values of 𝛽. Such sequences are subjected to a final filtering process based on various criteria, such as sequence restriction 
and the absence of long loops. The aim of this refinement step is to obtain the most suitable optimised sequence for the target organism.

Fig. 2. Codon usage: NCBI vs Ind and NN algorithms with different 𝛽 values. Human-observed (NCBI) codon usage, and predictions with the NN and Ind models, 
at 𝛽 = 1 (the “learning” inverse temperature, see Methods 5.2.3) and at 𝛽 = ∞ (minimum energy solution). The NCBI codon usage line is derived by extracting 
codon usage information from the 116,487 sequences available in the NCBI database. For the NN and Ind designs at 𝛽 = 1, codon usage is determined by considering 
a randomly selected dataset of 10,000 protein sequences from NCBI, and selecting one codon sequences for each of them, from a thermalised Monte Carlo run, 
according to the probabilities Eqs. (2), (8), respectively. In the case of 𝛽 =∞, another set of 10,000 sequences is randomly selected from NCBI, and the sequences 
with the minimum energy are determined for both the NN and Ind’ models, see Methods 5.3.
natural NCBI database. Additionally, we observed that the NN model 
can predict the frequencies of each codon well enough that the lines of 
3052

NCBI and NN overlap in Fig. 2, except for the amino acid C, where small 
differences are noticeable. At 𝛽 =∞ (𝑇 = 0), it can be seen that the Ind 
model resorts to using only the most likely codon for each amino acid, 

as expected. However, this is not the case for NN, due to the influence 
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Table 1

The abbreviated protein name, the full protein name, the organism, and the length in 
amino acids (aa) of the sequences used.

Short name Protein Name Organism Length

LUC Luciferase Allobacillus saliphilus 551

GFP Green fluorescent protein Aequorea victoria 239

DsRed Red fluorescent protein Discosoma sp 226

bGAL beta galactosidase Escherichia coli str. K-12 1025

Cas9 Nuclease cas9 Streptococcus pyogenes 1369

Cas13d Nuclease cas13 Ruminococcus flavefaciens 968

OVA Ovoalbumin Gallus gallus 387

CRE Cre recombinase Escherichia phage P1 344

ADIPOQ Adiponectin Homo sapiens 245

BDNF Brain Derived Neurotrophic Factor Homo sapiens 248

CNTF Ciliary Neurotrophic Factor Homo sapiens 201

EGF Epidermal Growth Factor Homo sapiens 1208

FGF-4 Fibroblast Growth Factor-4 Homo sapiens 207

IL-1RA Interleukin-1 Receptor Antagonist Homo sapiens 178

TNF-𝛼 Tumor Necrosis Factor-alpha Homo sapiens 234

VEGF-D Vascular Endothelial Growth Factor Homo sapiens 355

EREG Epiregulin Homo sapiens 170

EPO Erythropoietin Homo sapiens 194

IL-4 Interleukin-4 Homo sapiens 154

HGF Hepatocyte Growth Factor Homo sapiens 729

IL-2 Interleukin-2 Homo sapiens 154

KGF Keratinocyte Growth FactorA Homo sapiens 195

MB Mioglobina Homo sapiens 155

BTC Betacellulin Homo sapiens 179

GM-CSF
Granulocyte Macrophage-

Colony Stimulating Factor
Homo sapiens 145

LIF Leukemia Inhibitory Factor Homo sapiens 203

LEP Leptin Homo sapiens 168

BAFF B-cell Activating Factor Homo sapiens 286
of the interactions. In this case, even though the preferred codons for 
each amino acid are more frequently used, none of them is exclusively 
used.

The differences are somewhat blurred when looking at the nucleotide 
and nucleotide pairs frequencies, see Fig. S3 in S.I. There, at 𝛽 = 1, both 
the nucleotide and nucleotide-pair fraction are similar to those obtained 
from the human NCBI database. However, the 𝛽 =∞ sequences (for the 
NN and even more for the Ind model), entail an increase in the content 
of C and G nucleotides (a commonly used parameter in codon sequence 
design) over A and T. This suggests that, at least for the human database, 
a design criterion based on the most frequent codons is not independent 
of one that maximises the amount of C, G nucleotides.

2.2.2. Comparison with other design tools

Next, we focused on the NN model due to its superior results in mim-

icking human codon distribution, and compared its predictions to those 
of some commercial sequence-design services. This was done by calcu-

lating a series of common indicators (CAI, CPB, RCB, RCPB), defined in 
Methods 5.4, for a set of 28 sequences commonly produced in the labo-

ratory. Eight of these proteins correspond to non-human proteins, while 
the rest are human, so that a human wild type codon-sequence is also 
available for them. The set of sequences, along with their corresponding 
organism and their length (in amino acids), is reported in Table 1.

In order to rationalise the differences between the prediction tools, 
we referred to the human NCBI database to estimate the typical vari-

ability of such indicators when calculated on human sequences. Since 
these indicators depend on the length of the sequences, for each of the 
28 sequences we filtered the human coding sequences listed in the NCBI 
database to obtain a set of sequences of the same length, and calculated 
the mean and variance of each indicator on that set. Following this ap-

proach, the bias related to the length of the sequence is removed, and 
the reference values that are obtained can be used to compare the dif-

ferent predictions.

Fig. 3 shows the CAI and CPB for the designed sequences, by dif-

ferent tools, of the 28 sample proteins, together with the values for the 
3053

wild type sequences, and the average values for the human sequences 
of the same length. For CAI, we see that wild-type values are gener-

ally within one standard deviation from the human average, with the 
obvious exception of the first 8 sequences, whose wild type is not hu-

man. We also see that some tools (i.e. Vendor 1, 3) are clearly designed 
to generate sequences with high CAIs, and their predictions reach ex-

tremely high values. Other tools’ designs are close to (Vendor 4) or 
systematically below (Vendor 2) the average obtained for natural hu-

man sequences (dashed blue line), suggesting that the design criteria 
for these are essentially different. It is notable that the NN model is able 
to interpolate between these disparate behaviours. At 𝛽 = 1, it repro-

duces the human average with remarkable precision, outperforming all 
other models. Conversely, at 𝛽 = ∞ it generates sequences with a CAI 
that is marginally lower than those obtained by Vendor 1 and 3. On the 
other hand, coming to CPB, we notice that the NN model at 𝛽 = ∞ is 
the only one that produces values significantly above the human aver-

age, while again reproducing the average at 𝛽 = 1, as can be seen when 
comparing the dashed black and blue lines. It is noteworthy that the 
value obtained for the human sequences, of the same length as the 28 
sample sequences, remains approximately 0.075 and is not compatible 
with zero. Keeping in mind the definition of the CPB as a probability ra-

tio (see Section 5.4) between the natural observed pair frequency and 
the value obtained in the independent-codons case, the positive values 
observed for natural sequences are to be expected. However, the fact 
that these values are significantly greater than zero indicates that in 
natural sequences codons are at least pair-correlated, and should not be 
considered as independent. It is noteworthy that all the others methods 
produce values that are significantly below the human average, with 
negative values that are comparable with the wild-type values of the 
non-human sequences. In contrast, the NN model at 𝛽 = ∞ generates 
codons and codon pairs that are highly probable within the context of 
the natural human database, resulting in high values for both CAI and 
CPB.

Similar observations can be drawn from Fig. 4, where the trends of 
the indicators RCB and GC for the same 28 proteins are studied. Sim-

ilarly to what is observed for CAI, we detect a separation between the 

predictions by different vendors. Thus, the designs from Vendor 1 and 
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Fig. 3. Codon Adaptation Index (CAI, left panel) and Codon Pair Bias (CPB, right panel) for the codon sequences proposed by different commercial tools for the 
28 proteins reported in Table 1, as well as for the wild type protein and for our NN predictions (at 𝛽 = 1 and 𝛽 =∞). For comparison, the average values (dashed 
lines) and standard deviations (grey areas) for codons sequences in the human NCBI database are also presented. These correspond to proteins of the same length 
(±2 codons) as those considered in Table 1. This is because both indicators depend of sequence length. In the case of 𝛽 = 1, a database of 1000 codon sequences is 
generated for each protein, and the mean and standard deviation (represented by an error bar) is reported. The colour code is the same in the two panels.

