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Abstract

Currently, food security depends on the increased production of cereals such as wheat (Triticum aestivum L.), which
is an important source of calories and protein for humans. However, cells of the crop have suffered from the accumu-
lation of reactive oxygen species (ROS), which can cause severe oxidative damage to the plants, due to environmen-
tal stresses. ROS are toxic molecules found in various subcellular compartments. The equilibrium between the
production and detoxification of ROS is sustained by enzymatic and nonenzymatic antioxidants. In the present re-
view, we offer a brief summary of antioxidant defense and hydrogen peroxide (H2O2) signaling in wheat plants. Wheat
plants increase antioxidant defense mechanisms under abiotic stresses, such as drought, cold, heat, salinity and
UV-B radiation, to alleviate oxidative damage. Moreover, H2O2 signaling is an important factor contributing to stress
tolerance in cereals.
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Introduction

In addition to environmental adversities, the world’s

agriculture faces serious challenges to meet demand, in-

cluding increased consumption, allocation of land for other

uses and the use of chemical products with implications for

health safety (Curtis and Halford, 2014). Currently, food

security depends on the increased production of mainly

three cereals: wheat (Triticum aestivum L.), rice (Oryza

sativa L.) and maize (Zea mays L.).

Wheat is one of the major cereals in the world and is

one of the main sources of calories and protein. Approxi-

mately 85% and 82% of the global population depends on

wheat for basic calories and protein, respectively (Chaves

et al., 2013). Moreover, this cereal is used in the production

of a variety of wheat products, such as leavened bread, flat

and steamed breads, cakes, pasta, biscuits, noodles, cous-

cous and beer (Curtis and Halford, 2014). Beyond its use

for human consumption, wheat is also used for the develop-

ment of non-food products such as fuel. Because of its high

level of adaptation, wheat is cultivated in tropical and sub-

tropical regions and under both rain-fed and irrigated culti-

vation. However, crop production is severely affected by

adverse environmental stresses (Rahaie et al., 2013).

The main stresses include salt, drought, water excess,

UV-B radiation, cold, heat, pathogens, insects, chemicals,

ozone, and oil nutrient deprivation (Mahajan and Tuteja,

2005; Cançado, 2011). Under stress plant development and

reproduction may be affect at different severity levels, fur-

thermore, the stress is maximized when it occurs in combi-

nation.

Environmental stress induces the accumulation of re-

active oxygen species (ROS) in the cells, which can cause

severe oxidative damage to the plants, thus inhibiting

growth and grain yield. The equilibrium between the pro-

duction and scavenging of ROS is commonly known as re-

dox homeostasis. However, when ROS production

overwhelms the cellular scavenging capacity, thus unbal-

ancing the cellular redox homeostasis, the result is a rapid

and transient excess of ROS, known as oxidative stress

(Mullineaux and Baker, 2010; Sharma et al., 2012). Plants

have antioxidant mechanisms for scavenging the ROS ex-

cess and prevent damages to cells.

Therefore, this review will address oxidative stress.

An overview of the principal antioxidant enzymes involved

in wheat plants in ROS detoxification under abiotic

stresses, such as drought, cold, heat, salinity and UV-B ra-

diation, will be presented. Furthermore, signaling by ROS

in wheat improving stress tolerance will also be covered.
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Antioxidant responses

To avoid potential damage caused by ROS to cellular

components, as well as to maintain growth, metabolism,

development, and overall productivity, the balance be-

tween production and elimination of ROS at the intra-

cellular level must be tightly regulated and/or efficiently

metabolized. This equilibrium between the production and

detoxification of ROS is sustained by enzymatic and

nonenzymatic antioxidants (Mittler, 2002; Mittler et al.,

2004).

