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Abstract Inherent correlations between visual and semantic features in real-world scenes make

it difficult to determine how different scene properties contribute to neural representations. Here,

we assessed the contributions of multiple properties to scene representation by partitioning the

variance explained in human behavioral and brain measurements by three feature models whose

inter-correlations were minimized a priori through stimulus preselection. Behavioral assessments of

scene similarity reflected unique contributions from a functional feature model indicating potential

actions in scenes as well as high-level visual features from a deep neural network (DNN). In

contrast, similarity of cortical responses in scene-selective areas was uniquely explained by mid-

and high-level DNN features only, while an object label model did not contribute uniquely to either

domain. The striking dissociation between functional and DNN features in their contribution to

behavioral and brain representations of scenes indicates that scene-selective cortex represents only

a subset of behaviorally relevant scene information.

DOI: https://doi.org/10.7554/eLife.32962.001

Introduction
Although researchers of visual perception often use simplified, highly controlled images in order to

isolate the underlying neural processes, real-life visual perception requires the continuous processing

of complex visual environments to support a variety of behavioral goals, including recognition, navi-

gation and action planning (Malcolm et al., 2016). In the human brain, the perception of complex

scenes is characterized by the activation of three scene-selective regions, the Parahippocampal Place

Area (PPA; Aguirre et al., 1998; Epstein and Kanwisher, 1998), Occipital Place Area (OPA;

Hasson et al., 2002; Dilks et al., 2013), and Medial Place Area (MPA; Silson et al., 2016), also

referred to as the Retrosplenial Complex (Bar and Aminoff, 2003). A growing functional magnetic

resonance imaging (fMRI) literature focuses on how these regions facilitate scene understanding by

investigating what information drives neural responses in these regions when human observers view

scene stimuli. Currently, a large set of candidate low- and high-level characteristics have been identi-

fied, including but not limited to: a scene’s constituent objects and their co-occurrences; spatial lay-

out; surface textures; contrast and spatial frequency, as well as scene semantics, contextual
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associations, and navigational affordances (see Epstein, 2014; Malcolm et al., 2016; Groen et al.,

2017 for recent reviews).

This list of candidate characteristics highlights two major challenges in uncovering neural repre-

sentations of complex real-world scenes (Malcolm et al., 2016). First, the presence of multiple can-

didate models merits careful comparison of the contribution of each type of information to scene

representation. However, given the large number of possible models and the limited number that

can realistically be tested in a single study, how do we select which models to focus on? Second,

there are many inherent correlations between different scene properties. For example, forests are

characterized by the presence of spatial boundaries and numerous vertical edges, whereas beaches

are typically open with a prominent horizon, resulting in correlations between semantic category,

layout and spatial frequency (Oliva and Torralba, 2001; Torralba and Oliva, 2003). This makes it

problematic to explain neural representations of scenes based on just one of these properties

(Walther et al., 2009; Kravitz et al., 2011; Park et al., 2011; Rajimehr et al., 2011) without taking

into account their covariation. Indeed, an explicit test of spatial frequency, subjective distance and

semantic properties found that due to inherent feature correlations, all three properties explained

the same variance in fMRI responses to real-world scenes (Lescroart et al., 2015).

In the current fMRI study, we addressed the first challenge by choosing models based on a prior

study that investigated scene categorization behavior (Greene et al., 2016). This study assessed the

relative contributions of different factors that have traditionally been considered important for scene

understanding, including a scene’s component objects (e.g., Biederman, 1987) and its global layout

(e.g, Oliva and Torralba, 2001), but also included novel visual feature models based on state-of-

the-art computer vision algorithms (e.g., Sermanet et al., 2013) as well as models that reflect con-

ceptual scene properties, such as superordinate categories, or the types of actions afforded by

scene. Using an online same-different categorization paradigm on hundreds of scene categories

from the SUN database (Xiao et al., 2014), a large-scale scene category distance matrix was

obtained (reflecting a total of 5 million trials), which was subsequently compared to predicted cate-

gory distances for the various candidate models. The three models that contributed most to human

scene categorization were (1) a model based on human-assigned labels of actions that can be carried

out in the scene (‘functional model’), (2) a deep convolutional neural network (‘DNN model’) that

was trained to map visual features natural images to a set of a 1000 image classes from the Image-

Net database (Deng et al., 2009), and (3) human-assigned labels for all the objects in the

scene (‘object model’). Given the superior performance of these top three models in explaining

scene categorization, we deemed these models most relevant to test in terms of their contribution

to brain representations. Specifically, we determined the relative contribution of these three models

to scene representation by comparing them against multi-voxel patterns in fMRI data collected while

participants viewed a reduced set of scene stimuli from Greene et al. (2016).

To address the second challenge, we implemented a stimulus selection procedure that reduced

inherent correlations between the three models of interest a priori. Specifically, we compared pre-

dicted category distances for repeated samples of stimuli from the SUN database, and selected a

final set of stimuli for fMRI for which the predictions were minimally correlated across the function,

DNN and object model. To assess whether scene categorization behavior for this reduced stimulus

set was consistent with the previous behavioral findings, participants additionally performed a

behavioral multi-arrangement task outside the scanner. To isolate the unique contribution of each

model to fMRI and behavioral scene similarity, we applied a variance partitioning analysis, account-

ing for any residual overlap in representational structure between models.

To anticipate, our data reveal a striking dissociation between the feature model that best

describes behavioral scene similarity and the model that best explains similarity of fMRI responses in

scene-selective cortex. While we confirmed that behavioral scene categorization was best explained

a combination of the function model and DNN features, there was no unique representation of

scene functions in scene-selective brain regions, which instead were best described by DNN features

only. Follow-up analyses indicated that scene functions correlated with responses in regions outside

of scene-selective cortex, some of which have been previously associated with action observation.

However, a direct comparison between behavioral scene similarity and fMRI responses indicated

that behavioral scene categorization correlated most strongly with scene-selective regions, with no

discernible contribution of other regions. This dissociation between the features that contribute
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uniquely to behavioral versus fMRI scene similarity suggests that scene-selective cortex and DNN

feature models represent only a subset of the information relevant for scene categorization.

Figure 1. Models and predicted stimulus dissimilarity. (A) Stimuli were characterized in three different ways: functions (derived using human-generated

action labels), objects (derived using human-generated object labels) and DNN features (derived using layer 7 of a 1000-class trained convolutional

neural network). (B) RDMs showing predicted representational dissimilarity in terms of functions, objects and DNN features for the 30 scene categories

sampled from Greene et al. (2016). Scenes were sampled to achieve minimal between-RDM correlations. The category order in the RDMs is

determined based on a k-means clustering on the functional RDM; clustering was performed by requesting eight clusters, which explained 80% of the

variance in that RDM. RDMs were rank-ordered for visualization purposes only. (C) Multi-dimensional scaling plots of the model RDMs, color-coded

based on the functional clusters depicted in B). Functional model clusters reflected functions such as ‘sports’, and ‘transportation’; note however that

these semantic labels were derived post-hoc after clustering, and did not affect stimulus selection. Critically, representational dissimilarity based on the

two other models (objects and DNN features) predicted different cluster patterns. All stimuli and model RDMs, along with the behavioral and fMRI

measurements, are provided in Figure 1—source data 1.

DOI: https://doi.org/10.7554/eLife.32962.002

The following source data is available for figure 1:

Source data 1.

DOI: https://doi.org/10.7554/eLife.32962.003
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Results

Disentangling function, DNN and object features in scenes
The goal of the study was to determine the contributions of function, DNN and object feature mod-

els to neural representations in scene-selective cortex. To do this, we created a stimulus set by itera-

tively sampling from the large set of scenes previously characterized in terms of these three types of

information by Greene et al. (2016). The DNN feature model was derived using a high-level layer of

an AlexNet (Krizhevsky et al., 2017; Sermanet et al., 2013) that was pre-trained using ImageNet

class labels (Deng et al., 2009), while the object and function feature models were derived based

on object and action labels assigned by human observers through Amazon Mechanical Turk (see

Materials and methods for details). On each iteration, pairwise distances between a subset of

pseudo-randomly sampled categories were determined for each of these feature models, resulting

in three representational dissimilarity matrices (RDMs) reflecting the predicted category distances

for either the function, DNN or object model (Figure 1A) for that sample. Constraining the set to

include equal numbers of indoor, urban, and natural landscape environments, our strategy was

inspired by the odds algorithm of Bruss (2000), in that we rejected the first 10,000 solutions, select-

ing the next solution that had lower inter-feature correlations than had been observed thus far.