Fig. 4. Relative Codon Bias (RCB, left panel) and Percentage of GC (Guanine and Cytosine) (GC, right panel) for the same sequences as in Fig. 3. The colour codes 
and abbreviations are the same as in Fig. 3.
3 are found well above those from Vendor 2 and 4, while again the 
NN model switches between the two groups, depending on the value 
of 𝛽. Remarkably, the NN model at 𝛽 = 1 reproduces the predictions 
of Vendor 4 quite closely, and both are found at the lower end of the 
1-standard-deviation region.

This observation is significant as, by construction, RCB (RCPB) equal 
to zero corresponds to having a frequency of codon (codon pair) usage, 
within the sequence, that is precisely equal to the frequency observed 
in the database. Therefore, the predictions of Vendor 4 and NN at 𝛽 = 1
more closely resemble the “background” usage in the whole human 
database, than the human sequences themselves. Furthermore, the av-

erage RCB of natural human sequences is not consistent with the null 
value, which lies outside the 1-standard-deviation region. This seem-

ingly paradoxical phenomenon may have two potential explanations:

• The human natural codon distribution is not homogeneous but in-

stead depends on the gene length. This could happen, for instance, 
if the 5’- or 3’-terminal parts of the sequence showed a different 
codon usage than the bulk of the sequence. This end-effect would 
be dependent on the sequence length: the shorter the sequence, the 
more relevant it would become.

• The human codon distribution in the NCBI database is not uni-

modal, which implies that when a database probability 𝜓𝛼∕𝜙𝛼 of 
each codon is extracted (see Eq. (15)), we are averaging the codon 
usage of different distributions. This could be the case, for exam-

ple, if codon bias was function- or organ-specific (however, other 
3054

causes for heterogeneity could be also possible).
To test the first hypothesis, we proceeded as follows: We divided the 
human NCBI database in subsets according to sequence length, from 95 
to 7505 nucleotides, in intervals of 100 nucleotides. For the genes in 
each subset, we generated an alternative codon sequence with the NN 
model at 𝛽 = 1. This process yielded 75 subsets of the NCBI database, 
and the corresponding 75 databases of NN sequences. Then, we calcu-

lated the average RCB and standard deviation within each database. 
The results are plotted in Fig. S4 of S.I, and show that the RCB values 
from both the NCBI and NN sequences drop rapidly upon increasing the 
sequence length, due to the corresponding reduction in the statistical 
error, implicit in the definition of Eq. (15) (actually, for very short se-

quences, there were not enough residues to yield a significant sample of 
codon usage). However, the RCB indicator for NN sequences continues 
to decline until reaching values below 0.025, while the NCBI stabilises 
at around 0.1. Additionally, we see that in the case of the NN sequences, 
the standard deviation decreases with sequence length, indicating that 
the heterogeneity of the RCB within the same database is diminishing, 
whereas the deviations remain constant for the NCBI subsets.

The above suggests that the RCB behaviour in natural sequences is 
not caused by a length-dependent codon bias. Instead it seems to point 
to heterogeneities in codon usage related to other factors, although fur-

ther exploration of this topic is necessary to identify which factors are 
involved. In order to provide another test for this hypothesis, we artifi-

cially joined the 28 codon sequences for each dataset (namely, the NCBI 
database, the set of wild-type sequences and the sets corresponding to 
the six different methods) and calculated the RCB thereof. It can be seen, 

in Fig. S5, that the RCB value for the NCBI set is much smaller than 
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Fig. 5. Temperature dependence of the different indicators for protein luciferase, calculated with the two models. The averages of Codon Adaptation Index 
(CAI; Eq. (13)), Codon Pair Bias (CPB; Eq. (14)), Relative Codon Bias (RCB; Eq. (15)) and Relative Codon Pair Bias (RCPB; Eq. (16)) were calculated across databases 
consisting of 1000 sequences each, obtained as explained in Sec. 5.5. Error bars denote standard deviations. In each panel a black dot corresponds to the value for 
the sequence proposed by EMBOSS web server [18,29], and the vertical dashed lines indicate the 𝛽 values finally chosen, 𝛽 = 600 representing 𝛽→∞; see text.
when using separate sequences. This suggests that the use of the joint 
sequence for calculations smeared out the differences in codon usage, 
intrinsic to each separate sequence. On the other hand, RCPB plots (Fig. 
S6 in S.I.) do not reveal great differences among all methods and the 
human sequences, and no special conclusions can be drawn from them. 
Finally, we found that the GC content (Fig. 4, right panel) reproduces 
the patterns found for CAI. Once again, Vendor 1, 3 and the designs of 
NN at 𝛽 =∞ are higher and separated from the rest, with NN at 𝛽 = 1
closely resembling the designs of Vendor 4. The average human fraction 
for GC content is slightly higher than 50%, while the more extreme ones 
are found slightly above 55%, still within the one-standard-deviation re-

gion around the human average. As previously noted, the maximisation 
of CAI entails an increase in GC content.

2.3. Application of the NN and Ind model to the optimisation of luciferase 
mRNA

To verify whether using the NN model would increase the expression 
of the desired protein, we conducted protein expression assays in differ-

ent human cell lines. The Firefly Luciferase protein sequence (Uniprot: 
P08659) was selected as a reporter and the codon optimisation over the 
sequence was performed by using the Ind or the NN model.

2.3.1. Selection of codon sequences for experimental tests
The models were run at different inverse temperatures 𝛽, resulting 

in a set of different designs for each 𝛽. In order to select a few sequences 
for experimental testing, the characteristics of each set were examined 
in terms of the values of different indicators.

Fig. 5 reveals the dependence on 𝛽 ofthe CAI, CPB, RCB and RCPB 
indicators. It can be observed that the parameters of the NN model sta-

bilise at lower values of 𝛽 than those of the Ind model, due to the pair 
interactions.

In both models, the CAI (Eq. (13)) increases with 𝛽, something that 
is related to the fact that, at high 𝛽, just the sequences with the lowest 
energies are selected.

For the Ind model, this implies that codons with high probabilities 
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are chosen, since the energies are directly related to their frequency in 
the learning dataset. Consequently, the CAI of the Ind model reaches 1 
at 𝛽 =∞; in contrast, the CAI of the NN model never reaches 1, due to 
the contribution of codon pairs. Contrary to CAI, RCB (Eq. (15)) exhibits 
a minimum at 𝛽 = 1 for both models. This is in agreement with the fact 
that their parameters have been tuned to reproduce the natural codon 
distribution precisely at that temperature (it should be reminded that 
the RCB is always non-negative, with the null value corresponding to 
the case where the codon usage reproduces perfectly the natural one). 
Notice that for both CAI and RCB, the values obtained with the two mod-

els are essentially the same up to 𝛽 = 3. This is due to the fact that the 
indicators based on single codon usage cannot reflect the relevance of 
pair interactions, until 𝛽 values sensibly higher than the learning value 
are reached.

Conversely, CPB and RCPB (Eqs. (14), (16)) start at roughly the same 
value at the highest temperature considered (lowest 𝛽), indicating that 
the sequences are essentially random at that 𝛽, in the sense that for 
each given amino acid, any of its codons is chosen with uniform proba-

bility. However, their values quickly diverge. Indeed, considering CPB, 
we observe that the sequences generated by the NN model present pos-

itive values already at 𝛽 = 1 (i.e., the pairs they contain are more likely 
found than expected by random selection of single codons with their 
natural frequency), while the Ind model shows negative values up to 
𝛽 = 10. Similarly, RCPB plots for the Ind and NN models exhibit differ-

ent characteristics. The NN values are consistently smaller (i.e. “more 
natural”) across all temperatures, and with minima close to the learning 
inverse temperature 𝛽 = 1.

