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Electroencephalographic signal is a representative signal that contains information about brain activity, which is used for the
detection of epilepsy since epileptic seizures are caused by a disturbance in the electrophysiological activity of the brain. The
prediction of epileptic seizure usually requires a detailed and experienced analysis of EEG. In this paper, we have introduced a
statistical analysis of EEG signal that is capable of recognizing epileptic seizure with a high degree of accuracy and helps to
provide automatic detection of epileptic seizure for different ages of epilepsy. To accomplish the target research, we extract
various epileptic features namely approximate entropy (ApEn), standard deviation (SD), standard error (SE), modified mean
absolute value (MMAV), roll-off (R), and zero crossing (ZC) from the epileptic signal. The k-nearest neighbours (k-NN)
algorithm is used for the classification of epilepsy then regression analysis is used for the prediction of the epilepsy level at
different ages of the patients. Using the statistical parameters and regression analysis, a prototype mathematical model is
proposed which helps to find the epileptic randomness with respect to the age of different subjects. The accuracy of this
prototype equation depends on proper analysis of the dynamic information from the epileptic EEG.

1. Introduction

Epilepsy is a long-lasting neurological disorder categorized by
repeated, gratuitous seizures, electrophysiological disturbances
in the human brain which may range from brief gaps of
attention or muscle bumps to severe and prolonged seizures.
Epileptic seizures are the visible or apparent manifestations
that are produced when the brain briefly becomes dysfunc-
tional because of abnormal paroxysmal discharge of the nerve
cells in the cerebral cortex [1–3]. Alternately, epilepsy is a group
of neurological disorders characterized by epileptic seizures
[4, 5]. Epileptic seizures are incidents which may be varied
from brief and nearly undetectable to long periods of vigorous
shaking [6]. In epilepsy, seizures tend to recur and have no
immediate underlying cause while seizures that occur due to
a specific cause are not deemed to represent epilepsy [4, 7].
Characteristics of seizures vary and depend on where in the
brain the disturbance first starts and how far it spreads.
Temporary symptoms occur, such as loss of awareness or

consciousness and disturbances of movement, sensation
(including vision, hearing, and taste), mood, or other cognitive
functions. Figure 1(a) represents normal neuronal-ion-channel
function and in this section the membrane resting potential is
−70mV which is due to the sodium and potassium channels
as a primary requirement of action potential.

The sodium and potassium channels are associated with
a depolarizing phase which occupy the medium position by
sodium channel opening and a repolarizing phase due to
potassium-channel opening and sodium-channel inactiva-
tion. On the other hand, remaining potassium channels
contribute to a longer-term repolarization that acts as the
prevention of repetitive excitation of the neuron. In
Figure 1(b), mutations in SCN1B, which encode a voltage-
gated sodium-channel subunit, are associated with general-
ized epilepsy with febrile seizures plus [4]. The movement
of an increased amount of sodium current, which would lead
to a greater depolarization during the action potential and an
increased tendency to excite repetitive bursts is the outcome
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Figure 1: Ion-channel dysfunction for the formation of epilepsy.
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of apparent mutations. Similarly, in Figure 1(c), mutations in
KCNQ2 and KCNQ3 will occur in both the potassium and
sodium electrodes where encoding of potassium channels
occur which are related with benign ancestral neonatal
spasms. People with seizures can be injured, have fractures
or bruises more frequently than controls, or have higher rates
of psychological problems like anxiety or depression which
causes more physical problems (such as fractures and bruis-
ing from injuries related to seizures). Similarly, the risk of
premature death in people with epilepsy is up to 3 times
higher than the general population, with the highest rates
found in low- and middle-income countries and rural versus
urban areas. A great proportion of the causes of death related
to epilepsy in low- and middle-income countries are
potentially preventable, such as falls, drowning, burns, and
prolonged seizures [8–10]. There are more than 30 different
forms of epilepsy and more than 40 different types of seizures
[2]. According to a report of the World Health Organization
(WHO) [11], around 50 million people worldwide have epi-
lepsy. Around 90% of them are from developing countries
and one-fourth of them do not have access to medication.
Epilepsy cannot be cured, but it can usually be controllable
withmedication. For initial treatment of epilepsy, antiepileptic
drugs (AEDs) are used [12]. Epilepsy is not transmissible.
The idiopathic epilepsy is the most common type of epilepsy,
which may affect 6 (out of 10) people with the disorder, and it
has no detectible cause. Epilepsy which may take place due to
known cause is called secondary epilepsy or symptomatic
epilepsy. The major causes of secondary epilepsy [11] might
be as follows:

(i) The brain may get impairment from injuries

(ii) Inherited abnormalities with associated brain defects

(iii) A severe head injury

(iv) Stroke may limit the amount of oxygen to the brain

(v) Some infection like meningitis and encephalitis of
the human brain

(vi) A brain tumour which creates more randomness.