The enzymatic components comprise several antioxi-

dant enzymes, such as superoxide dismutase (SOD), cata-

lase (CAT), glutathione peroxidase (GPX), guaiacol pero-

xidase (POX) peroxiredoxins (Prxs), and enzymes of the

ascorbate-glutathione (AsAGSH) cycle, such as ascorbate

peroxidase (APX), monodehydroascorbate reductase

(MDHAR), dehydroascorbate reductase (DHAR), and

glutathione reductase (GR) (Asada, 1999; Mittler, 2002,

2004). Nonenzymatic components include the major cellu-

lar redox buffers ascorbate (AsA) and glutathione (GSH) as

well as tocopherol, carotenoids and phenolic compounds

(Mittler et al., 2004; Gratão et al., 2005; Scandalios, 2005).

In wheat, several studies have reported changes in the

activity of many enzymes of the antioxidant defense system

in plants to control oxidative stress induced by environ-

mental stresses. Alterations in the activity of SOD, APX,

CAT, GR and POX and in the ROS concentration were re-

ported in wheat plants in field and laboratory conditions

(Srivalli and Khanna-Chopra, 2001; Kocsy et al., 2002;

Spundová et al., 2005; Varga et al., 2012; Mishra et al.,

2013; Rao et al., 2013; Huseynova et al., 2014, Kong et al.,

2014; Talaat and Shawky, 2014, Wang et al., 2008). These

studies demonstrated that, in wheat, the mechanisms of

ROS detoxification are positively activated. Several studies

showed that, in an attempt to defend itself against oxidative

damage, wheat plants under different abiotic stresses alter

the activity of antioxidant enzymes such as SOD, CAT,

APX, POX and GR (Table 1).

Excess ROS is harmful to the plant; thereby, to re-

store the cellular redox balance, both enzymatic and nonen-

zymatic systems are activated to detoxify the toxic levels of

ROS. In response to the major abiotic stresses faced by

wheat plants, most antioxidant enzymes increased their ac-

tivity (Table 1). Furthermore, many reports demonstrated

that the effect of abiotic stress in wheat is genotype-spe-

cific, where some genotypes showed different responses in

the same stress condition. Tolerant genotypes generally

maintained a higher antioxidant capacity resulting in lower

oxidative damage. This property likely depends on the ge-

netic potential of the genotype. Wheat responses also de-

pend on the tissue type, length and intensity of the stress as

well as on developmental stage proving the complexity of

the mechanisms of production and detoxification of ROS

and the effect of ROS (oxidative stress) on antioxidant sys-
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Table 1 - Summary of the antioxidant enzyme changes in different wheat genotypes and different tissues type under different tested abiotic-stress condi-

tions.

Abiotic stress SOD CAT APX POX GR References

Drought � - - � Alexieva et al. (2001)

� Luna et al. (2005)

- � � � � Devi et al. (2012)

� � � � Wang et al. (2008)

Salinity � � � Barakat (2011)

� � � Heidari (2009)

� � � Esfandiari et al. (2007)

� � � Sairam et al. (2002)

Cold � � � � Janmohammadi et al. ( 2012)

� - � � � Turk et al. (2014)

Heat � � � � Badawi et al. (2007)

� � Ibrahim et al. (2013)

� � � Gupta et al. (2013)

�� � � �� Wang et al. (2014)

UV-B � � Ibrahim et al. (2013

� � - Alexieva et al. (2001)

� � � � Barabás et al. (1998)

Superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (POX) and glutathione reductase (GR). (�) increase, (�)

decline and (-) unchanged.



tems. Many studies have reported an increase in the con-

centration of hydrogen peroxide (H2O2) after exposure to a

stress, and its production is dependent on the intensity and

duration of the stress. Furthermore, the H2O2 level differs

between various cellular compartments and is related to the

type of stress (Slesak et al., 2007).

The observed increase in enzymatic activities and de-

crease in oxidative damage are closely related. The expres-

sion of many antioxidant enzymes is positively correlated

with higher tolerance levels against abiotic stresses. The ac-

tivation of some enzymes leads to plant protection against

oxidative damage. In rice plants, an important cereal mo-

del, increased expression levels of antioxidant enzymes and

genes have been related to the response to stress factors

(Rosa et al., 2010; Bonifacio et al., 2011; Ribeiro et al.;

2012; Caverzan et al., 2014; Passaia et al., 2013, 2014). In

another model plant, Arabidopsis, the involvement of at

least 152 genes was observed in the regulation of the ROS

level under stress (Mittler, 2004). Thereby, a complex en-

zymatic system has evolved in plants to scavenge excess

ROS and to protect the plants from oxidative stress.