The GC percentage (see Fig. S7 in S.I.) exhibits a similar behaviour 
to that of CAI as the codon frequency correlates with its GC content. 
However, in the case of the Ind at high 𝛽, we see that not all the amino 
acids have the GC-richest codon as their most likely one. Indeed, GC 
fraction has a maximum at around 𝛽 = 30, where suboptimal codons 
are still sampled, and stabilises at a slightly lower value when only the 
most probable codon of each amino acid is selected.

In addition to the codon usage indicators mentioned above, we also 
considered the RNA (secondary structure) energy, as predicted by the 
RNAFold server [30], to see the amount of secondary structure present 

in the different designed sequences. Fig. S7 in S.I. reveals that the RNA 
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energy for the NN sequences decreased (almost monotonically) upon 
increasing 𝛽, and was consistently lower than, or equal to, the energy 
of the Ind sequences. These exhibited a minimum and subsequent in-

crease at low temperatures. This is due to the fact that the sequence 
composed by the most probable codons has a minor GC content than 
some populated sequence at intermediate temperatures (see Fig. S8), 
and GC coupling is stronger than AU. On the other hand, Fig. S7 il-
lustrates that the NN sequences consistently exhibit more secondary 
structure than Ind ones. This is evidenced by the number of bonded nu-

cleotides, which indicates that the energy per bonded nucleotide (i.e., 
the average “strength” of the contact) is not significantly different be-

tween the two models. Ultimately, since it was not very clear whether 
the RNAfold energy or the energy per bonded nucleotide would con-

stitute a good selection criterion, we decided not to use any structural 
criterion to guide our choice of sequences.

According to the above analysis, the databases 𝛽 = 1 for the Ind 
model, 𝛽 = 3 and 𝛽 =∞ for both models were selected. Using 𝛽 = 1 for 
the Ind model leads to a human distribution, while 𝛽 = 3 for both models 
allows a slight shift from the human distribution, increasing the GC per-

centage and decreasing the energy, so that the mRNA will be more sta-

ble, but without reaching the minimum. Lastly, employing 𝛽 =∞ yields 
the sequences (one per model) minimising the energy Eq. (4). These se-

quences, in both models, are characterised by having the highest CAI 
values and being furthest from the human distribution in terms of RCB. 
Additionally, in the case of Ind (𝛽 = ∞), the most frequent nucleotide 
is used to encode each amino acid, establishing it as our benchmark 
due to its simplicity and widespread adoption among researchers. To 
enhance realism, we employed the commonly accepted EMBOSS web 
server [29] to optimise the Luciferase sequence. This was done under 
the assumption that its results would align with those of our algorithm, 
since it uses the most likely codon for each amino acid [18]. However, 
disparities were observed, particularly in the codon for Arginine; while 
our method utilised AGA as the most frequent codon, EMBOSS utilised 
AGG. This discrepancy is related to the use of different versions of the 
Human Genome sequence. The version utilised by EMBOSS is consid-

erably older than the one employed in our method, resulting in slight 
variations in the frequencies of AGA and AGG codons. However, upon 
plotting the indicators’ values for the EMBOSS sequence in Fig. 5, we 
observed that they closely resemble those of Ind (𝛽 =∞). Thus, to align 
more closely with standard bench science practices, we opted to adopt 
the EMBOSS sequence as our benchmark, under the assumption that it 
would closely approximate the conditions of Ind (𝛽 =∞).

Finally, the selected sets of sequences were filtered, as detailed in 
Section 5.5, using the parameters described in Table S1, in order to iden-

tify the most promising candidates, for each 𝛽 value, for experimental 
tests.

2.3.2. In vitro performance of the Ind and NN models

The selected optimised sequences of luciferase were synthesised and 
inserted into a plasmid for in vitro transcription into mRNA. The re-

sulting mRNAs were then transfected into HeLa and HepG-2 cell lines, 
and the produced luminescence was quantified. Due to the negatively 
charged nature of mRNA, which repels the anionic cell membrane, en-

capsulation into lipid nanoparticles (LNPs) is essential for optimal in 
vivo functionality. Furthermore, LNP formulation also contributes to 
maintain mRNA integrity, promote endocytosis, and facilitate endo-

somal escape [31]. Accordingly, two experiments were conducted to 
validate the generated mRNAs: one using a commercial cationic trans-

fection reagent (Fig. 6A), and another involving the encapsulation of 
mRNAs into LNPs (Fig. 6B). The production of LNPs does not impact 
protein production, as Table S2 and S3 reveal: the observed variabil-

ity in the quality parameters for LNPs does not significantly affect the 
experimental results.

The results obtained from both cell lines and utilising both transfec-

tion methods revealed a slightly superior performance of the Ind_3 and 
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EMBOSS optimisation method (Fig. 6). However, statistically significant 
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differences were observed only when comparing Ind_3 with NN_∞ us-

ing a transfection reagent in Hela cell line (Fig. 6A). We also conducted 
assays with a lower final mRNA quantity for transfection to discern po-

tential differences (Fig. S9) and obtained similar results, with a superior 
performance of the EMBOSS method. This suggests that the Ind_3 and 
EMBOSS optimisation methods appear to be more efficient in generating 
higher levels of Luciferase in vitro.

2.3.3. In vivo performance of the Ind and NN models

Since our objective is to optimise mRNA coding sequences for ther-

apeutic applications in vivo, we proceeded to analyse the production of 
luciferase in a mouse model. Assuming that codon usage statistics are 
comparable between humans and mice (Fig. S10), we injected the opti-

mised mRNAs intramuscularly and monitored luminescence production 
at 4- and 24-hours post-injection (Fig. 7). Notably, codon optimisation 
using the NN model significantly enhanced protein production com-

pared to the Ind model. Specifically, employing the NN model with 
𝛽 =∞ resulted in the highest protein production levels at both 4- and 
24-hours post-inoculation. This result suggests that a codon optimisa-

tion based on “interactions” between neighbouring codons can improve 
protein production.

3. Discussion

While codon usage has a significant impact on the levels of het-

erologous protein production, there remains a lack of consensus on the 
most effective approach to maximising such production. Accordingly, 
different vendors use their own (often undisclosed) method to optimise 
gene design, and there is ongoing research aimed at improving the algo-

rithms and understanding the key factors that affect protein production. 
Here we have developed a new codon optimisation method, inspired by 
statistical physics, in which we assume that natural codon sequences 
are not the result of some kind of optimisation process, carried out by 
evolution. Instead, adopting a neutral evolution perspective, we con-

sider them as random samples of a general sequence probability, for 
which we postulate the form of a Boltzmann probability depending on 
an energy function and on a value of the temperature. This approach is 
usually adopted to study a physical system with clearly identified inter-

actions that, at least at the probabilistic level, completely determine its 
behaviour (e.g., protein folding). This is not the case here: the choice of 
the codons (the states of our system) does not depend on an interaction 
between amino acids (even if we can think that the necessity for inter-

action with the ribosome may effectively “couple” the codons of groups 
of amino-acids). Therefore, our approach is not based on ab-initio ob-

servations on the nature of the system. However, it proves to be quite 
fruitful: we have found that, after fitting the energy parameters at the 
inverse temperature 𝛽 = 1, the sequences obtained at any given 𝛽 share 
common characteristics in terms of CAI, RCB, GC content, etc, as in-

dicated by the small values of the variance of these quantities, see for 
example Fig. 5.