Thus, a final selection of 30 scene categories was selected in which the three RDMs were minimally

correlated (Pearson’s r: 0.23–0.26; Figure 1B–C; see Materials and methods).

Twenty participants viewed the selected scenes while being scanned on a high-field 7T Siemens

MRI scanner using a protocol sensitive to blood oxygenation level dependent (BOLD) contrast (see

Materials and methods). Stimuli were presented for 500 ms each while participants performed an

orthogonal task on the fixation cross. To assess how each feature model contributed to scene cate-

gorization behavior for our much reduced stimulus set (30 instead of the 311 categories of

Greene et al., 2016), participants additionally performed a behavioral multi-arrangement task

(Kriegeskorte and Mur, 2012) on the same stimuli, administered on a separate day after scanning.

In this task, participants were presented with all stimuli in the set arranged around a large white cir-

cle on a computer screen, and were instructed to drag-and-drop these scenes within the white circle

according to their perceived similarity (see Materials and methods and Figure 2A).

Function and DNN model both contribute uniquely to scene
categorization behavior
To determine what information contributed to behavioral similarity judgments in the multi-arrange-

ment task, we created RDMs based on each participant’s final arrangement by measuring the pair-

wise distances between all 30 categories in the set (Figure 2B), and then computed correlations of

these RDMs with the three model RDMs that quantified the similarity of the scenes in terms of either

functions, objects, or DNN features, respectively (see Figure 1B).

Replicating Greene et al. (2016), this analysis indicated that all three feature models were signifi-

cantly correlated with scene categorization behavior, with the function model having the highest cor-

relation on average (Figure 2C; objects: mean r = 0.16; DNN features: mean r = 0.26; functions:

mean r = 0.29, Wilcoxon one-sided signed-rank test, all W(20) > 210, all z > 3.9, all p<0.0001). The

correlation with functions was higher than with objects (Wilcoxon two-sided signed-rank test, W(20)

= 199, z = 3.5, p=0.0004), but not than with DNN features (W(20) = 134, z = 1.1, p=0.28), which also

correlated higher than objects (W(20) = 194, z = 3.3, p=0.0009). However, comparison at the level of

individual participants indicated that functions outperformed both the DNN and object models for

the majority of participants (highest correlation with functions: n = 12; with DNN features: n = 7;

with objects: n = 1; Figure 2D).

While these correlations indicate that scene dissimilarity based on the function model best

matched the stimulus arrangements that participants made, they do not reveal to what extent func-

tional, DNN or object features independently contribute to the behavior. To assess this, we per-

formed two additional analyses. First, we computed partial correlations between models and

behavior whereby the correlation of each model with the behavior was determined whilst taking into

account the contributions of the other two models. The results indicated that each model indepen-

dently contributed to the behavioral data: significant partial correlations were obtained for the

object (W(20) = 173, z = 2.5, p=0.006), DNN features (W(20) = 209, z = 3.9, p<0.0001) and function

Groen et al. eLife 2018;7:e32962. DOI: https://doi.org/10.7554/eLife.32962 4 of 26

Research article Neuroscience

https://doi.org/10.7554/eLife.32962


models (W(20) = 209, z = 3.9, p<0.0001), with the function model having the largest partial correla-

tion (Figure 2E). Direct comparisons yielded a similar pattern as the independent correlations, with

weaker contributions of objects relative to both functional (W(20) = 201, z = 3.6, p<0.0003) and

DNN features (W(20) = 195, z = 3.4, p=0.0008), whose partial correlations did not differ from one

another (W(20) = 135, z = 1.12, p=0.26).

Second, we conducted a variance partitioning analysis, in which the function, DNN and object

feature models were entered either separately or in combination as predictors in a set of multiple

regression analyses aimed at explaining the multi-arrangement categorization behavior. By compar-

ing the explained variance based on regression on individual models versus models in combination,

we computed portions of unique variance contributed by each model as well as portions of shared

variance across models (see Materials and methods for details).

A full model in which all three models were included explained 50.3% of the variance in the aver-

age multi-arrangement behavior (Figure 2F). Highlighting the importance of functional features for

scene categorization, the largest portion of this variance could be uniquely attributed to the

function model (unique r2 = 37.6%), more than the unique variance explained by the DNN features

(unique r2 = 29.0%) or the objects (unique r2 = 1.4%). This result is consistent with the findings of

Greene et al. (2016), who found unique contributions of 45.2% by the function model, 7.1% by the

Figure 2. Behavioral multi-arrangement paradigm and results. (A) Participants organized the scenes inside a large white circle according to their

perceived similarity as determined by their own judgment, without receiving instructions as to what information to use to determine scene similarity. (B)

RDM displaying the average dissimilarity between categories in the behavioral arrangements, ordered the same way as Figure 1B (rank-ordered for

visualization only). (C) Average (bar) and individual participant (gray dots) correlations between the behavioral RDM and the model RDMs for objects

(red), DNN features (yellow) and functions (blue). Stars (*) indicate p<0.05 for model-specific one-sided signed-rank tests against zero, while horizontal

bars indicate p<0.05 for two-sided pairwise signed-rank tests between models; p-values were FDR-corrected across both types of comparisons. The

light-blue shaded rectangular region reflects the upper and lower bound of the noise ceiling, indicating RDM similarity between individual participants

and the group average (see Materials and methods). Error bars reflect SEM across participants. (D) Count of participants whose behavioral RDM

correlated highest with either objects, DNN features or functions. (E) Partial correlations for each model RDM. Statistical significance was determined

the same way as in C). (F) Euler diagram depicting the results of a variance partitioning analysis on the behavioral RDM for objects (red circle), DNN

features (yellow circle) and functions (blue circle). Unique (non-overlapping diagram portions) and shared (overlapping diagram portions) variances are

expressed as percentages of the total variance explained by all models combined.

DOI: https://doi.org/10.7554/eLife.32962.004
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DNN model and 0.3% by objects, respectively. (When performing the variance partitioning on the

behavioral categorization measured in Greene et al. (2016) but limited to the reduced set of 30

scene categories used here, we obtained a highly similar distribution of unique variances as for the

current behavioral data, namely 42.8% for functions, 28.0% for DNN features, and 0.003% for

objects, respectively. This suggests that the higher contribution of the DNN relative to Greene et al.

(2016) is a result of the reduced stimulus set used here, rather than a qualitative difference in experi-

mental results between studies.) One interesting difference with this previous study is that the

degree of shared variance between all three models is notably smaller (8.4% versus 27.4%). This is

presumably a result of our stimulus selection procedure that was explicitly aimed at minimizing cor-

relations between models. Importantly, a reproducibility test indicated that the scene similarity

reflected in the multi-arrangement behavior was highly generalizable, resulting in an RDM correla-

tion of r = 0.73 (95% confidence interval = [0.73–0.88], p=0.0001) across two different sets of scene

exemplars that were evenly distributed across participants (see Materials and methods).

In sum, these results confirm a unique, independent contribution of the function model to scene

categorization behavior, here assessed using a multi-arrangement sorting task (as opposed to a

same/different categorization task). We also found a unique but smaller contribution of the DNN

feature model, while the unique contribution of the object model was negligible. Next, we examined

to what extent this information is represented in brain responses to the same set of scenes as mea-

sured with fMRI.

DNN model uniquely predicts responses in scene-selective cortex
To determine the information that is represented in scene-selective brain regions PPA, OPA and

MPA, we created RDMs based on the pairwise comparisons of multi-voxel activity patterns for

each scene category in these cortical regions (Figure 3A), which we subsequently correlated with

the RDMs based on the object, function and DNN feature models. Similar to the behavioral findings,

all three feature models correlated with the fMRI response patterns in PPA (objects: W(20) = 181,

z = 2.8, p=0.002; DNN: W(20) = 206, z = 3.8, p<0.0001; functions: W(20) = 154, z = 1.8, p=0.035,

see Figure 3B). However, PPA correlated more strongly with the DNN feature model than the object

(W(20) = 195, z = 2.5, p=0.012) and function (W(20) = 198, z = 3.5, p<0.0005) models, which did not

differ from one another (W(20) = 145, z = 1.5, p=0.14). In OPA, only the DNN model correlated with

the fMRI response patterns (W(20) = 165, z = 2,2, p=0.013), and this correlation was again stronger

than for the object model (W(20) = 172, z = 2.5, p=0.012), but not the function model (W(20) = 134,

z = 1.1, p=0.28). In MPA, no correlations were significant (all W(14) < 76, all z < 1.4, all p>0.07).