There are several methods to diagnose epilepsy such as
electroencephalography (EEG), magnetic resonance imaging
(MRI), functional magnetic resonance imaging (fMRI),
single-photon emission computed tomography (SPECT), pos-
itron emission tomography (PET), and magnetoencephalogra-
phy (MEG). As EEG has speed, high time resolution, and non-
invasive advantages, still now it remains one of the most useful
and effective tools in the treatment of epilepsy. Prediction of
epileptic seizure based on EEG signals can be separated into
three classes: time domain, frequency domain, and the nonlin-
ear methods [13]. In recent times, seizure is detected from the
recorded seizures in order to quantify the clinical image and
propose video-based seizure recognition. In some papers,
information-based measure are also proposed for the detec-
tions of epileptic seizure [14]. Entropy is a measure of rate of
information that may be used in the signal processing for the
detection of noise where a higher value corresponds to

increased unpredictability while a lower value corresponds to
higher predictability [15]. In our proposed research, we use
six features for the classification, and among these features,
entropy has the higher ranked features that is used for the
regression model for prediction of level of epilepsy.

2. Mathematical Background of Classifier and
Statistical Features

Mathematical background for the classifier (k-NN) and sta-
tistical features (approximate entropy (ApEn), standard devi-
ation (SD), standard error (SE), modified mean absolute
value (MMAV), roll-off (R), and zero crossing (ZC)) are
described below.

2.1. k-Nearest Neighbours (k-NN). The k-nearest neighbours
(k-NN) algorithm is a nonparametric learning algorithm
mechanism mainly used for the classification of signal pat-
tern or pattern recognition as shown in Figure 2(a). The
major goals of this mechanism are to assign to an unseen
point the leading class among its k-nearest neighbours within
the training sets of data [16, 17].

Among all of the method of classification like support
vector machine (SVM), artificial neural network (ANN), lin-
ear discriminant analysis (LDA), naive Bayes (NB), and RBF
neural network (RBFNN), k-NN is the best classifier statisti-
cal pattern recognition or neighbour cluster selection as
shown in Figure 2(b) due to its consistently high perfor-
mance, without a priori assumptions. The k-NN classifier
extends this idea by taking the k-nearest points and assigning
the sign of the majority [18]. The positive integer “k” indi-
cates how many neighbours guide the classification. The
default value k = 1 is called the nearest neighbour algorithm.
In the classification analysis, k-NN is the supervised learning
algorithm [19, 20]. The learning algorithm of k-NN for the
classification of any data set X is described below step by step.

(1) Consider that training categories is the column vector
of training set. If there are i numbers of categories in
a training set which is denoted by C1, C2, C3,…, Ci.
The summation makes m-dimensional feature vector.

(2) The sample data set X should have the same dimen-
sional vector for the proper classification which is
denoted by X1, X2, X3,…, Xm.

(3) In this state, the similarity between training set and
data set should be calculated. Taking jth sample
dj dj1, dj2, dj3,…, djm . The similarity SIM X, dj is
mentioned in

SIM X, dj =
〠m

i=1 Xi × dji

〠m

i=1Xi

2
〠m

i=1dji

2
1

(4) Select the value of k which is larger from N simi-
larity of SIM X, di i = 1, 2, 3,…,N . Now, the
probability function has the following mathemati-
cal form:
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P X, Ci =〠
d

SIM X, dj × y dj, Ci , 2

where y dj, Ci is the category of attribute function which
satisfies the following mathematics:

y dj, Ci =
1, dj ∈ Ci

0, dj ∉ Ci

3

(5) Finally, justification of sample X to categories which
have larger value of X, Ci .

In the k-NN classifier, the distance between two sets of
data points is measured by some distance vectors, which
are Euclidean distance, cityblock distance, cosine distance,
and correlation distance.