Thus, it appears that assuming the existence of an energy function 
and using it to generate a family of different probability distributions 
at different 𝛽, captures some fundamental features of the complex pro-

cesses that determine the codon usage patterns, that are species depen-

dent. In addition, we have seen that the results on CPB of Fig. 3 confirm 
the role of pair interactions, as a key factor in explaining the observed 
positive average for natural sequences. Note also that the parameters of 
the energy function are fitted, at 𝛽 = 1, to maximise the likelihood of 
the natural sequences, so that, differently to all other methods that we 
know, the observed codon and codon pair frequencies here are an out-

put, and not an input of the model. Finally, we have found that in the 
low temperature region, the NN model roughly reproduces the CAI and 
RCB indicators, as well as the GC fraction obtained by commercial de-

sign tools. This suggests that, by decreasing the temperature parameter, 

our model can gradually switch from producing natural sequences to 
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Fig. 6. In vitro luciferase production from mRNA sequences optimised by the Ind and the NN model. Luciferase production in HepG2 (upper panel) or Hela (lower 
panel) cell line, was measured in Relative Luminescence Units (RLU). The transfection reagent was a commercial cationic lipid in A) and a Lipid Nanoparticle in
B). In all cases a final quantity of 100 ng of mRNA per well was used. Each bar represents the mean of at least 2 independent experiments with triplicates in each 
experiment, where each point represents the result for an independent well. Ind_1, Ind_3 represent individual codon optimisations using 𝛽 = 1 and 𝛽 = 3 respectively, 
and EMBOSS corresponds to using always the most frequent codon. NN_3 represents the nearest-neighbour interaction model at 𝛽 = 3 and NN_∞ is the sequence 
obtained with the NN model at 𝛽 = 600.

Fig. 7. In vivo luciferase production from mRNAs sequences optimised by the Ind and the NN model. Lipid Nanoparticles, encapsulating the optimised mRNAs, 
were used to inoculate 1 μg of total mRNA intramuscularly to each mouse. The luminescence yield was measured by total flux quantification in photons per second 
(p/s) at A) 4 hours and B) 24 hours post inoculation. Each bar represents the mean of two independent experiments, one using two mice per group and the other 
3 mice per group. Ind_1 represents individual codon optimisation using 𝛽 = 1 and Ind_3 using 𝛽 = 3 and EMBOSS using always the most frequent codon. NN_3 
represents the nearest-neighbour interaction model using 𝛽 = 3 and NN_∞ using 𝛽 600 which is equivalent as ∞.
generating “extreme” ones, with a bias towards high values of CAI and 
GC content.

By design, our approach generates several sequences, except at 𝑇 rig-

orously zero, where the solution is unique (unless two different codon 
sequences have exactly the same energy, which is very unlikely). How-

ever, the resulting sequences need not all be good hits, and some filtering 
is recommended, in order to satisfy other important criteria that are not 
implicit in our model. For example, requirements on secondary structure 
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formation and its energy, or on forbidden nucleotide sequences, as well 
as on the absence of long GC-rich regions, must be implemented on top 
of the pool of predicted sequences. However, the computational time is 
extremely low (Fig. S11), which makes our method widely applicable.

Other methods can also return different solutions, apart from the op-

timal one, using Monte Carlo, Genetic Algorithms, or other approaches, 
and they also resort to post-generation filtering to implement other cri-

teria. For example, Refs. [20,22] use Monte Carlo to explore alternatives 
to the most frequent codon, while Ref. [21] presents a scaling factor to 

tune the codon frequencies; a bee-colony algorithm is used to perform 
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a multi-objective optimisation in Ref. [32]. However, to the best of our 
knowledge, none of them uses an energy-based approach, with the tem-

perature as a control parameter, which provides a simple and intuitive 
framework for sequence design, and also allows to generate sequences 
with homogeneous values of different indicators.

In terms of the efficiency in protein production in both in vitro and 
in vivo settings, a notable disparity has been observed, with the Ind 
model outperforming the NN model in vitro, but the NN model showing 
significantly better performance in vivo. A plausible explanation for this 
difference could be that mRNA translation encounters biological barri-

ers upon entering the cell, which vary depending on the cell type and 
context within the body [33]. We have attempted to reduce variability 
by using the same 5’ and 3’UTR [34], and the same polyA tail length for 
all mRNA because those features are the ones that have more impact on 
mRNA stability and translation efficiency [35,36]. However, many fac-

tors within the coding sequence could contribute to disparities between 
in vitro and in vivo performance. One such factor is the structure of the 
mRNA, which influences its stability in response to metabolite concen-

trations, such as Mg2+ [37], which can vary between in vitro conditions 
or among tissues. In an effort to clarify the role of mRNA stability in our 
designs, we performed a stability experiment. Unexpectedly, the results 
showed that the design with the lowest stability (Ind_3) in solution (Fig. 
S12B) outperformed others in vitro (Fig. S12C), despite being evidently 
more degraded than its counterparts. Hence, it appears that additional 
factors are playing a pivotal role in vivo. We hypothesise that these fac-

tors are associated with the differential presence of specific nucleotide 
motifs among the optimised sequences. These motifs could potentially 
influence ribosome entry and translocation [38], or the binding of mi-

croRNAs, which may exhibit different expression patterns in different 
cell types. Furthermore, the emerging field of ribosome heterogenicity 
among tissues could provide insights into variations in mRNA trans-

lation across different tissues [39]. Given that our NN model extracts 
probabilities and patterns from human sequences, we could be implic-

itly accounting for undiscovered patterns that contribute to superior in 
vivo performance.

4. Conclusions

We have proposed and tested, in silico, in vitro and in vivo, a new al-

gorithm for gene design, inspired by statistical physics. The algorithm 
differs significantly from the existing methods, and can be tuned to 
generate sequences with any degree of bias, as measured by common 
indicators like CAI, CPB, RCB, and GC content ranging from natural 
sequences to extremely biased ones. In fact, at 𝛽 = 1 it outperforms 
other methods in generating sequences that are closely similar to natu-

ral human sequences, in terms of the CAI, CPB, and GC indicators. This 
encourages the use of the NN model as a null model to answer biologi-

cal questions, as we did when investigating the cause of the distribution 
of RCB values of natural sequences.

Our method does not set the last word in elucidating the relationship 
between codon usage and protein expression, that remains an elusive 
subject of research. Our findings indicate that the results can be different 
in vitro and in vivo, both for the designs that mimick natural sequences, and 
for those with a high level of bias towards the most common codons (i.e., 
the low-T sequences, presenting high CAI and GC content). This points 
at the relevance, for protein expression, of factors that are not simply 
related to the choice of codons. On the other hand, we note that our 
approach, designed to mimic the patterns of human codon sequences, 
was able to bypass the multifactorial in vivo regulatory elements that 
affect mRNA translation. Although we lack an explanation for that, we 
note that our NN method generates an adequate translation efficiency 
in vivo, that could be applied to the future design of mRNA therapeutics 
for vaccines or gene replacement. The algorithm at the moment is im-

plemented as a series of Python and Fortran codes, that are probably not 
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very handy for the casual user. Nevertheless, we are developing a user-
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friendly tool, potentially in the form of a web server, with the objective 
of enhancing its usability and obtaining independent feedback.

Finally, we notice that in this work we have tuned our model to 
reproduce the probability of sequences from the entire NCBI human 
database, without selecting highly expressed genes or distinguishing 
among tissues or function. While this is the correct approach to start 
with, in order to characterise the general human database, we note that 
the learning database could be restricted and the model tailored to ad-

dress specific tasks and questions.

5. Methods

5.1. Database preparation

In order to build the protein sequence database, we started from 
the Genome Reference Consortium Human Build 38 patch release 13 
(GRCh38.p13) from Ensembl 107 [40] identifiers database. With the 
identifiers, we obtained the codon sequences from NCBI’s Nucleotide 
database [41,42], resulting in a database of 116,487 sequences.

For computational simplicity and to increase the statistics of the 
codons for each peptide sequence, we took advantage of the fact that the 
parameters in our model are assumed to be site-independent to split the 
protein sequences, obtained from the NCBI gene sequences, into shorter 
peptides of length 𝐿; thus, the same peptide is represented by several 
codon sequences (even though they come from different proteins). Split-

ting started alternatively at the N- or C-terminal end of the peptide, to 
avoid biases. For each sequence, we discarded the last (N- or C-terminal) 
peptide, if it was shorter than 𝐿 residues. This procedure possibly in-

troduces some border effect (that will be less important the longer the 
peptides are); we will discuss in the following section how to (partially) 
cope with this problem when calculating the probabilities.