For example, in wheat, an increase in the SOD tran-

script was observed in response to differential heat shock

treatment (Kumar et al., 2013), which indicates an en-

hanced tolerance to environmental stresses. Superoxide

dismutases constitute a frontline in the defense against

ROS, they catalyze the dismutation of O
2

� (superoxide radi-

cal) to H2O2. These enzymes are classified according to

their subcellular location and metal cofactor (Cu/Zn, Mn,

Fe and Ni), and are present in plants, bacteria, yeast and

animals. In plants, the SOD genes are regulated by develop-

ment, tissue-specific and environmental signals (Scanda-

lios, 1997; 2005; Menezes-Benavante et al., 2004).

The wheat Cat gene expressed in transgenic rice im-

proves tolerance against low-temperature stress when com-

pared to non-transgenic plants (Matsumura et al., 2002).

Catalases remove the H2O2, reducing H2O2 to 2H2O. These

proteins are abundantly, but not exclusively, localized to

peroxisomes. The CATs genes respond differentially to

various stresses conditions (Scandalios, 2002; 2005).

In wheat, a mutant line with reduced thylakoid APX

activity leads to impaired photosynthesis (Danna et al.,

2003). Rice mutants double silenced for cytosolic APXs ex-

hibit high guaiacol peroxidase activity, which can contrib-

ute to the cytosolic H2O2 scavenging that occurs in the

vacuoles or apoplast (Bonifacio et al., 2011). Ascorbate

peroxidases catalyze the conversion of H2O2 into H2O and

use ascorbate as a specific electron donor. APX proteins are

distributed in chloroplasts, mitochondria, peroxisomes and

the cytosol. The APX genes show differential modulation

by several abiotic stresses in plants (Rosa et al., 2010;

Caverzan et al., 2012; Caverzan et al., 2014). The balance

between SODs, CATS and APXs is important for determin-

ing the intracellular level of ROS, besides changes in the

balance of these appear to induce compensatory mecha-

nisms (Apel and Hirt, 2004; Scandalios, 2002; 2005).

Recently, it was demonstrated that knockdown of the

wheat monodehydroascorbate reductase gene resulted in

improved wheat resistance to stripe rust by inhibiting

sporulation in the compatible interaction. Moreover, si-

lenced wheat plants increased the proportion of necrotic

area at the infection sites and suppressed Puccinia

striiformis f. sp. tritici hypha elongation (Feng et al., 2014).

Monodehydroascorbate reductase catalyze the regenera-

tion of AsA from the monodehydroascorbate radical using

NAD(P)H as an electron donor. Thereby, MDHAR in the

plant antioxidant system maintains the AsA pool (Hossain

and Asada, 1985). Isoforms of MDHAR are present in

chloroplasts, cytosol, peroxisomes and mitochondria

(Jiménez et al., 1997; Leterrier et al., 2005).

The expression of wheat GPX genes was altered when

wheat plants were submitted to salt, H2O2 and abscisic acid

treatment. Moreover, other findings suggest that GPX

genes not only act as scavengers of H2O2 to control abiotic

stress responses but also play important roles in salt and

ABA-signaling cascades (Zhai et al., 2013). In addition,

glutathione peroxidases studies have demonstrated that

GPX genes are essential for redox homeostasis in rice

(Passaia et al., 2013, 2014). Glutathione peroxidases cata-

lyze the reduction of H2O2 or organic hydroperoxides to

water. The GPXs proteins are present in many life species

(Margis et al., 2008). In plants, the GPX proteins are dis-

tributed in mitochondria, chloroplasts and the cytosol.