In statistical mathematics, the Euclidean distance is the
distance between two points in Euclidean space, which
becomes a metric space whose norm form is commonly
known as Euclidean norm. The Euclidean distance, dst , is in

dst = xs − yt × xs − yt ′ 4

The distance between two points is the sum of the
absolute differences of their Cartesian coordinates known as
the cityblock distance which is also known as Manhattan
length [21]. Cityblock distance dst is represented in

dst = 〠
n

j=1
xsj − yt j 5

Cosine distance is the distance which is used for the com-
plement in positive space, that is, Dc A, B = 1− Sc A, B .
Cosine distance dst is represented in

dst = 1− xsyt′

xsxs′ ytyt′
6

Correlation distance is the measure of statistical distance
between two random variables or two random vectors of
arbitrary, not necessarily equal dimension. Correlation dis-
tance dst is represented in

dst = 1− xs − xs yt − yt ′

xt xs xt xs ′ yt yt yt yt ′
, 7

where xs = 1/n ∑jxsj and yt = 1/n ∑jyt j
The statistical features used for the classification using

k-NN classifier in this research are described below.

2.2. Approximate Entropy (ApEn). ApEn is a statistical fea-
ture that indicates the predictability of the current amplitude
values of a physiological signal, for example, EEG based on its
earlier amplitude. The value of ApEn drops sharply during an
epileptic seizure, and this property is used to detect the epi-
leptic seizures. A high value of approximate entropy signifies
more irregularity; on the contrary, a low value signifies that
the time series is deterministic which reflects the intracortical
information flow in the brain when applied to EEG signals
[22, 23]. The value of ApEn can be calculated by using

øm r = N −m + 1 −1 〠
N−m+1

i=1
log cmi r ,

ApEn = øm r − øm+1 r

8

Mathematical procedures of approximate entropy (ApEn)
calculation are described in a flow chart [23, 24] in Figure 3.

2.3. Standard Deviation (SD) and Standard Error (SE). The
measurements of square root of a variance of random
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Figure 2: Architecture of k-NN classifier (a) simple classification and (b) cluster classification.
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variable, statistical population, any kinds of data set, or
probability distribution is known as the standard deviation
(SD) which is also known as absolute deviation. The stan-
dard deviation can be defined for any distribution with
finite first two moments, which can be measured mathe-
matically by using

standard deviation SD = 1
N

〠
N

n=1
xn − μ 2, 9

where N is the number of samples in data sets, xn is the actual
value of the nth term in data sets, and μ is the average
value of those data sets. The standard error (SE) is define
as the standard deviation (SD) of a sample data set which
is the estimation of sample mean based on the population
mean. SE is the mean which is calculated using

standard error SE = standard deviation SD
N

10

2.4. Modified Mean Absolute Value (MMAV).Mean absolute
value (MAV) is the moving average of full-wave rectified

data sets which is the measurement of average value by
taking the average of absolute value of data sets. So,
MMAV is the extension of MAV, in which the individual
value is multiplied by weighting function Wn [24] that can
be determined by

MMAV = 1
N

〠
N

n=1
wn × xn ,

wherewn =
1 0, 0 25N ≤ n ≤ 0 75N
0 5, otherwise

11

2.5. Roll-Off (R). Roll-off is the steepness of a transmission
function with frequency, particularly used in signal feature
extraction. The roll-off can be defined as the frequency below
which 85% of the magnitude distribution of the data sets is
intense [24]. It is also a measure of spectral shape which
can be written mathematically in

R = 0 85 × 〠
n/2

n=1
xn 12

2.6. Zero Crossing (ZC). Zero crossing (ZC) is the frequency
domain features of the data sets which measures the number

Start

Import time series EEG data

�푢(1), �푢(2),…, �푢(N) 

Take an integer, m, and a
positive real number, r (specifies
a filtering level)

Make a sequence vector
X(1), X(2),..., X(N ‒ M + 1)

Using the sequence vector for each i,
where 1≤ i ≤N ‒m + 1,
construct Ci

Approximate entropy (ApEn)
ApEn = øm(r) ‒ øm+1(r)

Stop

m

øm(r) = (N ‒ m + 1)‒1Σ
N‒m+1 log(Ci=1

m

i (r)

Calculate

(r)

Figure 3: Computational flow diagram for ApEn.

5Applied Bionics and Biomechanics



of times that the amplitude value of data sets crosses the zero
y-axis [24]. It can be expressed mathematically in

ZC = 〠
n

n 1
sgn xn × xn 1 ∩ xn xn 1 ≥ threshold,

sgn x = 1, x ≥ threshold
0, otherwise

13

2.7. Regression Analysis. In mathematics, regression analysis
is the procedure to find out the mathematical relationship
between dependent variables with independent variables. In
limited conditions, regression analysis can be used to infer
causal relationships between the independent and dependent
variables. However, in many applications, especially with

small effects or questions of causality based on observational
data, regression methods can give misleading results. The
function which fits a polynomial regression model by the
method of linear least squares is mentioned below.