Hence, by randomly selecting sequences from the entire database, 
and splitting them as explained above, we built a database  of 44827 
codon sequences1 representing a set of 𝑁 different peptides {𝑝𝑘, 𝑘 =
1, … , 𝑁} of length 𝐿 = 50:

 = {{𝑆𝑗 (𝑝𝑘), 𝑗 = 1,… ,𝑀(𝑝𝑘)}, 𝑘 = 1,… ,𝑁}, (1)

where 𝑀(𝑝𝑘) is the number of codon sequences in the database that 
translates to the same peptide 𝑝𝑘 (notice that sequences 𝑆𝑗 (𝑝𝑘) need not 
be different:  may contain repeated codon sequences for 𝑝𝑘, and 𝑀(𝑝𝑘)
will count all of them).

5.2. Data-driven statistical physics models

In the following, we discuss two probabilistic models designed to 
describe the experimental database prepared in the previous section. 
More details on the methods can be found in the S.I.

5.2.1. Nearest-neighbour interaction model

Let 𝑃 = {𝑎𝑖, 𝑖 = 1 … 𝐿(𝑃 )} indicate a protein sequence, where 𝑎 =
{1 … 20} are the amino acids, so that 𝑎𝑖 is the amino acid at the position 
𝑖. Let (𝑎) be the set of codons 𝛼(𝑎) codifying for the amino acid 𝑎; 
 = ∪20

𝑎=1(𝑎) is the set of all codons, of cardinality 𝐾 = 61. Let 𝑆(𝑃 ) =
{𝛼𝑖 ≡ 𝛼(𝑎𝑖), 𝑖 = 1, … , 𝐿(𝑃 )} be a codon sequence encoding the protein 
sequence 𝑃 . Inspired by statistical physics, we associate, to each codon 
sequence 𝑆(𝑃 ) of a given protein 𝑃 , a Boltzmann probability

𝑝(𝑆(𝑃 )|𝐡,𝐉, 𝑃 ) = 1
(𝑃 )

𝑒−𝛽(𝑆(𝑃 )|𝐡,𝐉), (2)

i.e., the ratio of a Boltzmann weight exp(−𝛽𝐻(𝑆|𝐡,𝐉)) and the corre-

sponding partition function (for a fixed protein sequence), as a normal-

isation factor:
1 This number was just a trade-off accounting for computational limitations.
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(𝑃 ) =
∑

{𝛼𝑖∈(𝑎𝑖),𝑖=1,…,𝐿(𝑃 )}
𝑒−𝛽(𝑆(𝑃 )|𝐡,𝐉). (3)

Thus, in this approach, we map each codon sequence to a state of a 
physical system, ruled by the energy function 𝐻(𝑆|𝐡,𝐉):
(𝑆(𝑃 )|𝐡,𝐉) = 𝐿(𝑃 )∑

𝑖=1
ℎ𝛼𝑖

+
𝐿(𝑃 )−1∑
𝑖=1

𝐽𝛼𝑖+1 ,𝛼𝑖
, (4)

depending on the parameters 𝐡 = {ℎ𝛼}, 𝐉 = {𝐽𝛼𝛽}, that are a priori un-

known and must be optimised to recover the observed codon sequences 
in a given, species-dependent, database.

Notice that we assume that ℎ𝛼𝑖 depends only on the codon type 
𝛼𝑖 and not on the sequence position 𝑖 in where the codon is located. 
The same holds true for 𝐽𝛼𝑖+1 ,𝛼𝑖 , so that the number of parameters is 
independent from the length 𝐿(𝑃 ) of protein 𝑃 , and does not exceed 
𝐾2 +𝐾 . The reason for these assumptions is that we do not expect the 
parameters to depend strongly on the position along the sequence, so, 
as a first approximation, we assume them to be completely position-

independent. Actually, it is known that codon usage is related to the 
species-dependent availability of the different tRNAs, which is site in-

dependent, but also to site-dependent constraints related to the mRNA 
secondary structure, as well as to the need to control specific signals to 
modulate translation; in taking the parameters as position-independent, 
we are assuming that the latter effects are less relevant than the former 
ones.

When calculating the probability of a peptide in the database  in-

troduced in Sec. 5.1, we slightly modify the expression Eq. (2), to cope 
with the fact that the peptides are fragments of a longer protein se-

quence, by considering the peptide 𝑝′ of length 𝐿 + 2, obtained from 
peptide 𝑝 adding a codon 𝛼0 at the N-term, and 𝛼𝐿+1 at the C-term, and 
computing the marginal probability, over all possible codons 𝛼0 and 
𝛼𝐿+1 of any amino acid:

(𝑆(𝑝)|𝐡,𝐉) = 𝐾∑
𝛼0 ,𝛼𝐿+1=1

𝑝(𝑆(𝑝′)|𝐡,𝐉)
= 1

(𝑝′)

𝐾∑
𝛼0 ,𝛼𝐿+1=1

𝑒
−𝛽(

∑𝐿+1
𝑖=0 ℎ𝛼𝑖

+
∑𝐿
𝑖=0 𝐽𝛼𝑖+1 ,𝛼𝑖 ), (5)

where now (𝑝′) is given by:

(𝑝′) =
𝐾∑

𝛼0 ,𝛼𝐿+1=1

∑
{𝛼𝑖∈(𝑎𝑖),𝑖=1,…,𝐿}

𝑒−𝛽(𝑆(𝑝′)|𝐡,𝐉). (6)

Notice that in the latter expressions, the sum over 𝛼0, 𝛼𝐿+1 at the ends of 
the peptides is over all possible codons, and not limited to a particular 
amino acid. In this way we avoid disregarding interactions (that indeed 
exist) at the ends, at the price of assuming that all amino acids can 
appear close to a given one (and each with a probability that will be 
proportional to the number of corresponding codons).

This hypothesis does not consider that a minority of peptides (those 
corresponding to the N- and C-term of the protein) do lack one neigh-

bour. This could cause some problems, especially for Methionine, that is 
preferentially found at the N-terminal of proteins; however, we ignore 
this, for the sake of simplicity.

Probabilities Eqs. (2), (5) can be efficiently calculated using a “trans-

fer matrix” formalism; for instance, Eq. (3) can be recast as:

(𝑃 ) =
∑

{𝛼𝑖∈(𝑎𝑖)}

(
𝑒
−𝛽ℎ𝛼𝐿∕2

(
𝐿−1∏
𝑖=1

𝑇𝛼𝑖+1 ,𝛼𝑖

)
𝑒
−𝛽ℎ𝛼1 ∕2

)
, (7)

where: 𝑇𝛼,𝛼′ = 𝑒−𝛽(ℎ𝛼∕2+𝐽𝛼𝛼′ +ℎ𝛼′ ∕2) can be seen as the elements of the 
transfer matrix; care must be paid to considering just the codons 𝛼, 𝛼′
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available for the amino acids at positions 𝑖 + 1, 𝑖.
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5.2.2. Individual codons model

A simpler model can be extracted from the one exposed in Sec-

tion 5.2.1, by simply setting all interaction parameters 𝐽𝛼,𝛽 = 0, for all 
codons 𝛼, 𝛽 at neighbouring sites. In this case, the codons are indepen-

dent of each other and the probability Eq. (2) becomes:

𝑝(𝑆(𝑝)|𝐡) = 1
(𝑝)

𝑒
−𝛽

∑𝐿
𝑖=1 ℎ𝛼𝑖 =

𝐾∏
𝛾=1

𝑝𝛾 (ℎ𝛾 )𝑛𝛾 (𝑆(𝑝)) (8)

where

𝑝𝛾 (ℎ𝛾 ) =
𝑒−𝛽ℎ𝛾∑

𝛾∈(𝑎) 𝑒
−𝛽ℎ𝛾

, (9)

and 𝑛𝛾 (𝑆(𝑝)) is the number of times the codon 𝛾 appears in sequence 
𝑆(𝑃 ). Thus, the probability for all the database will read:

𝑝(|𝐡) = 𝐾∏
𝛾=1

𝑝𝛾 (ℎ𝛾 )𝑛𝛾 (), (10)

with 𝑛𝛾 () the number of times 𝛾 appears in the whole database. The 
ℎ𝛾 are found maximising the above probability.