When the three models were considered in combination, only the DNN model yielded a signifi-

cant partial correlation (PPA: W(20) = 203, z = 3.6, p<0.0001, OPA: W(20) = 171, z = 2.5, p=0.007,

Figure 3C), further showing that DNN features best capture responses in scene-selective cortex. No

significant partial correlation was found for the object model (PPA: W(20) = 148, z = 1.6, p=0.056;

OPA: W(20) = 74, z = 1.2, p=0.88) or the function model (PPA: W(20) = 98, z = 0.3, p=0.61, OPA: W

(20) = 127, z = 0.8, p=0.21), or for any model in MPA (all W(14) < 63, all z < 0.66, all p>0.50). Vari-

ance partitioning of the fMRI RDMs (Figure 3D) indicated that the DNN model also contributed the

largest portion of unique variance: in PPA and OPA, DNN features contributed 71.1% and 68.9%,

respectively, of the variance explained by all models combined, more than the unique variance

explained by the object (PPA: 5.3%; OPA, 2.3%) and function (PPA: 0.3%; OPA: 2.6%) models. In

MPA, a larger share of unique variance was found for the function model (41.5%) than for the DNN

(38.7%) and object model (3.2%); however, overall explained variance in MPA was much lower than

in the other ROIs. A reproducibility test indicated that RDMs generalized across participants and

stimulus sets for PPA (r = 0.26 [0.03–0.54], p=0.009) and OPA (r = 0.23 [0.04–0.51], p=0.0148), but

not in MPA (r = 0.06 [�0.16–0.26], p=0.29), suggesting that the multi-voxel patterns measured in

MPA were less stable (this is also reflected in the low noise ceiling in MPA in Figure 3B and C).

Taken together, the fMRI results indicate that of the three models considered, deep network fea-

tures (derived using a pre-trained convolutional network) best explained the coding of scene infor-

mation in PPA and OPA, more so than object or functional information derived from semantic labels

that were explicitly generated by human observers. For MPA, results were inconclusive, as none of

the models adequately captured the response patterns measured in this region, which also did not

generalize across stimulus sets and participants. This result reveals a discrepancy between measure-

ments of brain responses versus behavioral scene similarity, which indicated a large contribution of
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functions to scene representation independent of the DNN features. To better understand if and

how scene-selective cortex represents behaviorally relevant information, we next compared meas-

urements of behavioral scene similarity to the fMRI responses directly.

Figure 3. RDMs and model comparisons for fMRI Experiment 1 (n = 20). (A) RDMs displaying average dissimilarity between categories in multi-voxel

patterns in PPA, OPA and MPA, ordered as in Figure 1B (rank-ordered for visualization only). (B) Average (bar) and individual participant (gray dots)

correlations between the ROIs in A) and the model RDMs for objects (red), DNN features (yellow) and functions (blue) (FDR-corrected). See legend of

Figure 2B for explanation of the statistical indicators and noise ceiling. (C) Partial correlations for each model RDM. Statistics are the same as in B). (D)

Euler diagram depicting results of variance partitioning the average dissimilarity in each ROI between models, expressed as percentages of unique and

shared variance of the variance explained by all three models together.

DOI: https://doi.org/10.7554/eLife.32962.005
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Scene-selective cortex correlation with behavior reflects DNN model
To assess the extent to which fMRI response patterns in scene-selective cortex predicted behavioral

scene similarity, we correlated each of the scene-selective ROIs with three measures of behavioral

categorization: (1) the large-scale online categorization behavior measured in Greene et al. (2016),

(2) the average multi-arrangement behavior of the participants in the current study, and (3)

each individual participant’s own multi-arrangement behavior. This analysis revealed a significant cor-

relation with behavior in all scene-selective ROIs (Figure 4A). In PPA, all three measures of behav-

ioral categorization correlated with fMRI responses (signed-rank test, online categorization behavior:

W(20) = 168, z = 2.3, p=0.010; average multi-arrangement behavior: W(20) = 195, z = 3.3,

p=0.0004; own arrangement behavior: W(20) = 159, z = 2.0, p=0.023). In OPA, significant correla-

tions were found for both of the average behavioral measures (online categorization behavior: W(20)

= 181, z = 2.8, p=0.002; average multi-arrangement behavior: W(20) = 158, z = 1.96, p=0.025), but

not for the participant’s own multi-arrangement behavior (W(20) = 106, z = 0.02, p=0.49), possibly

due to higher noise in the individual data. Interestingly, however, MPA showed the opposite pattern:

participant’s own behavior was significantly related to the observed fMRI responses (W(14) = 89,

z = 2.26, p=0.011), but the average behavioral measures were not (online behavior: W(14) = 47,

z = 0.4, p=0.65; average behavior: W(14) = 74, z = 1.3, p=0.09). Combined with the reproducibility

test results (see above), this suggests that the MPA responses are more idiosyncratic to individual

participants or stimulus sets.

While these results support an important role for scene-selective regions in representing informa-

tion that informs scene categorization behavior, they also raise an intriguing question: what aspect

of categorization behavior is reflected in these neural response patterns? To address this, we per-

formed another variance partitioning analysis, now including the average multi-arrangement behav-

ior as a predictor of the fMRI response patterns, in combination with the two models that correlated

most strongly with this behavior, that is the DNN and function models. The purpose of this analysis

was to determine how much variance in neural responses each of the models shared with the behav-

ior, and whether there was any behavioral variance in scene cortex that was not explained by our

models. If the behaviorally relevant information in the fMRI responses is primarily of a functional

nature, we would expect portions of the variance explained by behavior to be shared with the func-

tion model. Alternatively, if this variance reflects mainly DNN features (which also contributed

uniquely to the behavioral categorization; Figure 2F), we would expect it to be shared primarily with

the DNN model.

Consistent with this second hypothesis, the variance partitioning results indicated that in OPA

and PPA, most of the behavioral variance in the fMRI response patterns was shared with the DNN

model (Figure 4B). In PPA, the behavioral RDMs on average shared 25.7% variance with the DNN

model, while a negligible portion was shared with the function model (less than 1%); indeed, nearly

all variance shared between the function model and the behavior was also shared with the DNN

model (10.1%). In OPA, a similar trend was observed, with behavior sharing 38.9% of the fMRI vari-

ance with the DNN model. In OPA, the DNN model also eclipsed nearly all variance that behavior

shared with the function model (9.7% shared by behavior, functions and DNN features), leaving only

1.6% of variance shared exclusively by functions and behavior. In contrast, in MPA, behavioral vari-

ance was shared with either the DNN model or the function model to a similar degree (14.7% and

17.7%, respectively), with an additional 27.1% shared with both; note, however, again MPA’s low

explained variance overall.

In sum, while fMRI response patterns in PPA and OPA reflect information that contributes to

scene similarity judgments, this information aligns best with the DNN feature model; it does not

reflect the unique contribution of functions to scene categorization behavior. While in MPA, the

behaviorally relevant representations may partly reflect other information, the overall explained vari-

ance in MPA was again quite low, limiting interpretation of this result.

Relative model contributions to fMRI responses do not change with
task manipulation
An important difference between the behavioral and the fMRI experiment was that participants had

access to the entire stimulus set when performing the behavioral multi-arrangement task, which they

could perform at their own pace, while they performed a task unrelated to scene categorization in
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the fMRI scanner. Therefore, we reasoned that a possible explanation of the discrepancy between

the fMRI and behavioral findings could be a limited engagement of participants with the briefly pre-

sented scenes while in the scanner, resulting in only superficial encoding of the images in terms of

visual features that are well captured by the DNN model, rather than functional or object features

that might be more conceptual in nature.

To test this possible explanation, we ran Experiment 2 and collected another set of fMRI data

using the exact same visual stimulation, but with a different task instruction (n = 8; four of these par-

ticipants also participated in Experiment 1, allowing for direct comparison of tasks within individu-

als). Specifically, instead of performing an unrelated fixation task, participants covertly named the

presented scene. Covert naming has been shown to facilitate stimulus processing within category-

selective regions and to enhance semantic processing (van Turennout et al., 2000; van Turennout

et al., 2003). Before entering the scanner, participants were familiarized with all the individual

scenes in the set, whereby they explicitly generated a name for each individual scene (see Materials

and methods). Together, these manipulations were intended to ensure that participants attended to

the scenes and processed their content to a fuller extent than in Experiment 1.