Y = b0 + b1x
1 + b2x

2 +⋯ + bkx
k, 14

where Y represents predicted outcome value for the polyno-
mial model with regression coefficients b1 to bk for the kth
order polynomial and Y intercept b0.

3. Proposed Research Architecture

The overall proposed methodology is mentioned in a flow
diagram as shown in Figure 4. The epileptic EEG signal is
loaded into MATLAB workspace to find out the feature

Start

EEG signal

Approximate entropy (ApEn), standard deviation (SD), standard
error (SE), zero crossing (ZC), modified mean absolute value

(MMAV), roll-off (R)

k-NN
classifier

Healthy EEG

Epileptic EEG

Regression
analysis

END

Feature vector

Figure 4: Proposed flow diagram of the research work.

Table 1: Training and testing template of feature vectors of epileptic EEG data.

Subjects of train or test
Normalized features

ApEn SD SE MMAV Roll-off ZC

S1 0.17123 0.87575 0.87574 0.78181 0.77964 0.39014

S2 0.20376 0.80575 0.80574 0.51230 0.49013 0.59653

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
S20 0.61815 0.66366 0.66367 0.39526 0.39025 0.55392
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vector of epileptic EEG signal which are approximate entropy
(ApEn), standard deviation (SD), standard error (SE), modi-
fied mean absolute value (MMAV), roll-off (R), and zero
crossing (ZC). These feature vectors are classified according
to the standard feature vector using k-NN classifier. After
classification of epilepsy, regression equation is used to find

the level of ApEn for different ages of epilepsy from epileptic
EEG. High irregular time series EEG signal gives higher value
of ApEn and vice-versa. Moreover, higher value of ApEn
indicates more irregularity of the epileptic EEG signal.
The level of ApEn is increased with the increase of the
age of epileptic patients. Finally, error for each interpretation
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Figure 5: Classification using k-NN classifier. (a) Nearest neighbour searching. (b) Clustering with k-nearest neighbour.

Table 2: Percentage of accuracy due to variation of nearest number k and other parameters kept constant.

Distance types
k = 1 and nearest neighbour (NN) k = 2 and nearest neighbour (NN) k = 3 and nearest neighbour (NN)
Accuracy Confusion matrix Accuracy Confusion matrix Accuracy Confusion matrix

“Cityblock” 60%

Figure 6(a)

60%

Figure 6(a)

60%

Figure 6(a)
“Correlation” 60% 60% 60%

“Cosine” 60% 60% 60%

“Euclidean” 60% 60% 60%
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Table 3: Percentage of accuracy due to variation of classification rule other parameters kept constant.

Distance types
k = 1 and nearest neighbour (NN) k = 1 and random neighbour (RN) k = 1 and smallest neighbour (SN)
Accuracy Confusion matrix Accuracy Confusion matrix Accuracy Confusion matrix

“Cityblock” 60%

Figure 6(a)

40%

Figure 6(b)

20%

Figure 6(c)
“Correlation” 60% 60% 60%

“Cosine” 60% 40% 40%

“Euclidean” 60% 60% 60%
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Figure 6: Presentation of confusion matrix for various k values, distance types, and classification rules.
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is measured to find out the best fitted equation for the inter-
pretation which is most suitable and optimized regression
equation for the prediction.

4. Results and Discussions

4.1. Classification and Clustering Using k-NN. The epileptic
EEG data is processed for the achievement of the feature vec-
tor and then a template as mentioned in Table 1 is formed for
the train of k-NN network. In Table 1, all columns indicate

the normalized features set and each row indicates the subject
used for the train of network. In Figure 5(a), all the nearest
neighbour is determined by the trained k-NN network in
which all the arrows indicate the nearest neighbour where
blue squares indicate the train features set and red diamond
are the desired points whose nearest neighbour is our goal.
On the other hand, in Figure 5(b), the cluster of the
feature vectors (ApEn, MMAV, SD, SE, roll-off, and ZC)
is represented using a circle from the classification using
k-NN classifier. To accomplish the research goal, one
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Figure 7: (a) 3rd-order fitting and (b) residual of ApEn with different ages of subjects.
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desired standard feature point is set as a reference and
then the k-NN network is trained; its clustering circle is
determined around the point of interest. In Figure 5(b),
k = 10 nearest neighbour is determined inside the circle to
find out the close approximation of epileptic EEG signal
using feature vectors (ApEn, MMAV, SD, SE, roll-off, and
ZC) for that one feature of vector from the normal EEG data
(free from the epilepsy) from the patient is required.