5.2.3. Data-driven determination of the parameters

Equation (2) (or (5)) allows to calculate the probability of any pro-

tein (or capped peptide) codon sequence given the values of the param-

eters 𝐡,𝐉 and 𝛽.

We regard the variability of natural codons sequences, expressing 
the same protein sequence, as a manifestation of the accessibility of 
different states of the physical system, with different probability, when 
the inverse temperature is set to 𝛽 = 1 (for simplicity and without loss 
of generality, since this is equivalent to setting the energy scale).

Assuming independence among all sequences in the database, from 
Eq. (5), we obtain for the probability of the whole peptide database  :

𝑝(|𝐡,𝐉) = 𝑁∏
𝑘=1

⎛⎜⎜⎝
𝑀(𝑝𝑘)∏
𝑗=1

(𝑆𝑗 (𝑝𝑘)|𝐡,𝐉, 𝛽 = 1)
⎞⎟⎟⎠, (11)

where 𝑗 = {1 … 𝑀(𝑝𝑘)} labels all codon sequences in our dataset that 
code the same peptide 𝑝𝑘, with 𝑘 = {1 … 𝑁} labeling the different pep-

tides. Notice that we have one partition function for each amino acid 
sequence, since these sequences differ from each other.

Bayes’ theorem states that the probability of the parameters given 
the database can be related to that of the database given the parameters 
and the prior probabilities of the parameters:

𝑝(𝐡,𝐉|) ∝ 𝑝(|𝐡,𝐉)𝑝prior(𝐡,𝐉). (12)

Assuming uniform priors, we can reduce the determination of the pa-

rameters to maximising the likelihood 𝑝(|𝐡,𝐉, 𝛽 = 1) on the values of 
𝐡,𝐉. Actually, for convenience, we will maximise ln𝑝(|𝐡,𝐉) instead, 
using the L-BFGS-B algorithm, implemented in the function scipy.opti-

mize.minimize of the Python Scipy library; as a convergence protocol, 
we consider convergence achieved when there is a variation of 0.001% 
in the value of the objective function or a 0.1% change in the gradient 
between one step and the next).

For the case of the Individual Codons model, an analogous approach 
is applied, using the likelihood Eq. (10), with the probabilities calculated 
from Eq. (9) at 𝛽 = 1.

5.3. Sequence generation

By setting the optimal values for 𝐡 and 𝐉, we can generate species-

specific codon sequences for a given amino acid sequence. On the one 
hand, we want to find the codon sequences that encode a given amino 
acid sequence at low temperatures and, ultimately, at zero temperature 
due to its significance as the sequence that minimises the energy, i.e., the 

“best” sequence in terms of the 𝐡 and 𝐉 parameters. On the other hand, 
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we want to explore the sequence space at 𝑇 = 1, that should present the 
same natural variability observed in nature.

We will tackle both tasks using the Simulated Annealing (SA) algo-

rithm [43] implemented on top of a standard Metropolis Monte Carlo 
scheme, where, at any temperature, codon changes are always accepted 
if they lower the energy Eq. (4), and are accepted with probability 
𝑒−Δ𝐻∕𝑇 depending on the energy variation upon the change.

We start simulations at a high temperature, with a random codon 
sequence for the selected protein, and gradually decrease the tempera-

ture, to avoid getting trapped in local minima. At low temperatures, we 
finally find the lowest energy solution. Further details on the sequence 
generation protocol can be found in the Supplementary Information.

5.4. Indicators of codon bias

We use some common indicators of the codon usage bias, that is, 
the “fitness” of a codon sequence to be used by a certain species. Let 
𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑛) be a protein sequence, represented by the codon se-

quence 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝑛). Upon calling 𝜓𝛼 , 𝜓𝛼,𝛽 the observed number 
of occurrences for codon 𝛼 or neighbouring codon pair (𝛼, 𝛽) respec-

tively, and 𝜑𝑎, 𝜑𝑎,𝑏 the observed number of instances of amino acid 𝑎 or 
neighbouring amino acid pair (𝑎, 𝑏), in the reference dataset being used 
(in our case, the human dataset from NCBI), we will consider:

• The Codon Adaption Index (CAI) [44], representing the bias of a 
codon sequence towards the most used codon for each amino acid:

CAI(𝛾, 𝜎) =

(
𝑛∏
𝑖=1

𝜓𝜎𝑖

𝜓𝑚𝑎𝑥(𝛾𝑖)

)1∕𝑛

, (13)

where 𝜓𝑚𝑎𝑥(𝑎) is the number of occurrences of the most likely 
codon for amino acid 𝑎. Notice that the maximum value for CAI 
is 1, attained when the most common codon is used for each amino 
acid of the sequence.

• The Codon Pair Bias (CPB) [45], defined as:

CPB(𝛾, 𝜎) = 1
(𝑛− 1)

𝑛−1∑
𝑖=1

ln

(
𝜓𝜎𝑖,𝜎𝑖+1

𝜑𝛾𝑖
𝜑𝛾𝑖+1

𝜑𝛾𝑖,𝛾𝑖+1
𝜓𝜎𝑖

𝜓𝜎𝑖+1

)
. (14)

Notice that CPB, although similar in spirit to CAI, has a different 
meaning: the ratios 𝜓∕𝜑, with one or two indices, can be inter-

preted as a probability of using a codon or codon pair respectively 
(indeed, the denominator 𝜑𝑎,𝑏 is equal to the sum over all pos-

sible codons pairs compatible with the amino acid pair (𝑎, 𝑏) in 
the database, and analogously for 𝜑𝑎). Thus, CPB takes into ac-

count the ratio of the codon pair joint probability to the codon pair 
probability in the independent codon case: a deviation from zero 
implies that the sequence contains predominantly codons that are 
more (if positive) or less likely (if negative) to occur together than 
in a random choice. Notice that this does not imply that, in natu-

ral sequences, all pairs (𝑖, 𝑖 + 1) will contribute positively: CPB just 
reflects the deviation of a sequence from the natural independent 
codon distribution.

• The Relative Codon Bias (RCB) [1]:

RCB(𝛾, 𝜎) =
20∑
𝑎=1

𝜂𝑎(𝛾)
𝑛

∑
𝛼∈(𝑎)

1
𝐾(𝑎)

||||𝜗𝛼(𝜎)𝜂𝑎(𝛾)
−
𝜓𝛼

𝜑𝑎

|||| , (15)

where 𝐾(𝑎) is the number of codons corresponding to amino acid 
𝑎 (i.e., the cardinality of (𝑎)), 𝜂𝑎(𝛾) is the number of times amino 
acid 𝑎 appears in protein sequence 𝛾 and 𝜗𝛼(𝜎) is the number of 
times codon 𝛼 appears in the codon sequence 𝜎. This indicator 
is more “noisy” and sequence-length dependent than the previous 
ones: indeed, it is based on the deviation of the fraction 𝜗𝛼(𝜎)∕𝜂𝑎(𝛾)
of a given codon 𝛼, within sequence 𝜎, with respect to its overall 
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fraction in the database, 𝜓𝛼∕𝜑𝑎.
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Table 2

Criteria used to select the optimised Luciferase sequences in the sets of 
possible solutions generated by the NN and Ind algorithms. The type of 
parameters and the values used to select the optimised sequences for each 
database are shown; see text for details.