Despite this task difference, Experiment 2 yielded similar results as Experiment 1 (Figure 5A).

Reflecting participant’s enhanced engagement with the scenes when performing the covert naming

task, overall model correlations were considerably higher than in Experiment 1, and now yielded sig-

nificant correlations with the function model in both OPA and MPA (Figure 5B). The direct test of

reproducibility also yielded significant, and somewhat increased, correlations for PPA (r = 0.35

[0.26–0.55], p=0.0001) and OPA (r = 0.27 [0.18–0.60], p=0.039), but not in MPA (r = 0.10 [�0.07–

0.28], p=0.17). Importantly, in all three ROIs, the DNN model correlations were again significantly

stronger than the function and object model correlations, which again contributed very little unique

variance (Figure 5C). Direct comparison of RDM correlations across the two Experiments indicated

that in PPA and OPA, the naming task resulted in increased correlations for the DNN model only

Figure 4. Correlations and variance partitioning of behavioral measurements of scene categorization and similarity of fMRI responses. (A) Correlations

of three measures of behavioral categorization (see Results section for details) with fMRI response patterns in PPA, OPA and MPA. See legend of

Figure 2B for explanation of the statistical indicators and noise ceiling. (B) Euler diagram depicting the results of variance partitioning the fMRI

responses in PPA, OPA and MPA for DNN features (yellow), functions (blue) and average sorting behavior (green), indicating that the majority of the

variance in the fMRI signal that is explained by categorization behavior is shared with the DNN features.

DOI: https://doi.org/10.7554/eLife.32962.006
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(two-sided Wilcoxon ranksum test, PPA: p=0.0048; OPA p=0.0056), without any difference in corre-

lations for the other models (all p>0.52). In MPA, none of the model correlations differed across

tasks (all p>0.21). Increased correlation with the DNN model was present within the participants that

participated in both experiments (n = 4; see Materials and methods): in PPA and OPA, 4/4 and 3/4

participants showed an increased correlation, respectively, whereas no consistent patterns was

observed for the other models and MPA (Figure 5D).

In sum, the results of Experiment 2 indicate that the strong contribution of DNN features to fMRI

responses in scene-selective cortex is not likely the result of limited engagement of participants with

the scenes when viewed in the scanner. If anything, enhanced attention to the scenes under an

explicit naming instruction resulted in even stronger representation of the DNN features, without a

clear increase in contributions of the function or object models.

Contributions of the function model outside scene-selective cortex
Our results so far indicate a dissociation between brain and behavioral assessments of the represen-

tational similarity of scenes. In the behavioral domain, visual features in a deep convolutional net-

work uniquely contributed to behavioral scene categorization, but the function model also exhibited

a large unique contribution, regardless of whether this behavior was assessed using a same-different

categorization or a multi-arrangement task. In contrast, fMRI responses in scene-selective cortex

were primarily driven by DNN features, without convincing evidence of an independent contribution

of functions. Given this lack of correlation with the function model in the scene-selective cortex, we

explored whether this information could be reflected elsewhere in the brain by performing whole-

brain searchlight analyses. Specifically, we extracted the multi-voxel patterns from spherical ROIs

throughout each participant’s entire brain volume and performed partial correlation analyses includ-

ing all three models (DNN features, objects, functions) to extract corresponding correlation maps for

each model. The resulting whole-brain searchlight maps were then fed into a to surface-based group

analysis (see Materials and methods) to identify clusters of positive correlations indicating significant

model contributions to brain representation throughout all measured regions of cortex.

The results of these searchlight analyses were entirely consistent with the ROI analyses: for the

DNN feature model, significant searchlight clusters were found in PPA and OPA (Figure 6A), but

not MPA, whereas no significant clusters were found for the function model in any of the scene-

selective ROIs. (The object model yielded no positive clusters). However, two clusters were identified

for the function model outside of scene-selective cortex (Figure 6B): 1) a bilateral cluster on the ven-

tral surface, lateral to PPA, overlapping with the fusiform and temporal lateral gyri, and 2) a unilat-

eral cluster on the left lateral surface, located adjacent to, but more ventral than, OPA, overlapping

the posterior middle and inferior temporal gyrus.

The observed dissociation between behavioral categorization and scene-selective cortex suggests

that the functional features of scenes that we found to be important for scene categorization behav-

ior are potentially represented outside of scene-selective cortex. If so, we would expect the search-

light clusters that correlated with the function model to show a correspondence with the behavioral

scene categorization. To test this, we directly correlated the multi-arrangement behavior with multi-

voxel pattern responses throughout the brain. Consistent with the results reported in Figure 4, we

found a significant searchlight correlation between the behavioral measurements and response pat-

terns in PPA and OPA (Figure 7A). Surprisingly, however, behavioral categorization did not correlate

with any regions outside these ROIs, including the clusters that correlated with the function model.

In order to better understand how representational dissimilarity in those clusters related to the

functional feature model, we extracted the average RDM from each searchlight cluster and

inspected which scene categories were grouped together in these ROIs. Visual inspection of the

RDM and MDS plots of the RDMs (Figure 7B) indicates that in both the bilateral ventral and left-lat-

eralized searchlight clusters, there is some grouping by category according to the function feature

model (indicated by grouping by color in the MDS plot). However, it is also clear that the representa-

tional space in these ROIs does not exactly map onto the functional feature model in Figure 1C.

Specifically, a few categories clearly ‘stand out’ with respect to the other categories, as indicated by

a large average distance relative to the other categories in the stimulus set. Most of the scene cate-

gories that were strongly separated all contained scene exemplars depicting humans that performed

actions (see Figure 7C), although it is worth noting that scene exemplars in the fourth most distinct

category, ‘volcano’, did not contain any humans but may be characterized by implied motion. These
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post-hoc observations suggest that (parts of) the searchlight correlation with the functional feature

model may be due to the presence of human-, body- and/or motion selective voxels in these search-

light clusters.

In sum, the searchlight analyses indicate that the strongest contributions of the DNN model were

found in scene-selective cortex. While some aspects of the function model may be reflected in

regions outside of scene-selective cortex, these regions did not appear to contribute to the scene

categorization behavior, and may reflect selectivity for only a subset of scene categories that clus-

tered together in the function model.

Scene-selective cortex correlates with features from both mid- and
high-level DNN layers
Our results highlight a significant contribution of DNN features to representations in scene-selective

cortex. DNNs consist of multiple layers that capture a series of transformations from pixels in the

input image to a class label, implementing a non-linear mapping of local convolutional filters

responses (layers 1–5) onto a set of fully-connected layers that consist of classification nodes (layers

6–8) culminating in a vector of output ‘activations’ for labels assigned in the DNN training phase.

Visualization and quantification methods of the learned feature selectivity (e.g., Zhou et al., 2014;

Figure 5. RDMs and model comparisons for Experiment 2 (n = 8, covert naming task). (A) Average dissimilarity between categories in multi-voxel

patterns measured in PPA, OPA and MPA (rank-ordered as in Figure 1B). (B) Correlations between the ROIs in A) and the model RDMs for objects

(red), DNN features (yellow) and functions (blue) (FDR-corrected). See legend of Figure 2B for explanation of the statistical indicators and noise ceiling.

Note how in PPA, the DNN model correlation approaches the noise ceiling, suggesting that this model adequately captures the information reflected

in this ROI. (C) Euler diagram depicting the results of variance partitioning the average dissimilarity in each ROI. (D) Average (bars) and individual (dots/

lines) within-participant (n = 4) comparison of fMRI-model correlations across the different task manipulations in Experiment 1 and 2 (participants were

presented with a different set of scenes in each task, see Materials and methods). Note how covert naming mainly enhances the correlation with DNN

features.

DOI: https://doi.org/10.7554/eLife.32962.007
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Güçlü and van Gerven, 2015; Bau et al., 2017; Wen et al., 2017) suggest that while earlier layers

contain local filters that resemble V1-like receptive fields, higher layers develop selectivity for entire

objects or object parts, perhaps resembling category-selective regions in visual cortex. Our deep

network feature model was derived using a single high-level layer, fully-connected layer 7 (‘fc7’).

Moreover, this model was derived using the response patterns of a DNN that was pretrained on

ImageNet (Deng et al., 2009), an image database largely consisting of object labels. Given the

strong performance of the DNN feature model in explaining the fMRI responses in scene-selective

cortex, it is important to determine whether this result was exclusive to higher DNN layers, and

whether the task used for DNN training influences how well the features represented in individual

layers explain responses in scene-selective cortex. To do so, we conducted a series of exploratory

analyses to assess the contribution of other DNN layers to fMRI responses, whereby we compared

DNNs that were trained using either object or scene labels.