4.2. Accuracy Analysis of k-NN Classifier. In this research
work, four distance parameters namely cityblock, correlation,

cosine, and Euclidean are used in our analysis and their per-
formance is analysed by considering other parameters keep
constant. Similarly, the performance of classifier rule namely
nearest neighbour (NN), random neighbour (RN), and
smallest neighbour (SN) as well as different k values is also
analysed keeping corresponding parameters constant. The
performance of the k-NN classifier which is a confusion
matrix is shown in Tables 2 and 3 and Figure 6. From
Tables 2 and 3 as well as Figure 6, it is concluded that lower
classification rate is found at the “cityblock” when k = 1 and
the classifier rule is smallest neighbour (SN).
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Figure 8: (a) 4th-order fitting and (b) residual of ApEn with different ages of subjects.
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4.3. Regression Model for Level of Epilepsy. The 3rd-order
fittings of the approximate entropy (ApEn) is shown in
Figure 7(a). The corresponding regression equation is
mentioned in (15). In this equation, if we put the age of the
epileptic people, we may be interpreting the degree of
randomness of EEG signal.

Y3rd‐order f itting = 1 3277 × 10−07x3 − 1 2915 × 10−05x2

+ 0 00052903x1 + 0 001932
15

The modification between the predicted value and actual
value of the independent value is called the residual which is
the measure of accuracy of prediction. The residual of the
3rd-order fitting is shown in Figure 7(b) and its regression
equation is (16). From this equation, we may find the error
of prediction at any age of the epileptic persons.

Y3rd‐order res = − 8 6358 × 10−14x7 + 2 9924 × 10−11x6
− 4 0981 × 10−09x5 + 2 8173 × 10−07x4
− 1 0201 × 10−05x3 + 0 00018623x2
− 0 0014727x1 + 0 0032633

16

In a similar manner, 4th-order fittings of the approximate
entropy (ApEn) is shown in Figure 8(a). The corresponding
regression equation is mentioned in (17). In this equation, if
we put the age of the epileptic people, we may be interpreting
the degree of randomness of the EEG signal.

Y4th‐order f itting = −3 5815 × 10−10x4 + 2 0511 × 10−07x3

− 1 7628 × 10−05x2 + 0 00063605x1

+ 0 0013676
17

The residual of 4th-order fitting is shown in Figure 8(b)
and its regression equation is (18). From this equation, we
may find the error of prediction at any age of the epileptic
persons.

Y4th‐order res = −8 6358 × 10−14x7 + 2 9924 × 10−11x6

− 4 0981 × 10−09x5 + 2 8173 × 10−07x4

− 1 0129 × 10−05x3 + 0 00018151x2

− 0 0013657x1 + 0 0026987

18

4.4. Error Analysis of Prediction. In Table 4, the error of
prediction is shown where the accuracy of prediction (interpre-
tation) is more in the 3rd-order fitting. The 1st-order fitting is a
liner fitting like y =mx + c which has more error probability
and also it has a larger value of residual than other types of

fitting of ApEn. From the table, it is noticed that the increase
of order of fitting may reduce the error probability, but after
the 3rd-order fitting, the error probability as well as the compu-
tational complexity is increased. Hence, optimum prediction
equation for the epileptic seizure is the 3rd-order which has less
computational complexity and less error probability than the
4th-order fitting. Form the table, it is also remarkable that at
the smaller age of the epileptic people, the prediction error is
more because at the increasing ages of the epileptic persons
the EEG (epileptic) is more severe.

5. Conclusions

The electrophysiological activity of the brain called EEG
signal can analyze for the prediction and diagnosis of epi-
lepsy of the living animals. The epileptic EEG signal is
more and more random and this EEG containing epilepsy
is not suitable for the perfect brain-computer interface
(BCI) paradigms. Hence, prediction of epilepsy is a vital
issue in the modern biomedical field of research. For the
prediction of epilepsy, a statistical approach was explained
in this manuscript. In our research, the epileptic EEG signals
for different aged epileptic subjects was analyzed and one of
the vital features Approximate entropy (ApEn) was mea-
sured which was the indicator of randomness of any time
domain signal. The regression equation of ApEn with
respect to different ages of the epileptic persons may help
the BCI researchers or the neural researcher to predict
the randomness, namely, level of epilepsy corresponding
to different ages. This may help the clinical person to pro-
vide the treatment of the epileptic person after finding the
level of randomness.
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