Inverse temperature 𝛽 = 1 𝛽 = 3 𝛽 = ∞

Allowed restriction-enzyme sites 0

Global percentage of GC 30-70%

Local percentage of GC 35-65%

Allowed complementary sequences (<10 bp) Less than 10

Allowed complementary sequences (>10 bp) 0

Allowed length of repeated nucleotides Less than 8 nucleotides

RCB 0-0.2 0-0.4 0-0.5

Number of miRNAs binding sites As low as possible

• The Relative Codon Pair Bias (RCPB) [1]:

RCPB(𝛾, 𝜎) =
20∑

𝑎,𝑏=1

𝜂𝑎𝑏(𝛾)
𝑛− 1

∑
𝛼∈(𝑎),𝛽∈(𝑏)

1
𝐾(𝑎)𝐾(𝑏)

|||||
𝜗𝛼𝛽 (𝜎)
𝜂𝑎𝑏(𝛾)

−
𝜓𝛼𝛽

𝜑𝑎𝑏

||||| ,
(16)

where 𝜂𝑎𝑏(𝛾) is the number of times amino acid pair (𝑎, 𝑏) appears 
in protein sequence 𝛾 and 𝜗𝛼𝛽 (𝜎) is the number of times codon pair 
(𝛼, 𝛽) appears in the codon sequence 𝜎. The same kind of caveats 
as for RCB hold for RCPB: the shorter the protein, the more likely 
that a given codon pair does not appear.

5.5. Application to the design of luciferase

The Firefly luciferase protein sequence (Uniprot: P08659) was se-

lected, and its codons redesigned as explained in Section 5.3, using the 
parameter optimised from the human dataset. We selected sequences 
from 𝛽 = 1, for the case of the Ind model, and 𝛽 = 3, for both models, 
performing Monte Carlo simulations at this temperature as well as the 
lowest energy sequence for the NN (corresponding to 𝛽 = 600). For 𝛽 = 
1 and 3, we wanted to select uncorrelated sequences that were repre-

sentative of the variability of the solution space, so we saved sequences 
every 200 Monte Carlo sweeps.

The sequences obtained for each 𝛽 value were filtered according 
to the criteria described below and summarised in Table 2. To avoid 
problems in the experimental protein expression, we discarded se-

quences that contain short nucleotide sequences targeted by the restric-

tion enzymes used for plasmid linearisation during in vitro mRNA syn-

thesis. Specifically, we excluded GCTCTTC (Seq_BspQI.1), GAAGAGC 
(Seq_BspQI.2), and GCGGCCGC (NotI). For the cases 𝛽 = 1 and 3, this 
is done simply by discarding solutions containing these sub-sequences, 
while for the 𝑇 = 0 case, we manually mutated the single solution, in 
such a way as to eliminate the forbidden sub-sequence, while producing 
the smallest increase in the energy.

Then, according to Ref. [46], the global and local GC percentage of 
the sequences were set between 30-70% and 35-65%, respectively. The 
global GC percentage is the average GC fraction of the whole sequence, 
whereas the local GC fractio was calculated using a fixed size window 
(30 nts). The number of complementary sequences of 10, 15 and 20 
base pairs (bp) was then extracted from each sequence. This analysis 
was performed due to the potential formation of loops by complemen-

tary sequences, which could result in the generation of highly stable 
sequences, thereby potentially reducing translation efficiency. There-

fore, the number of complementary sequences of 10 bp was limited to 
be less than 10, whereas for those of 15 and 20 bp, it was set to 0. Ad-

ditionally, repeated nucleotides were avoided to reduce transcription 
errors, so the length of regions containing repeated nucleotides was set 
below 8 nucleotides.

The distance to human distribution was also calculated using the 

RCB (Eq. (15)) to determine the closeness to the human distribution. 
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This parameter differed for each selected database because as the value 
of 𝛽 increases, the range in which this parameter can be found increases 
(Fig. 5). A range of 0-0.2, 0-0.3 and 0-0.4 was defined for 𝛽 1, 3 and ∞, 
respectively. Finally, we checked the number of microRNAs (miRNAs) 
binding sites contained in each sequence. MicroRNAs are short RNAs, of 
approximately 21 nucleotides, whose function is to regulate gene expres-

sion. Previous studies [47] have demonstrated that miRNA target sites 
located in the coding sequence of mRNAs may have an inhibitory effect 
on translation. Therefore, the aim was to identify sequences that inter-

act with miRNAs and subsequently exclude them from our databases. 
To achieve this, we used a database [48] containing the sequences of 
various miRNAs identified in humans and the corresponding sequences 
of the proteins to which they bind. We found that miRNA binding sites 
were so common that it was practically impossible to exclude them all. 
Thus, we ranked the sequences according to the number of miRNAs 
binding target they contained and selected the sequences with as few 
binding sites as possible for the experiments.

5.6. DNA template design for in vitro transcription

The luciferase (GenBank: WP_212371658.1) DNA sequences that 
were optimised by our methods were gene synthetised by Genscript. 
Subsequently, the luciferase coding sequences were cloned into a previ-

ously designed plasmid. This plasmid, based on pUC57, comprised the 
following elements in the 5’-3’ orientation: the T7 promoter for RNA 
polymerase, the 5’UTR and 3’UTR from human beta globin (GenBank: 
NM_000518), a polyA tail consisting of 100 adenines and, immediately 
following, the BspQI restriction enzyme site. In particular, the luciferase 
coding sequence was inserted in-frame directly following the 5’UTR. The 
plasmids obtained were amplified and purified by Genscript, and subse-

quently employed for in vitro transcription.

5.7. In vitro transcription

Each plasmid containing the DNA template sequence of interest was 
digested with BspQI (HONGENE, ON-124), which cleaved the plasmid 
immediately after the segment to be transcribed. Subsequently, the lin-

earisation reaction was then purified using the Wizard ® SV Gel and 
PCR Clean-Up (Promega, A7270), in accordance with the manufactur-

er’s instructions.

The purified linear DNA was subsequently employed for mRNA pro-

duction by in vitro transcription using T7 RNA polymerase following 
manufacturer’s instructions. Transcription reactions were performed at 
37 °C for a period of three hours, utilising the following materials:

• Template linear DNA (50 μg/mL)

• T7 RNA polymerase (5000 U/mL; HONGENE, ON-004)

• RNase inhibitor (1000 U/mL, HONGENE, ON-039)

• Inorganic Pyrophosphatase (2 U/mL, HONGENE, ON-025)

• ATP (5 μg/mL, HONGENE, R1331)

• GTP (5 μg/mL, HONGENE, R2331)

• CTP (5 μg/mL, HONGENE, R3331)

• N1-Methylpseudouridine (5 μg/mL, HONGENE, R5-027)

• CleanCap ® AG (4 μg/mL, TRILINK ® N-7113-10)

• RNAse free double distilled water

5.8. mRNA purification

Following a three-hour incubation period incubation, DNAse I (Hon-

gene, ON-109), was added to the generated mRNA transcripts and the 
incubation was continued for 15 minutes at 37ºC. The crude RNAs were 
purified by affinity chromatography using POROS Oligo (dT) 25 column 
(ThermoFisher). In particular, the buffers employed were as follows: 
Buffer A which contained 50 mM disodium phosphate, 0.5 M NaCl, 5 
mM EDTA, pH 7.0 and Buffer B which contained 50 mM sodium di-
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hydrogen phosphate, 5 mM EDTA, pH 7.0. The mRNA samples were 
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initially half-diluted in Buffer A 2x. Subsequently, the column was equi-

librated with 100% Buffer A, loaded with mRNA, washed with Buffer 
B, and ultimately eluted using double-deionised water. To completely 
eliminate Buffer B, mRNA was washed with a 30 kDa Amicon filter and 
then equilibrated through a one-tenth dilution in citrate buffer 10x with 
a pH 6.5.

The concentration of mRNA was determined by measuring the opti-

cal density at 260 nm, then adjusted to a final concentration of 1 mg/ml, 
aliquoted and stored at -80 °C until required.

For quality assurance, all mRNAs underwent analysis through au-

tomated electrophoresis (2100 Bioanalyzer, Agilent, G2938B). Subse-

quently, the mRNA samples were aliquoted and stored at -80 °C until 
needed.