To allow for a clean test of the influence of DNN training on features representations in each

layer, we derived two new sets of RDMs by passing our stimuli through (1) a novel 1000-object label

ImageNet-trained network implemented in Caffe (Jia et al., 2014) (‘ReferenceNet’) and (2) a 250-

scene label Places-trained network (‘Places’) (Zhou et al., 2014), (see Materials and methods). Direct

comparisons of the layer-by-layer RDMs of these two DNNs (Figure 8A) indicated that both models

extracted similar features, evidenced by strong between-model correlations overall (all layers

r > 0.6). However, the similarity between models decreased with higher layers, suggesting that

Figure 6. Medial (left) and lateral (right) views of group-level searchlights for (A) the DNN and (B) function model, overlaid on surface reconstructions of

both hemispheres of one participant. Each map was created by submitting the partial correlation maps for each model and hemisphere to one-sample

tests against a mean of zero, cluster-corrected for multiple comparisons using Threshold-Free Cluster Enhancement (thresholded on z = 1.64,

corresponding to one-sided p<0.05). Unthresholded versions of the average partial correlation maps are inset above. Group-level ROIs PPA, OPA and

MPA are highlighted in solid white lines. Consistent with the ROI analyses, the DNN feature model contributed uniquely to representation in PPA and

OPA. The function model uniquely correlated with a bilateral ventral region, as well as a left-lateralized region overlapping with the middle temporal

and occipital gyri.

DOI: https://doi.org/10.7554/eLife.32962.008
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features in higher DNN layers become tailored to the task they are trained on. Moreover, this sug-

gests that higher layers of the scene-trained DNN could potentially capture different features than

the object-trained DNN. To investigate this, we next computed correlations between the features in

each DNN layer and the three original feature models (Figure 8B).

As expected, the original fc7 DNN model (which was derived using DNN responses to the large

set of images in the Greene et al. (2016) database, and thus not corresponding directly to the

reduced set of stimuli used in the current study) correlated most strongly with the new DNN layer

Figure 7. Multi-arrangement behavior searchlights and post-hoc analysis of functional clusters. (A) Searchlight result for behavioral scene

categorization. Maps reflect correlation (Pearson’s r) of the group-average behavior in the multi-arrangement task from the participants of Experiment

1. Scene-selective ROIs are outlined in white solid lines; the searchlight clusters showing a significant contribution of the functional model are outlined

in dashed white lines for reference. See Figure 6 for further explanation of the searchlight display. (B) RDM and MDS plots based on the MVPA

patterns in the function model searchlight clusters. RDM rows are ordered as in Figure 1B and category color coding in the MDS plots is as in

Figure 1C. (C) Illustrative exemplars of the four categories that were most dissimilar from other categories within the searchlight-derived clusters

depicted in B.

DOI: https://doi.org/10.7554/eLife.32962.009
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representations, showing steadily increasing correlations with higher layers of both object-trained

and the scene-trained DNN. By design, the object and functional feature models should correlate

minimally with layer 7 of the object-trained ReferenceNet DNN. However, the function model corre-

lated somewhat better with higher layers of the scene-trained DNN, highlighting a potential overlap

of the function model with the scene-trained DNN features, again suggesting that the higher layers

of the scene-trained DNN potentially capture additional information that is not represented in the

object-trained DNN. Therefore, we next tested whether the scene-trained DNN correlated more

strongly with fMRI responses in scene-selective cortex.

Layer-by-layer correlations of the object-trained (Figure 8C) and the scene-trained DNN

(Figure 8D) with fMRI responses in PPA, OPA and MPA however did not indicate a strong difference

in DNN performance as a result of training. In PPA, both the object-trained and place-trained DNN

showed increased correlation with higher DNN layers, consistent with previous work showing a hier-

archical mapping of DNN layers to low vs. high-level visual cortex (Güçlü and van Gerven, 2015;

Cichy et al., 2016; Wen et al., 2017). Note however that the slope of this increase is quite modest;

while higher layers overall correlate better than layers 1 and 2, in both DNNs the correlation with

layer three is not significantly different from the correlation of layers 7 and 8. In OPA, we observed

no evidence for increased performance with higher layers for the object-trained DNN; none of the

pairwise tests survived multiple comparisons correction. In fact, for the scene-trained DNN, the OPA

correlation significantly decreased rather than increased with higher layers, showing a peak correla-

tion with layer 3. No significant correlations were found for any model layer with MPA. These obser-

vations were confirmed by searchlight analyses in which whole-brain correlation maps were derived

for each layer of the object- and scene-trained DNN: see Figure 8—video 1 and Figure 8—video 2

for layer-by-layer searchlight results for the ReferenceNet and the Places DNN, respectively.

These results indicate that despite a divergence in representation in high-level layers for differ-

ently-trained DNNs, their performance in predicting brain responses in scene-selective cortex is

quite similar. In PPA, higher layers perform significantly better than (very) low-level layers, but mid-

level layers already provide a relatively good correspondence with PPA activity. This result was even

more pronounced for OPA where mid-level layers yielded the maximal correlations for both DNNs

regardless of training. Therefore, these results suggest that fMRI responses in scene-selective ROIs

may reflect a contribution of visual DNN features of intermediate complexity rather than, or in addi-

tion to, the fc7 layer that was selected a priori.

Discussion
We assessed the contribution of three scene feature models previously implicated to be important

for behavioral scene understanding to neural representations of scenes in the human brain. First, we

confirmed earlier reports that functions strongly contribute to scene categorization by replicating

the results of Greene et al. (2016), now using a multi-arrangement task. Second, we found that

brain responses to visual scenes in scene-selective regions were best explained by a DNN feature

model, with no discernible unique contribution of functions. Thus, although parts of variance in the

multi-arrangement behavior were captured by the DNN feature model - and this part of the behavior

was reflected in the scene-selective cortex - there are clearly aspects of scene categorization behav-

ior that were not reflected in the activity of these regions. Collectively, these results thus reveal a

striking dissociation between the information that is most important for behavioral scene categoriza-

tion and the information that best describes representational dissimilarity of fMRI responses in

regions of cortex that are thought to support scene recognition. Below, we discuss two potential

explanations for this dissociation.

First, one possibility is that functions are represented outside scene-selective cortex. Our search-

light analysis indeed revealed clusters of correlations with the function model in bilateral ventral and

left lateral occipito-temporal cortex. Visual inspection of these maps suggests that these clusters

potentially overlap with known face- and body-selective regions such as the Fusiform Face (FFA;

Kanwisher et al., 1997) and Fusiform Body (FBA; Peelen and Downing, 2007) areas on ventral sur-

face, as well as the Extrastriate Body Area (EBA; Downing et al., 2001) on the lateral surface. This

lateral cluster could possibly include motion-selective (Zeki et al., 1991; Tootell et al., 1995) and

tool-selective (Martin et al., 1996) regions as well. Our results further indicated that these search-

light clusters contained distinct representations of scenes that contained acting bodies, and may
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Figure 8. DNN layer and DNN training comparisons in terms of correlation with fMRI responses in scene-selective cortex. Panels show convolutional

and fully-connected (FC) layer-by-layer RDM correlations between (A) an object-trained (ReferenceNet) and a scene-trained (Places) DNN; (B) both

DNNs and the a priori selected feature models; (C) the object-trained DNN and scene-selective ROIs; (D) the scene-trained DNN and scene-selective

ROIs (all comparisons FDR-corrected within ROI; See legend of Figure 2B for explanation of the statistical indicators and noise ceiling). While the

decreasing correlation between DNNs indicates stronger task-specificity of higher DNN layers, the original fc7 DNN feature model correlated most

strongly with high-level layers of both DNNs. The object-trained and the scene-trained DNN correlated similarly with PPA and OPA, with both showing

remarkable good performance for mid-level layers. The RDMs for each individual DNN layer are provided in Figure 1—source data 1. Searchlight

maps for each layer of the object- and scene-trained DNN are provided in Figure 8—video 1 and Figure 8—video 2, respectively.

DOI: https://doi.org/10.7554/eLife.32962.010

The following videos are available for figure 8:

Figure 8—video 1. Layer-by-layer searchlight results for the object-trained DNN (ReferenceNet).

DOI: https://doi.org/10.7554/eLife.32962.011

Figure 8—video 2. Layer-by-layer searchlight results for the scene-trained DNN (Places).