Signaling by H2O2

ROS are well recognized for playing a dual role, both

as deleterious as well as beneficial, depending on their con-

centration in plants. The role of ROS as signaling mole-

cules involved in processes such as growth, cell cycle,

development, senescence, programmed cell death, stomatal

conductance, hormonal signaling, and regulation of gene

expression has been widely explored (Kovtun et al., 2000;

Neill et al., 2002; Slesak et al., 2007; Inze et al., 2012). The

intensity and duration of ROS signaling also depends on the

pool that results due to the production of ROS by oxidants

and their removal by antioxidants (Sharma et al., 2012).

Among the various ROS, H2O2 is one of the most abundant

in aerobic biological systems in higher plants, being highly

reactive and toxic. Hydrogen peroxide is considered a sig-

naling molecule in plants that mediates responses to vari-

ous biotic and abiotic stresses. The biological effect of

H2O2 is related to several factors, such as the site of produc-

tion, the developmental stage of the plant, and previous ex-

posures to different kinds of stress, however the strongest

effect on plants is the relationship with its concentration

(Petrov and Breusegem, 2012).

Hydrogen peroxide can diffuse across cell mem-

branes and be transported to other compartments, where it

can act as a signaling molecule or be eliminated (Neill et
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al., 2002). Thus, due the property that in low concentrations

the H2O2 acts as stress signal, many studies have demon-

strated that its application can induce stress tolerance in

plants. Low H2O2 treatments improve seed germination,

seedling growth and resistance to abiotic stresses.

In wheat, it was observed that seed pretreatment with

H2O2 enhances drought tolerance of seedlings (He et al.,

2009). Moreover, H2O2 pretreatment improved wheat alu-

minum acclimation during subsequent aluminum exposure,

thereby reducing ROS accumulation (Xu et al., 2011). The

exogenous H2O2 treatment also protected wheat seedlings

from damage by salt stress (Li et al., 2011), and the pre-

treatment of seeds enhanced salt tolerance of wheat seed-

lings, decreasing the oxidative damage (Wahid et al.,

2007). Maize plants originated from H2O2 pretreated seeds

showed increased tolerance to salt stress (Gondim et al.,

2010). In rice plants, H2O2 not only acts as a toxic molecule

but also as a signaling molecule associated with salinity,

cadmium and abscisic acid stresses (Kao, 2014).

Considerable evidence suggests that H2O2 and other

ROS may act as important signal molecules mediating re-

sponse to stress tolerance in plants (Neill et al., 2002). Al-

though, recent studies have demonstrated that in wheat and

others plant species the H2O2 treatment enhances tolerance

to different stresses, these responses are poorly explored in

later stages of growth and even adult plants. Physiological

responses of the plant can vary according with the stage of

development. Besides, in wheat it was demonstrated that

H2O2 plays two important roles, one as a signal molecule

and other as a harmful chemical, when wheat seedlings

were grown under H2O2 stress (Ge et al., 2013). Thus, the

H2O2 concentration, low or high, will determine whether

the effect will be deleterious or beneficial in plants.

Petrov and Breusegem (2012) showed the major sig-

naling components in the H2O2-transduction network, their

interactions and different outcomes in the plant cell. These

include transcription factors, miRNAs, MAP-kinases and

the interaction of the some effects. In addition, the H2O2

concentration, site of H2O2 synthesis, interaction with other

active signaling pathways, previous exposure to stress, etc,

are also important.

Thus, the mechanism by which a ROS treatment may

protect against different stresses needs to be further investi-

gated because other pathways (biochemical, molecular and

genetic) can be involved and contribute to tolerance. Im-

portantly, each plant species responds differently to stress

condition and under field conditions, and oftentimes the

plants suffer combined stresses. However, ROS signaling

mechanisms is potentially significant to any program

aimed at improving crop tolerance to environmental

stresses.

Final considerations

In the present review we list evidence that wheat

plants activate antioxidant defense mechanisms under

abiotic stresses, which helps in maintaining the structural

integrity of the cell components and presumably alleviates

oxidative damage. Moreover, H2O2 signaling can contrib-

ute to wheat plant tolerance to environmental stresses.

However, this route must be further explored, as many en-

zymes and isoforms can be involved, and ROS is only one

of the potential parameters of plant biological tolerance

against environmental variations.
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