5.9. Encapsulation of mRNA into lipid nanoparticles (LNP)

For in vivo administration, the mRNAs were encapsulated into lipid 
nanoparticles (LNPs) as described in [49]. Briefly, the purified mRNAs 
were initially diluted in sodium citrate buffer at pH 4 reaching a fi-

nal concentration of 266 μg/ml. Simultaneously, lipids: SM-102 (BOCSI, 
2089251-47-6); DOPE (Merk, 850725P); Cholesterol (Sigma, C3045); 
DMG-PEG2000 (Cayman, 33945-1) were dissolved into ethanol at the 
respective molar ratios of 50:10:38.5:1.5, maintaining a molar N:P ratio 
of 4.6:1.

LNPs were prepared using the pipette mixing method. This involved 
rapidly combining the aqueous solution with the ethanol solution, fol-

lowed by homogenisation through pipetting up and down for 4-5 cycles. 
The resulting LNPs were promptly diluted 1:1 with buffer to a final con-

centration of Tris 20 mM, pH 8 and Sucrose 15%. Each resulting LNP 
solution was then collected, and encapsulated mRNA was assessed by 
Quant-IT® Ribogreen (Invitrogen, R11490) following the manufactur-

er’s instructions. Additionally, LNPs were analysed through agarose gel 
electrophoresis to assure proper mRNA integrity and encapsulation per-

centage.

Subsequently, the LNP solution was adjusted to a final concentration 
of mRNA of 100 μg/ml, filtered through a 0.22 mm filter and then stored 
at -80 °C until required.

5.10. LNP characterisation

In addition to mRNA encapsulation, other relevant quality parame-

ters of LNPs were also evaluated. Size distribution, polydispersity (PDI) 
and Z-potential were measured by dynamic light scattering (DLS) in a 
Zetasizer Advance Lab Blue Label (Malvern). The data obtained for each 
LNP are presented in Tables S2 and S3.

5.11. Cell culture and mRNA transfection

HeLa (DSMZ GmbH, ACC57) cell line was cultured on DMEM 
high glucose (Merk, D6429) supplemented with Fetal Bovine Serum 
10% (Sigma, F7524), Penicillin-Streptomycin Solution 1% (GibcoTM, 
15140122) and Glutamax 2 mM (ThermoFisher, 35050038). Hepatic 
HepG2 (ATCC, HB-8065) cell line was cultured on RPMI 1640 (GibcoTM, 
31870074) supplemented with Fetal Bovine Serum 10% (Sigma, F7524), 
Penicillin-Streptomycin Solution 1% (GibcoTM, 15140122) and Gluta-

max 2 mM (ThermoFisher, 35050038). Both cell lines were cultivated 
in a 175 cm2 flask.

The day before transfection, cells were detached from the flask by 
trypsinisation (ThermoFisher, 11590626), and subsequently, they were 
seeded into 96-well plates at a density of 1 × 104 cells/well.

For transfection with a commercial cationic lipid, culture media was 
replaced with 90 μL of fresh media. Subsequently, a mixture of each 
mRNA (100 ng/well) and Lipofectamine MessengerMAXTM (Invitrogen, 
15397974; 0.2 μL/well), pre-incubated in OptiMEM media. The mRNA-
lipofectamine mixture was added to the corresponding well in triplicate, 
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directly resulting in a final mRNA concentration of 100 ng/well. Alterna-

tively, the mRNA-Lipofectamine mixture was diluted to half or quarter 
of its concentration and then added to the cell culture, achieving fi-

nal mRNA concentrations of 50 ng/well and 25 ng/well, respectively. 
For transfection with the mRNA-LNPs, an initial series of one-half se-

rial dilutions were prepared in culture media. Subsequently, 25 μL/well 
of the corresponding mRNA-LNP were added in triplicates to 100 μL of 
cells culture, resulting in final mRNA concentrations of 100 ng/well, 50 
ng/well or 25 ng/well.

The cells were incubated for 24 hours at 37 °C in a 5% CO2 atmo-

sphere, along with the mRNA-Lipofectamine MessengerMAX mixture or 
the mRNA-LNPs.

5.12. Quantification of the in-vitro activity of firefly luciferase

Cells were lysed 24 h post-transfection by incubation during 10 min-

utes with 100 μL of PBS-Triton 0.1%. Then, 98 μL of cell lysate was 
transferred to an opaque 96-well white plate. Buffered d-Luciferin (Gold-

Bio, LUCK-100) in 100mM Tris-HCl pH 7.8, 5 mM MgCl2, 250 𝜇𝑀 CoA, 
150 𝜇𝑀 ATP buffer was added to each well in a volume of 100 μL, 
resulting in a final concentration of 150 μg/mL. The negative control 
was comprised of cells that had not been incubated with any mRNA. 
Luminescence was measured after 5 minutes of incubation at room tem-

perature in a FLUOstar Omega plate reader (BMG LABTECH).

5.13. In solution stability of mRNA

To evaluate the stability of transcribed mRNA, samples were incu-

bated at 37 ºC in 20 mM CHES buffer with 4 mM MgCl2 at pH 9.7 
over various time intervals (0, 10, 30, 60, 120, and 1440 minutes). 
To prevent further degradation during the handling process, the sam-

ples were promptly quenched samples by adding 160 mM Tris buffer 
containing 110 mM EDTA. RNA integrity was analysed using auto-

mated electrophoresis (2100 Bioanalyzer, Agilent, G2938B). The degree 
of degradation was determined through image analysis of the electro-

pherogram, quantifying the integrated intensity of the smear over the 
full-length mRNA band.

Simultaneously, at the specified time points, aliquots were quenched, 
and 100 ng per well of mRNA were transfected into HeLa cells under the 
aforementioned standard conditions.

5.14. Administration of the mRNA-LNP to mice and in-vivo quantification 
of the activity of luciferase

Female BALB/c mice (Charles River Laboratories), 8-10-week-old 
and weighting 18–23 g, were acclimated to new conditions upon ar-

rival at the experimental facilities for 3-7 days. Housing conditions were 
maintained at a room temperature 20-24 ºC, humidity 50-70%, and light 
intensity 60 lux, with a light-dark cycle of 12 hours.

To measure Firefly Luciferase activity in mice, LNPs were produced 
as previously described, containing 1 μg of the indicated mRNA in a fi-

nal volume of 30 μL. These were then injected intramuscularly. At 4 
and 24 hours post mRNA-LPN inoculation, mice were anesthetised by 
inhalation with 4% of Isoflurane using a vaporiser. The maintenance of 
the anaesthesia was sustained at 1.5% of Isoflurane. Then, D-luciferin 
(Quimigen, 12507) was intraperitoneally injected at 150 mg/kg, typi-

cally 200 μL of the stock at 15 mg/mL in PBS for a 20 g mouse. Luciferase 
images were captured 10 minutes after luciferin inoculation using the 
IVIS Lumina XRMS Imaging System, following manufacturer’s instruc-

tions.

5.15. Statistical analysis for in vitro and in vivo experiments

In experimental studies, GraphPad Prism 10 software was used for 
representation and statistical analysis. The presence of outliers in the 
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experimental data was investigated using the ROUT test with a Q value 
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of 1%. No outliers were identified. To assess the normality of the ex-

perimental data, the Kolmogorov-Smirnov test was employed. Although 
some specific groups did not pass the normality test in the case of in 
vitro mRNA evaluation, given the predominantly normal distribution in 
the overall evaluation, we assumed normality for all groups.

Finally, an ordinary one-way ANOVA with Tukey’s multiple compar-

isons post-test was employed for the comparison of experimental groups. 
The statistical significance of the results is indicated in Fig. 6, 7 and S9 
by asterisks, as follows: *: P-value < 0.05; **: P-value < 0.01; ***: P-

value < 0.001. The absence of asterisks indicates that the result is not 
statistically significant, with a P-value > 0.05.
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