DOI: https://doi.org/10.7554/eLife.32962.012
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therefore partially overlap with regions important for action observation (e.g., Hafri et al., 2017).

Lateral occipital-temporal cortex in particular is thought to support action observation by containing

‘representations which capture perceptual, semantic and motor knowledge of how actions change

the state of the world’ (Lingnau and Downing, 2015). While our searchlight results suggest a possi-

ble contribution of these non-scene-selective regions to scene understanding, more research is

needed to address how the functional feature model as defined here relates to the action observa-

tion network, and to what extent the correlations with functional features can be explained by

mere coding of the presence of bodies and motion versus more abstract action-associated features.

Importantly, the lack of a correlation between these regions and the multi-arrangement behavior

suggests that these regions do not fully capture the representational space that is reflected in the

function model.

The second possible explanation for the dissociation between brain and behavioral data is that

the task performed during fMRI did not engage the same mental processes that participants

employed during the two behavioral tasks we investigated. Specifically, both the multi-arrangement

task used here and the online same-different behavioral paradigm used in (Greene et al., 2016)

required participants to directly compare simultaneously presented scenes, while we employed a

‘standard’ fixation task in the scanner to prevent biasing our participants towards one of our feature

models. Therefore, one possibility is that scene functions only become relevant for scene categoriza-

tion when participants are engaged in a contrastive task, that is explicitly comparing two scene

exemplars side-by-side (as in Greene et al., 2016) or within the context of the entire stimulus set

being present on the screen (as in our multi-arrangement paradigm). Thus, the fMRI results might

change with an explicit contrastive task in which multiple stimuli are presented at the same time, or

with a task that explicitly requires participants to consider functional aspects of the scenes. Although

we investigated one possible influence of task in the scanner by using a covert naming task in Exper-

iment 2, resulting in deeper and more conceptual processing, it did not result in a clear increase in

the correlation with the function model in scene-selective cortex. The evidence for task effects on

fMRI responses in category-selective cortex is somewhat mixed: Task differences have been

reported to affect multi-voxel pattern activity in both object-selective (Harel et al., 2014) and scene-

selective cortex (Lowe et al., 2016), but other studies suggest that task has a minimal influence on

representation in ventral stream regions, instead being reflected in fronto-parietal networks

(Erez and Duncan, 2015; Bracci et al., 2017; Bugatus et al., 2017). Overall, our findings suggest

that not all the information that contributes to scene categorization is reflected in scene-selective

cortex activity ‘by default’, and that explicit task requirements may be necessary in order for this

information to emerge in the neural activation patterns in these regions of cortex.

Importantly, the two explanations outlined above are not mutually exclusive. For example, it is

possible that a task instruction to explicitly label the scenes with potential actions will activate com-

ponents of both the action observation network (outside scene-selective cortex) as well as task-

dependent processes within scene-selective cortex. Furthermore, given reports of potentially sepa-

rate scene-selective networks for memory versus perception (Baldassano et al., 2016; Silson et al.,

2016), it is likely that differences in mnemonic demands between tasks may have an important influ-

ence on scene-selective cortex activity. Indeed, memory-based navigation or place recognition tasks

(Epstein et al., 2007; Marchette et al., 2014) have been shown to more strongly engage the medial

parietal cortex and MPA. In contrast, our observed correlation with DNN features seems to support

a primary role for PPA and OPA in bottom-up visual scene analysis, and fits well with the growing lit-

erature showing correspondences between extrastriate cortex activity and DNN features

(Cadieu et al., 2014; Khaligh-Razavi and Kriegeskorte, 2014; Güçlü and van Gerven, 2015;

Cichy et al., 2016; Horikawa and Kamitani, 2017; Wen et al., 2017). Our analyses further showed

that DNN correlations with scene-selective cortex were not exclusive to higher DNN layers, but

already emerged at earlier layers, suggesting that the neural representation in PPA/OPA may be

driven more by visual features than semantic information (Watson et al., 2017).

One limitation of our study is that we did not exhaustively test all possible DNN models. While

our design - in which we explicitly aimed to minimize inherent correlations between the feature mod-

els - required us to ‘fix’ the DNN features to be evaluated beforehand, many more variants of DNN

models have been developed, consisting of different architectures such as VGG, GoogleNet and

ResNet (Garcia-Garcia et al., 2017), as well as different training regimes. Here, we explored the

effect of DNN training by comparing the feature representations between an object- versus a place-
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trained DNN, but we did not observe strong differences in terms of their ability to explain fMRI

responses in either scene-selective cortex or other parts of the brain (see whole-brain searchlights

for the two DNNs in Figure 8—video 1 and Figure 8—video 2). However, this does not exclude the

possibility that other DNNs will map differently onto brain responses, and possibly also explain more

of the behavioral measures of human scene categorization. For example, a DNN trained on the

Atomic Visual Actions (AVA) dataset (Gu et al., 2017), or the DNNs developed in context of event

understanding (e.g., the Moments in Time Dataset; Monfort et al., 2018) could potentially capture

more of the variance explained by the function model in the scene categorization behavior. To facili-

tate the comparison of our results with alternative and future models, we have made the fMRI and

the behavioral data reported in this paper publicly available in Figure 1—source data 1.

These considerations highlight an important avenue for future research in which multiple feature

models (including DNNs that vary by training and architecture) and brain and behavioral measure-

ments are carefully compared. However, our current results suggest that when participants perform

scene categorization, either explicitly (Greene et al., 2016) or within a multi-arrangement paradigm

(Kriegeskorte and Mur, 2012), they incorporate information that is not reflected in either the DNNs

or in PPA and OPA. Our results thus highlight a significant gap between the information that is cap-

tured in both scene–selective cortex and a set of commonly used off-the-shelf DNNs, relative to the

information that drives human understanding of visual environments. Visual environments are highly

multidimensional, and scene understanding encompasses many behavioral goals, including not just

visual object or scene recognition, but also navigation and action planning (Malcolm et al., 2016).

While visual or DNN features likely feed into multiple of these goals - for example, by signaling navi-

gable paths in the environment (Bonner and Epstein, 2017), or landmark suitability (Troiani et al.,

2014) - it is probably not appropriate to think about the neural representations relevant to all these

different behavioral goals as being contained within one single brain region or a single neural net-

work model. Ultimately, unraveling the neural coding of scene information will require careful manip-

ulations of both multiple tasks and multiple scene feature models, as well as a potential expansion of

our focus on a broader set of regions than those characterized by the presence of scene-selectivity.

Summary and conclusion
We successfully disentangled the type of information represented in scene-selective cortex: out of

three behaviorally relevant feature models, only one provided a robust correlation with activity in

scene-selective cortex. This model was derived from deep neural network features from a widely

used computer vision algorithm for object and scene recognition. Intriguingly, however, the DNN

model was not sufficient to explain scene categorization behavior, which was characterized by an

additional strong contribution of functional information. This highlights a limitation of current DNNs

in explaining scene understanding, as well as a potentially more distributed representation of scene

information in the human brain beyond scene-selective cortex.

Materials and methods

Participants
Twenty healthy participants (13 female, mean age 25.4 years, SD = 4.6) completed the first fMRI

experiment and subsequent behavioral experiment. Four of these participants (three female, mean

age 24.3 years, SD = 4.6) additionally participated in the second fMRI experiment, as well as four

new participants (two female, mean age 25 years, SD = 1.6), yielding a total of eight participants in

this experiment. Criteria for inclusion were that participants had to complete the entire experimental

protocol (i.e., the fMRI scan and the behavioral experiment). Beyond the participants reported, three

additional subjects were scanned but behavioral data was either not obtained or lost. Four addi-

tional participants did not complete the scan session due to discomfort or technical difficulties. All

participants had normal or corrected-to-normal vision and gave written informed consent as part of

the study protocol (93 M-0170, NCT00001360) prior to participation in the study. The study was

approved by the Institutional Review Board of the National Institutes of Health and was conducted

according to the Declaration of Helsinki.
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MRI acquisition
Participants were scanned on a research-dedicated Siemens 7T Magnetom scanner in the Clinical

Research Center on the National Institutes of Health Campus (Bethesda, MD). Partial T2*-weighted

functional image volumes were acquired using a gradient echo planar imaging (EPI) sequence with a

32-channel head coil (47 slices; 1.6 � 1.6�1.6 mm; 10% interslice gap; TR, 2 s; TE, 27 ms; matrix

size, 126 � 126; FOV, 192 mm). Oblique slices were oriented approximately parallel to the base of

the temporal lobe and were positioned such that they covered the occipital, temporal, and parietal

cortices, and as much as possible of frontal cortex. After the functional imaging runs, standard

MPRAGE (magnetization-prepared rapid-acquisition gradient echo) and corresponding GE-PD (gra-

dient echo–proton density) images were acquired, and the MPRAGE images were then normalized

by the GE-PD images for use as a high-resolution anatomical image for the following fMRI data anal-

ysis (Van de Moortele et al., 2009).

Stimuli and models
Experimental stimuli consisted of color photographs of real-world scenes (256 � 256 pixels) from 30

scene categories that were selected from a larger image database previously described in

(Greene et al., 2016). These scene categories were picked using an iterative sampling procedure

that minimized the correlation between the categories across three different models of scene infor-

mation: functions, object labels and DNN features, with the additional constraint that the final stimu-

lus set should have equal portions of categories from indoor, outdoor man-made and outdoor

natural scenes, which is the largest superordinate distinction present in the largest scene-database

that is publicly available, the SUN database (Xiao et al., 2014). As obtaining a guaranteed minimum

was impractical, we adopted a variant of the odds algorithm (Bruss, 2000) as our stopping rule. Spe-

cifically, we created 10,000 sets of 30 categories and measured the correlations between functional,

object, and DNN RDMs (distance metric: Spearman’s rho), noting the minimal value from the set.

We persisted in this procedure until we observed a set with lower inter-feature correlations than was

observed in the initial 10,000. From each of the final selected scene categories, eight exemplars

were randomly selected and divided across two separate stimulus sets of 4 exemplars per scene cat-

egory. Stimulus sets were assigned randomly to individual participants (Experiment 1: stimulus set 1,

n = 10; stimulus set 2, n = 10; Experiment 2, stimulus set 1, n = 5; stimulus set 2, n = 3). Participants

from Experiment 2 that had also participated in Experiment 1 were presented with the other stimu-

lus set than the one they saw in Experiment 1.

fMRI procedure
Participants were scanned while viewing the stimuli on a back-projected screen through a rear-view

mirror that was mounted on the head coil. Stimuli were presented at a resolution of 800 � 600 pixels

such that they subtended ~10�10 degrees of visual angle. Individual scenes were presented in an

event-related design for a duration of 500 ms, separated by a 6 s interval. Throughout the experi-

mental run, a small fixation cross (<0.5 degrees) was presented in the center of the screen.

In Experiment 1, participants performed a task on the central fixation cross that was unrelated to

the scenes. Specifically, simultaneous with the presentation of each scene, either the vertical or hori-

zontal arm of the fixation cross became slightly elongated and participants indicated which arm was

longer by pressing one of two buttons indicated on a hand-held button box. Both arms changed

equally often within a given run and arm changes were randomly assigned to individual scenes. In

Experiment 2, the fixation cross had a constant size, and participants were instructed to covertly

name the scene whilst simultaneously pressing one button on the button box. To assure that partici-

pants in Experiment 2 were able to generate a name for each scene, they were first familiarized with

the stimuli. Specifically, prior to scanning, participants were presented with all scenes in the set in

randomized order on a laptop in the console room. Using a self-paced procedure, each scene was

presented in isolation on the screen accompanied by the question ‘How would you name this

scene?’. The participants were asked to type one or two words to describe the scene; as they typed,

their answer appeared under the question, and they were able to correct mistakes using backspace.

After typing the self-generated name, participants hit enter and the next scene would appear until

all 120 scenes had been seen by the participant. This procedure took about ~10 min.
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In both Experiment 1 and 2, participants completed eight experimental runs of 6.4 min each (192

TRs per run); one participant from Experiment 1 only completed seven runs due to time constraints.

Each run started and ended with a 12 s fixation period. Each run contained two exemplar presenta-

tions per scene category. Individual exemplars were balanced across runs such that all stimuli were

presented after two consecutive runs, yielding four presentations per exemplar in total. Exemplars

were randomized across participants such that each participant always saw the same two exemplars

within an individual run; however the particular combination was determined anew for each individ-

ual participant and scene category. Stimulus order was randomized independently for each run.

Stimuli were presented using PsychoPy v1.83.01 (Peirce, 2007).

Functional localizers
Participants additionally completed four independent functional block-design runs (6.9 min, 208 TRs)

that were used to localize scene-selective regions of interest (ROIs). Per block, twenty gray-scale

images (300 � 300 pixels) were presented from one of eight different categories: faces, man-made

and natural objects, buildings, and four different scene types (man-made open, man-made closed,

natural open, natural closed; Kravitz et al., 2011) while participants performed a one-back repeti-

tion-detection task. Stimuli were presented on a gray background for 500 ms duration, separated by

300 ms gaps, for blocks of 16 s duration, separated by 8 s fixation periods. Categories were counter-

balanced both within runs (such that each category occurred twice within a run in a mirror-balanced

sequence) and across runs (such that each category was equidistantly spaced in time relative to each

other category across all four runs). Two localizer runs were presented after the first four experimen-

tal runs and two after the eight experimental runs were completed but prior to the T1 acquisition.

For four participants, only two localizer runs were collected due to time constraints.

Behavioral experiment
On a separate day following the MRI data acquisition, participants performed a behavioral multi-

arrangement experiment. In a behavioral testing room, participants were seated in front of a desk-

top computer with a Dell U3014 monitor (30 inches, 2560 x 1600 pixels) on which all 120 stimuli that

the participant had previously seen in the scanner were displayed as thumbnails around a white cir-

cular arena. A mouse-click on an individual thumbnail displayed a larger version of that stimulus in

the upper right corner. Participants were instructed to arrange the thumbnails within the white circle

in such a way that the arrangement would reflect ‘how similar the scenes are, whatever that means

to you’, by means of dragging and dropping the individual exemplar thumbnails. We purposely

avoided providing specific instructions in order to not bias participants towards using either func-

tions, objects or DNN features to determine scene similarity. Participants were instructed to perform

the task at their own pace; if the task took longer than 1 hr, they were encouraged to finish the

experiment (almost all participants took less time, averaging a total experiment duration of ~45

mins). Stimuli were presented using the MATLAB code provided in (Kriegeskorte and Mur, 2012).

To obtain insight in the sorting strategies used by participants, they were asked (after completing

the experiment) to take a few minutes to describe how they organized the scenes, using a blank

sheet of paper and a pen, using words, bullet-points or drawings.

Behavioral data analysis
Behavioral representational dissimilarity matrices (RDMs) were constructed for each individual partic-

ipant by computing the pairwise squared on-screen distances between the arranged thumbnails and

averaging the obtained distances across the exemplars within each category. The relatedness of the

models and the behavioral data was determined in the same manner as for the fMRI analysis, that

is by computing both individual model correlations and unique and shared variance across models

via hierarchical regression (see below).

fMRI preprocessing
Data were analyzed using AFNI software (https://afni.nimh.nih.gov). Before statistical analysis, the

functional scans were slice-time corrected and all the images for each participant were motion cor-

rected to the first image of the first functional run after removal of the first and last six TRs from
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each run. After motion correction, the localizer runs were smoothed with a 5 mm full-width at half-

maximum Gaussian kernel; the event-related data was not smoothed.

fMRI statistical analysis: localizers
Bilateral ROIs were created for each individual participant based on the localizer runs by conducting

a standard general linear model implemented in AFNI. A response model was built by convolving a

standard gamma function with a 16 s square wave for each condition and compared against the acti-

vation time courses using Generalized Least Squares (GLSQ) regression. Motion parameters and

four polynomials accounting for slow drifts were included as regressors of no interest. To derive the

response magnitude per category, t-tests were performed between the category-specific beta esti-

mates and baseline. Scene-selective ROIs were generated by thresholding the statistical parametric

maps resulting from contrasting scenes > faces at p<0.0001 (uncorrected). Only contiguous clusters

of voxels (>25) exceeding this threshold were then inspected to define scene-selective ROIs consis-

tent with previously published work (Epstein, 2005). For participants in which clusters could not be

disambiguated, the threshold was raised until individual clusters were clearly identifiable. While PPA

and OPA were identified in all participants for both Experiment 1 and 2, MPA/RSC was detected in

only 14 out 20 participants in Experiment 1, and all analyses for this ROI in Experiment 1 are thus

based on this subset of participants.

fMRI statistical analysis: event-related data
Each event-related run was deconvolved independently using the standard GLSQ regression model

in AFNI. The regression model included a separate regressor for each of the 30 scene categories as

well as motion parameters and four polynomials to account for slow drifts in the signal. The resulting

beta-estimates were then used to compute representational dissimilarity matrices (RDMs;

(Kriegeskorte et al., 2008) based on the multi-voxel patterns extracted from individual ROIs. Specif-

ically, we computed pairwise cross-validated Mahalanobis distances between each of the scene 30

categories following the approach outlined in (Walther et al., 2016). First, multi-variate noise nor-

malization was applied by normalizing the beta-estimates by the covariance matrix of the residual

time-courses between voxels within the ROI. Covariance matrices were regularized using shrinkage

toward the diagonal matrix (Ledoit and Wolf, 2004). Unlike univariate noise normalization, which

normalizes each voxel’s response by its own error term, multivariate noise normalization also takes

into account the noise covariance between voxels, resulting in more reliable RDMs (Walther et al.,

2016). After noise normalization, squared Euclidean distances were computed between individual

runs using a leave-one-run-out procedure, resulting in cross-validated Mahalanobis distance esti-

mates. Note that unlike correlation distance measures, cross-validated distances provide unbiased

estimates of pattern dissimilarity on a ratio scale (Walther et al., 2016), thus providing a distance

measure suitable for direct model comparisons.

Model comparisons: individual models
To test the relatedness of the three models of scene dissimilarity with the measured fMRI dissimilar-

ity, the off-diagonal elements of each model RDM were correlated (Pearson’s r) with the off-diagonal

elements of the RDMs of each individual participant’s fMRI ROIs. Following (Nili et al., 2014), the

significance of these correlations was determined using one-sided signed-rank tests against zero,

while pairwise differences between models in terms of their correlation with fMRI dissimilarity were

determined using two-sided signed-ranked tests. For each test, we report the sum of signed ranks

for the number of observations W(n) and the corresponding p-value; for tests with n > 10 we also

report the z-ratio approximation. The results were corrected for multiple comparisons (across both

individual model correlations and pairwise comparisons) using FDR correction (Benjamini and Hoch-

berg, 1995) for each individual ROI separately. Noise ceilings were computed following (Nili et al.,

2014): an upper bound was estimated by computing the correlation between each participant’s indi-

vidual RDM and the group-average RDM, while a lower bound was estimated by correlating each

participant’s RDM with the average RDM of the other participants (leave-one-out approach). The

participant-averaged RDM was converted to rank order for visualization purposes only.
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Model comparisons: partial correlations and variance partitioning
To determine the contribution of each individual model when considered in conjunction with the

other models, we performed two additional analyses: partial correlations, in which each model was

correlated (Pearsons r) while partialling out the other two models, and variance partitioning based

on multiple linear regression. For the latter, the off-diagonal elements of each ROI RDM were

assigned as the dependent variable, while the off-diagonal elements of the three model RDMs were

entered as independent variables (predictors). To obtain unique and shared variance across the

three models, seven multiple regression analyses were run in total: one ‘full’ regression that included

all three feature models as predictors; and six reduced models that included as predictors either

combinations of two models in pairs (e.g., functions and objects), or including each model by itself.

By comparing the explained variance (r2) of a model used alone to the r2 of that model in conjunc-

tion with another model, we can infer the amount of variance that is independently explained by

that model, that is partition the variance (see Groen et al., 2012; Ramakrishnan et al., 2014;

Lescroart et al., 2015; Çukur et al., 2016; Greene et al., 2016; Hebart et al., 2018 for similar

approaches).

Analogous to the individual model correlation analyses, partial correlations were calculated for

each individual participant separately, and significance was determined using one-sided signed-rank

tests across participants (FDR-corrected across all comparisons within a given ROI). To allow compar-

ison with the results reported in (Greene et al., 2016), variance partitioning was performed on the

participant-average RDMs. Similar results were found, however, when variance was partitioned for

individual participant’s RDMs and then averaged across participants. To visualize this information in

an Euler diagram, we used the EulerAPE software (Micallef and Rodgers, 2014).

Variance partitioning of fMRI based on models and behavior
Using the same approach as in the previous section, a second set of regression analyses was per-

formed to determine the degree of shared variance between the behavioral categorization on the

one hand, and the functions and DNN features on the other, in terms of the fMRI response pattern

dissimilarity. The Euler diagrams were derived using the group-average RDMs, taking the average

result of the multi-arrangement task of these participants as the behavioral input into the analysis.

Direct reproducibility test of representational structure in behavior and
fMRI
To assess how well the obtained RDMs were reproducible within each measurement domain (behav-

ior and fMRI), we compared the average RDMs obtained for the two separate stimulus sets. Since

these two sets of stimuli were viewed by different participants (see above under ‘Stimuli and mod-

els’), this comparison provides a strong test of generalizability, across both scene exemplars and

across participant pools. Set-average RDMs were compared by computing inter-RDM correlations

(Pearson’s r) and 96% confidence intervals (CI) and statistically tested for reproducibility using a ran-

dom permutation test based on 10.000 randomizations of the category labels.

DNN comparisons
The original, a priori fc7 DNN feature model was determined based on the large set of exemplars

(average of 65 exemplars per scene category) used in Greene et al. (2016). To investigate the influ-

ence of DNN layer and training images on the learned visual features and their correspondence with

activity in scene-selective cortex, we derived two new sets of RDMs by passing our scene stimuli

through two pre-trained, 8-layer AlexNet (Krizhevsky et al., 2017) architecture networks: (1) a

1000-object label ImageNet-trained (Deng et al., 2009) network implemented in Caffe (Jia et al.,

2014) (‘ReferenceNet’) and (2) a 250-scene label Places-trained network (‘Places’) (Zhou et al.,

2014). By extracting the node activations from each layer, we computed pairwise dissimilarity (1 –

Pearson’s r) resulting in one RDM per layer and per model. These RDMs were then each correlated

with the fMRI RDMs from each participant in PPA, OPA and MPA (Pearson’s r). These analyses were

performed on the combined data of Experiment 1 and 2; RDMs for participants that participated in

both Experiments (n = 4) were averaged prior to group-level analyses.
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Searchlight analyses
To test the relatedness of functions, objects and visual feature models with fMRI activity recorded

outside scene-selective ROIs, we conducted whole-brain searchlight analyses. RDMs were computed

in the same manner as for the ROI analysis, that is by computing cross-validated Mahalanobis distan-

ces based on multivariate noise-normalized multi-voxel patterns, but now within spherical ROIs of 3

voxel diameter (i.e. 123 voxels/searchlight). Analogous to the ROI analyses, we computed partial

correlations of each feature model, correcting for the contributions of the remaining two models.

These partial correlation coefficients were assigned to the center voxel of each searchlight, resulting

in one whole-volume map per model. Partial correlation maps were computed for each participant

separately in their native volume space. To allow comparison at the group level, individual partici-

pant maps were first aligned to their own high-resolution anatomical scan and then to surface recon-

structions of the grey and white matter boundaries created from these high-resolution scans using

the Freesurfer (http://surfer.nmr.mgh.harvard.edu/) 5.3 autorecon script using SUMA (Surface Map-

ping with AFNI) software (https://afni.nimh.nih.gov/Suma). The surface images for each participant

were then smoothed with a Gaussian 10 mm FWHM filter in surface coordinate units using the SurfS-

mooth function with the HEAT_07 smoothing method.

Group-level significance was determined by submitting these surface maps to node-wise one-

sample t-tests in conjunction with Threshold Free Cluster Enhancement (Smith and Nichols, 2009)

through Monte Carlo simulations using the algorithm implemented in the CoSMoMVPA toolbox

(Oosterhof et al., 2016), which performs group-level comparisons using sign-based permutation

testing (n = 10,000) to correct for multiple comparisons. To increase power, the data of Experiment

1 and 2 were combined; coefficient maps for participants that participated in both Experiments

(n = 4) were averaged prior to proceeding to group-level analyses.

For searchlight comparisons with scene categorization behavior and feature models based on dif-

ferent DNN layers, we computed regular correlations (Pearson’s r) rather than partial correlations.

For the behavioral searchlight, we used the average multi-arrangement behavior from Experiment 1

(since the participants from Experiment 2 did not perform this task). For the DNN searchlights, we

used the same layer-by-layer RDMs as for the ROI analyses, independently correlating those with the

RDMs of each spherical ROI. Group-level significance was determined in the same manner as for the

a priori selected feature models (see above).
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